递推算法(C 版)2017
递推法

输入:x=1 y=2 z=8 输出:37
分析
首先我们来看样例:每隔1个月产2对卵,求过8 月(即第8+1=9月)的成虫个数
月份 1 2 3 4 5 6 7 8 9 … 新增卵 0 2 2 2 6 10 14 26 46 … 成虫 1 1 1 3 5 7 13 23 37 …
计算河心n个石礅可承载的最大青蛙数
设f[i]表示河心i个石礅可承载的最大青蛙数(1<=i<=n) 左岸为A,右岸为D
(1) 0个石礅,f[0]=0 (2) 1个石礅,f[1]=m+1 (3) 2个石礅s1,s2,f[2]=?
(1)A上m+1只青蛙s1 (2) A上m+1只青蛙 s2 , (3)s1上的m+1青蛙 s2 (4) A上m+1只青蛙s1 因此,f[2]=m+1+f[1]+f[1]=3*(m+1) (4) 3个石礅s1,s2,s3, (1)A上3(m+1)只青蛙s1,s2 (2) A上m+1只青蛙 s2 , (3)s1,s2上的3(m+1)青蛙 s2 (4) A上3(m+1)只青蛙s1,s2 因此,f[3]=m+1+2*f[2]=7*(m+1) …… (5) n个石礅? (1)A上f(n-1)只青蛙s1…sn-1 (2) A上m+1只青蛙 sn (3)s1…sn-1上的f(n-1)只青蛙sn (4) A上f(n-1)只青蛙s1…sn-1 因此, f[n]=m+1+2*f[n-1]
分析
设数组A[i]表示第i月新增的成虫个数。 由于新成虫每过x个月产y对卵,则可对每个A[i]作如下
人教高中数学 必修五 2.1 第二课时 数列的递推公式(共17张PPT)

(1)a 1 =0, a n 1 = a n +(2n-1) (n∈N);
(2)
a1
=1,
a n1=
2 an
an
2
(n∈N);
(3) a 1 =3,a n 1 =3a n -2 (n∈N,).
解:(1) a 1=0, a 2 =1,a 3 =4,a 4 =9,a 5=16, ∴ a n =(n-1)2 ;
1,1, 2, 3, 5, 8, 13, 21,… 斐波那契数列
an2an1an,
例5:已知数列 an 满足:a1=5,an=an-1+3(n≥2)
(1)写出这个数列an 的前五项为
。
(2)这个数列 an 的通项公式是 an 3n2
。
累差叠加法 ( n 2 ) a n a n 1 f( n ) 或 a n 1 a 者 n f( n )
(1)a1=0,an+1=an+(2n-1),n∈N+;
(2)a1=1,a n 1
2an an 2
,
n∈N+;
解:(1)因为a1=0,an+1=an+(2n-1),n∈N+; 所以, a2=1 , a3=4, a4=9, a5=16 ,
归纳出它的通项公式是an=(n-1)2 。
(2)a1=1,a n 1
又 a1a2a3 9
解得 a 3
9 4
同理可得 a 4
16 9
,
a5
25 16
a3
a5
92561 4 16 16
(2) 2 5 6 是此数列中的项吗?
225
解:(2)令
256 225
n2 (n 1)2
递推法

递推计算方法和应用数学中有不少算法属递推算法。
递推算法就是在一个循环体内随着循环控制变量的变化,逐一通过前面的k 个已知的或已算出的值计算当前待算的值的算法,所用的算式称为递推计算公式。
递推算法分为一维递推算法、二维递推算法和广义递推算法三类。
注意广义递推算法不用了解,一维递推算法又分单步算法和多步算法。
同类递推算法对应相同的基本程度模块,可以作为一个基本类型。
算式给出后程序就能给出,程序和算式有映射关系。
一维递推算法一维递推算法分为单步算法和多步算法。
所谓单步算法是指能用下面的公式表示的算法上式称为一维递推单步算式,00a x =为表头值。
它所对应的程序模块为x[0]:=a;for i=1 to n dox[i]:=f(x[i-1])多步法是指能用下面的公式表示的算法上式表示的算式称为一维递推多步算式,该算法称为一维多步(K 步)算法,1,1,0...-k x x x 的值称为表头值。
它所对应的程序模块为:for i:=0 to k-1 dox[i]:=a[i];for i:=k to n dox[i]:=f(x[i-k],x[i-k+1],…x[i -1]];这里要强调的是,为了使算式和程序之间有一对一的映射关系,应尽量使用数组元素,这也是称为一维递推算法的原因例1计算菲波拉契数列的前21项公式为程序为program p24;varf:array[0..21] of integer;i:integer;beginf[0]:=0;f[1]:=1;for i:=2 to 21 dof[i]:=f[i-1]+f[i-2];for i:=0 to 21 dowrite(f[i],' ');end.该程序和算法的特色为:1. 程序和数学公式有一对一的关系,编程难度低;2. 数组元素的序号本身具有时间顺序特征,程序中不出现数据传递;3. 程序由输入、计算和输出三部分组成,每个程序段都具有明确的单一功能,结构规范 程序中增加一个一维数组并不会发生内存溢出,但却能方便程序设计例2 小数十翻二。
x的n次方用勒让德多项式展开_补充说明

x的n次方用勒让德多项式展开补充说明引言部分:1.1 概述:本文将讨论在数学中基于勒让德多项式的展开定理,研究如何使用勒让德多项式对$x$的$n$次方进行展开。
勒让德多项式是一类经典的特殊函数,具有广泛的应用。
通过对$x$的$n$次方展开为勒让德多项式,可以得到一种形式紧凑且逼近精确度较高的表达方式。
1.2 文章结构:本文共包含五个部分。
首先,在引言部分我们将概述文章内容,并介绍各个章节的组织与结构。
其次,在第二节中,我们将简要介绍勒让德多项式及其在数学中的应用。
随后,第三节将详细阐述使用数值计算与逼近求解方法来展开$x$的$n$次方为勒让德多项式的步骤和原理。
接着,在第四节中探索了该定理在物理学领域中的具体应用案例,并介绍了其他相关数学拓展研究方向以及利用其他多项式对$x^n$进行展开与比较。
最后,在第五节中我们将总结本文内容,并对勒让德多项式展开定理的意义和应用进行总结,并展望未来研究方向。
1.3 目的:本文旨在深入探讨勒让德多项式在数学及物理学中的应用,以及如何使用勒让德多项式将$x$的$n$次方进行展开。
通过详细的步骤说明和示例分析,读者将能够更好地理解该展开定理,并了解其实际应用领域。
此外,本文还将对未来相关研究方向进行探讨和展望。
2. x的n次方用勒让德多项式展开2.1 勒让德多项式简介勒让德多项式是以法国数学家勒让德命名的一类特殊函数,通常用P_n(x)表示。
它们是定义在区间[-1, 1]上的正交多项式,并且具有许多重要的性质和应用。
勒让德多项式是使用递推关系进行计算的,其形式为:P_0(x) = 1P_1(x) = x(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)2.2 勒让德多项式在数学中的应用勒让德多项式在物理学、工程学和应用数学等领域都有广泛的应用。
它们可以被用来解决微分方程、求解特定问题以及进行函数逼近等工作。
例如,在量子力学中,勒让德多项式描述了角动量和能量本征态;在流体力学中,它们用于描述球面对称流场;在信号处理中,它们可用于信号分析和滤波等。
第二十三届全国青少年信息学奥林匹克联赛初赛含答案(WORD重新整理排版)

第二十三届全国青少年信息学奥林匹克联赛初赛提高组 C++语言试题竞赛时间:2017 年 10 月 14 日 14:30~16:30选手注意:●试题纸共有 10 页,答题纸共有 2 页,满分 100 分。
请在答题纸上作答,写在试题纸上的一律无效。
●不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍资料。
一、单项选择题(共 15 题,每题 1.5 分,共计 22.5 分;每题有且仅有一个正确选项)1. 从()年开始,NOIP 竞赛将不再支持 Pascal 语言。
A. 2020B. 2021C. 2022D. 20232. 在 8 位二进制补码中,10101011 表示的数是十进制下的()。
A. 43B. -85C. -43D. -843. 分辨率为 1600x900、16 位色的位图,存储图像信息所需的空间为()。
A. 2812.5KBB. 4218.75KBC. 4320KBD. 2880KB4. 2017 年 10 月 1 日是星期日,1949 年 10 月 1 日是()。
A. 星期三B. 星期日C. 星期六D. 星期二5. 设 G 是有 n 个结点、m 条边(n ≤ m)的连通图,必须删去 G 的()条边,才能使得 G 变成一棵树。
A. m – n + 1B. m - nC. m + n + 1D. n – m + 16. 若某算法的计算时间表示为递推关系式:T(N) = 2T(N / 2) + N log NT(1) = 1则该算法的时间复杂度为()。
A.O(N)B. O(N log N)C. O(Nlog2N)D. O(N2 )解:当a=b=2、f(n)=nlgn时候(lgn:log2n的简记),计算递归方程的解。
T(n)= 2T(n/2)+nlgn。
T(n/2)= 2T(n/22)+(n/2)lg(n/2)。
T((n/22)= 2T(n/23)+ (n/22)lg(n/22)。
递推与递归算法的异同c语言

递推与递归算法的异同c语言递推与递归算法是计算机科学中两种重要的算法思想,本篇文章将从概念,特点,使用场景等多个方面来详细阐述它们的异同,希望能为初学者提供一些帮助。
一、概念递推算法是指通过已知的起始值和递推关系式来确定数列中每一项的值。
它可以看作是一种“自下而上”的计算方法,从已知的数值出发,根据数列中每一项之间的递推关系依次求解出数列其他项的值。
递归算法则是一种“自上而下”的计算方法,它将问题分解成若干个规模更小、相互之间存在递推关系的子问题。
每次递归调用都将问题的规模逐渐减小,直到最终问题的规模被缩小到某个基本问题规模以下时,问题不再继续递归,而由程序直接返回结果。
二、特点1.递推算法的迭代次数等于所求数列的项数,具有迭代次数确定、计算效率高的特点。
2.递归算法的调用次数与所求问题的规模有关,递归深度较高时,递归所用的栈空间较大,可能存在栈溢出等问题,但对于一些特定问题,递归算法能够简化问题的解决方法,提高算法的可读性和易于理解性。
三、使用场景1.递推算法适用于求解一些较为简单的数列,如斐波那契数列等。
2.递归算法适用于一些相对复杂的问题,如数学运算中的阶乘、幂等运算等等。
四、示例代码下面分别给出递推算法和递归算法的示例代码。
(1)递推算法:```c#include<stdio.h>int main(){int n, a[100] = {0, 1};printf("请输入需要求的斐波那契数列的项数:");scanf("%d", &n);for(int i = 2; i < n; i++){a[i] = a[i - 1] + a[i - 2];}for(int i = 0; i < n; i++){printf("%d ", a[i]);}return 0;}```(2)递归算法:```c#include<stdio.h>int fabonacci(int n){if(n == 1 || n == 2){return 1;}else{return fabonacci(n - 1) + fabonacci(n - 2);}}int main(){int n;printf("请输入需要求的斐波那契数列的项数:");scanf("%d", &n);for(int i = 1; i <= n; i++){printf("%d ", fabonacci(i));}return 0;}```五、总结递推算法和递归算法在实际编程中都具有广泛的应用,掌握它们的异同点,能够更好地选择合适的算法思想,提高程序的效率和可读性。
第二讲 递归与递推

江 苏 省 青 少 年 信 息 学 奥 林 匹 克 夏 令 营 C 层 次 教 学
例5、由m个A,n个B组成若干个排列。从某个排列 的位置1开始数,数到任意位置时都能保证A的个数 不少于B的个数,则称该排列为合理排列。例如: 当m=2,n=2时排列有 A A B B(合理) A B A B(合 理)A B B A(不合理) B B A A(不合理) 合理排列数有2 种 输入:只有一行两个整数m,n(1≤n≤m≤12)(用 空格分隔) 输出:一个整数(所有的合理排列数) 【样例】 输入 输出 32 5
递归过程例析
先以三个盘的移动为例,看一下移动过程。
江 苏 省 青 少 年 信 息 学 奥 林 匹 克 夏 令 营 C 层 次 教 学
2008年冬令营
递归过程例析
分析 1、当n=1时,只需要移动一次A---C; 2、当n=2时,需要移动三次; A---1---B; A---2---C; B---1---C; 3、当n>=3时,先将前n-1个盘子以C为 中介移到B柱子;再将第n个盘子移到 C柱子;最后将n-1个盘子以A为中介 从B柱移到C柱。
递归关系式——如何求? 运用函数的前驱值来计算函数当前值的关系式
江 苏 省 青 少 年 信 息 学 奥 林 匹 克 夏 令 营 C 层 次 教 学
2008年冬令营
递归
例3、用递归方法求两个正整数m和n的最大公 约数。
分析:求两个数的最大公约数可以用辗转 相除法,即求m与n的最大公约数等价于求(m mod n)的值与n的最大公约数,此时的n可以当 作新的m ,而(m mod n)的值当作新的n ,所 以原问题的求解又变成求新的m与n的最大公约 数问题,继续下去,直至(m mod n)为0,最大 公约数就是最终存放在n中的值。
04.递推算法(C++版包括习题参考答案)

s 1=
(n i ) * (m i )
2.长方形和正方形的个数之和s 宽为1的长方形和正方形有m个,宽为2的长方形和正方形有 m-1个,┉┉,宽为m的长方形和正方形有1个; 长为1的长方形和正方形有n个,长为2的长方形和正方形有n1个,┉┉,长为n的长方形和正方形有1个; 根据乘法原理
【参考程序】 #include<iostream> using namespace std; int main() { int f[1001][2],n,i,x; cin>>n; f[1][1]=1;f[1][0]=9; for(i=2;i<=n;i++) { x=f[1][0]; if(i==n)x--; f[i][0]=(f[i-1][0]*x+f[i-1][1])%12345; f[i][1]=(f[i-1][1]*x+f[i-1][0])%12345; } cout<<f[n][0]; return 0; }
下面是输入n,输出x1~xn的c++程序: #include<iostream> using namespace std; int main() { int n,i,j,a[101]; cout<<"input n:"; //输入骨牌数 cin>>n; a[1]=1;a[2]=2; cout<<"x[1]="<<a[1]<<endl; cout<<"x[2]="<<a[2]<<endl; for (i=3;i<=n;i++) //递推过程 { a[i]=a[i-1]+a[i-2]; cout<<"x["<<i<<"]="<<a[i]<<endl; } } 下面是运行程序输入 n=30,输出的结果: input n: 30 x[1]=1 x[2]=2 x[3]=3 ........ x[29]=832040 x[30]=1346269
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【参考程序】
#include<iostream>
using namespace std;
int main()
{
int n,i,j,a[101][101];
cin>>n;
for (i=1;i<=n;i++)
for (j=1;j<=i;j++) cin>>a[i][j];
//输入数字三角形的值
for (i=n-1;i>=1;i--)
递推法是一种重要的数学方法,在数学的各个领域中都 有广泛的运用,也是计算机用于数值计算的一个重要算法。 这种算法特点是:一个问题的求解需一系列的计算,在已知 条件和所求问题之间总存在着某种相互联系的关系,在计算 时,如果可以找到前后过程之间的数量关系(即递推式), 那么,从问题出发逐步推到已知条件,此种方法叫逆推。无 论顺推还是逆推,其关键是要找到递推式。这种处理问题的 方法能使复杂运算化为若干步重复的简单运算,充分发挥出 计算机擅长于重复处理的特点。
【算法分析】 (1)面对上述问题,如果思考方法不恰当,要想获得问题的解答是相当
困难的。可以用递推方法归纳出问题解的一般规律。 (2)当n=1时,只能是一种铺法,铺法总数有示为x1=1。 (3)当n=2时:骨牌可以两个并列竖排,也可以并列横排,再无其他方法,
如下左图所示,因此,铺法总数表示为x2=2;
如上例:输入:2 3
输出:8 10
【算法分析】
1.计算正方形的个数s1
边长为1的正方形个数为n*m
边长为2的正方形个数为(n-1)*(m-1)
边长为3的正方形个数为(n-2)*(m-2)
…………
边长为min{n,m}的正方形个数为(m-min{n,m}+1)*(n-min{n,m}+1)
根据加法原理得出
int main()
{
int n,i,j,a[101];
cout<<"input n:";
//输入骨牌数
cin>>n;
a[1]=1;a[2]=2;
cout<<"x[1]="<<a[1]<<endl;
cout<<"x[2]="<<a[2]<<endl;
for (i=3;i<=n;i++)
//递推过程
Hale Waihona Puke {xn=xn-1+xn-2 (n>2) x1=1 x2=2 xn=xn-1+xn-2就是问题求解的递推公式。任给n都可以从中获得解答。例如n=5, x3=x2+x1=3 x4=x3+x2=5 x5=x4+x3=8
下面是输入n,输出x1~xn的c++程序: #include<iostream>
using namespace std;
(1 n) * (1 m) * n * m
m in{m,n}1
s1=
(n i)*(m i)
i0
2.长方形和正方形的个数之和s 宽为1的长方形和正方形有m个,宽为2的长方形和正方形有
m-1个,┉┉,宽为m的长方形和正方形有1个; 长为1的长方形和正方形有n个,长为2的长方形和正方形有n-
1个,┉┉,长为n的长方形和正方形有1个; 根据乘法原理
for (j=1;j<=i;j++)
{
if (a[i+1][j]>=a[i+1][j+1]) a[i][j]+=a[i+1][j]; //路径选择
else a[i][j]+=a[i+1][j+1];
}
cout<<a[1][1]<<endl;
}
【例3】棋盘格数
设有一个N*M方格的棋盘( l≤ N≤100,1≤M≤100)。求出该棋盘中包含有多少
(5)推出一般规律:对一般的n,要求xn可以这样来考虑,若第一个骨牌是 竖排列放置,剩下有n-1个骨牌需要排列,这时排列方法数为xn-1;若第一个骨 牌是横排列,整个方格至少有2个骨牌是横排列(1*2骨牌),因此剩下n-2个 骨牌需要排列,这是骨牌排列方法数为xn-2。从第一骨牌排列方法考虑,只有 这两种可能,所以有:
a[i]=a[i-1]+a[i-2];
cout<<"x["<<i<<"]="<<a[i]<<endl;
}
}
下面是运行程序输入 n=30,输出的结果:
input n: 30
x[1]=1
x[2]=2
x[3]=3
........
x[29]=832040
x[30]=1346269
【例2】数字三角形。如下所示为一个数字三角形。请编一个程序计算从顶到 底的某处的一条路径,使该路径所经过的数字总和最大。只要求输出总和。
递推算法的首要问题是得到相邻的数据项间的关系(即 递推关系)。递推算法避开了求通项公式的麻烦,把一个复 杂的问题的求解,分解成了连续的若干步简单运算。一般说 来,可以将递推算法看成是一种特殊的迭代算法。
【例1】 有 2χn的一个长方形方格,用一个1*2的骨牌铺满方格。 编写一个程序,试对给出的任意一个n(n>0), 输出铺法总数。
1、 一步可沿左斜线向下或右斜线向下走; 2、 三角形行数小于等于100; 3、 三角形中的数字为0,1,…,99; 测试数据通过键盘逐行输入,如上例数据应以如下所示格式输入:
5
7
38
810
2744
45265 【算法分析】
此题解法有多种,从递推的思想出发,设想,当从顶层沿某条路径走到第i 层向第i+1层前进时,我们的选择一定是沿其下两条可行路径中最大数字的方向 前进,为此,我们可以采用倒推的手法,设a[i][j]存放从i,j 出发到达n层的最大 值,则a[i][j]=max{a[i][j]+a[i+1][j],a[i][j]+a[i+1][j+1]},a[1][1] 即为所求的数字总 和的最大值。
(4)当n=3时:骨牌可以全部竖排,也可以认为在方格中已经有一个竖排
骨牌,则需要在方格中排列两个横排骨牌(无重复方法),若已经在方格中排
列两个横排骨牌,则必须在方格中排列一个竖排骨牌。如上右图,再无其他排 列方法,因此铺法总数表示为x3=3。
由此可以看出,当n=3时的排列骨牌的方法数是n=1和n=2排列方法数的 和。
个正方形、多少个长方形(不包括正方形)。
例如:当 N=2, M=3时:
正方形的个数有8个:即边长为1的正方形有6个;边长为2的正方形有2个。
长方形的个数有10个:即2*1的长方形有4个:1*2的长方形有3个:3*1的长
方形有2个:3*2的长方形有1个:
程序要求:输入:N,M
输出:正方形的个数与长方形的个数