影响运放电路的误差的几个主要参数(精)
运算放大器关键参数

1) 输入失调电压( VOS) :即输入 Offset Voltage,该参数表示使输出电压为零时需要 在输入端作用的电压差。即定义为集成运放输出端电压为零时,两个输入端之间 所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越 好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精 密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型 工艺的输入失调电压在±1~10mV 之间;采用场效应管做输入级的,输入失调电 压会更大一些;对于精密运放,输入失调电压一般在 1mV 以下。输入失调电压 越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极 为重要的指标。 :该参数指温度变化引起的输入失调电压的变化,通 2) 输入失调电压温漂(TC VOS) 常以 µV/℃为单位表示。 :即 Input Offset Current,输入失调电流定义为当运放的输出 3) 输入失调电流(IOS) 直流电压为零时,其两输入端偏置电流的差值。输入失调电流同样反映了运放内 部的电路对称性,对称性越好,输入失调电流越小。输入失调电流是运放的一个 十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电流大约是输 入偏置电流的百分之一到十分之一。输入失调电流对于小信号精密放大或是直流 放大有重要影响,特别是运放外部采用较大的电阻(例如 10k 或更大时) ,输入失 调电流对精度的影响可能超过输入失调电压对精度的影响。输入失调电流越小, 直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要 的指标。 :该参数代表输入失调电流在温度变化时产生的变化 4) 输入失调电流温漂(TCIOS) 量。TC IOS 通常以 pA/℃为单位表示。 :即 Input bias current,该参数指运算放大器工作在线性区时流 5) 输入偏置电流(I B) 入输入端的平均电流,也定义为当运放的输出直流电压为零时,其两输入端的偏 置电流平均值。 : 该参数代表输入偏置电流在温度变化时产生的变化量。 6) 输入偏置电流温漂 (TC IB) TCIB 通常以 pA/℃为单位表示。 :该参数表示运算放大器工作在线性区时,输入共模 7) 共模输入阻抗/电阻(R INCM)
温漂对运放影响原理

温漂(Temperature Drift)指的是半导体器件,如运算放大器(运放),在温度变化下的性能变化。
这种现象会对运放的精确度和稳定性产生影响。
温漂主要影响以下几个参数:
1. 输入失调电压(Input Offset Voltage):温漂会导致输入失调电压随温度变化而漂移,这会进一步影响运放的输入对称性。
当输入失调电压变化时,差分输入信号的零点会发生移动,导致输出端出现直流偏移。
2. 输入偏置电流(Input Bias Current):温度升高同样会引起输入偏置电流的增加,这会增加运放的输入误差,并可能导致输出端产生额外的直流电压。
3. 增益误差(Gain Error):温漂还可能影响运放的增益,导致放大倍数随温度变化而改变。
这种变化可能是由于内部晶体管特性的变化,或者是反馈网络组件值的变化所致。
4. 电源电压敏感性(Power Supply Sensitivity):部分运放的电源电压敏感性也会受到温漂的影响,这意味着在温度波动时,运放对电源电压变化的响应会变化。
温漂对运放的影响原理可以概括为:半导体器件的物理特性,如晶体管的阈值电压、载流子的迁移率等,都会随温度变化。
这些变化会影响器件的电流-电压(I-V)特性,进而影响运放的整体性能。
由于这些物理参数的变化通常是非线性的,因此运放的性能变化也可能是不均匀的,这会降低电路的精度和可靠性。
为了减小温漂的影响,通常采用一些补偿技术,比如使用温度补偿二极管、选择具有较小温度系数的运放,或者在电路设计中加入负反馈网络来稳定性能。
此外,在精密电子设备和系统中,还会采用环境控制(如温度控制系统)来维持器件在最佳工作温度范围内运行。
(完整版)运放失调电压的详解

运放输入失调电压及温漂详解•在运放的应用中,不可避免的会碰到运放的输入失调电压Vos问题,尤其对直流信号进行放大时,由于输入失调电压Vos的存在,放大电路的输出端总会叠加我们不期望的误差。
举个简单,老套,而经典的例子,由于输入失调电压的存在,会让我们的电子秤在没经调校时,还没放东西,就会有重量显示。
我们总不希望,买到的重量与实际重有差异吧,买苹果差点还没什么,要是买白金戒指时,差一克可是不少的money哦。
下面介绍一下运放的失调电压,以及它的计算。
最后再介绍一些TI的低输入失调电压运放。
不足之处,多多拍砖。
•理想情况下,当运放两个输入端的输入电压相同时,运放的输出电压应为0V,但实际情况确是,即使两输入端的电压相同,放大电路也会有一个小的电压输出。
如下图,这就是由运放的输入失调电压引起的。
••当然严格的定义应为,为了使运放的输出电压等于0,必需在运放两个输入端加一个小的电压。
这个需要加的小电压即为输入失调电压Vos。
注意,是为了使出电压为0,而加的输入电压,而不是输入相同时,输出失调电压除以增益(微小区别)。
•运放的输入失调电压来源于运放差分输入级两个管子的不匹配。
如下图。
受工艺水平的限制,这个不匹配是不可避免的。
差分输入级的不匹配是个坏孩子,它还会引起很多其他的问题,以后介绍。
••曾经请教过资深的运放设计工程师,据他讲,两个管子的匹配度在一定范围内是与管子的面积的平方根成正比,也就是说匹配度提高为原来的两倍。
面积要增加四倍,当到达一个水平时,即使再增加面积也不会提高匹配度了。
提高面积是要增加IC的成本的哦。
所在有一个常被使用的办法,就是在运放生产出来后,进行测试,然后再Trim(可以理解为调校了)。
这样就能使运放的精度大在提高。
当然,测试和Trim 都是需要成本的哦。
所以精密运放的价格都比较贵。
这段只当闲聊,呵呵。
•我们关注输入失调电压,是因为他会给放大电路带来误差。
下面就要分析它带来的误差。
运放构成运算电路的精度

运放的应用领域
模拟电路
运放是模拟电路中的核心元件,广泛应用于信号 放大、滤波、比较器和振荡器等电路中。
数字电路
在数字电路中,运放常用于信号转换和电平位移 等电路中。
传感器接口
运放也用于传感器接口电路中,用于将传感器的 微弱信号放大并转换为可用的电平。
02
运放的精度指标
开环增益
总结词
开环增益是运放的一个重要参数,它决定了运放放大信号的 能力。
总结词
比较器是运算电路中用于比较两个输入信号的单元,其精度受到运放精度的影响 。
详细描述
比较器的作用是比较两个输入信号的大小关系,输出相应的逻辑值。如果运放的 精度不高,会导致比较结果存在误差,从而影响整个运算电路的性能。因此,在 比较器设计中,也需要选择高精度的运放,以确保比较结果的准确性。
06
温度补偿技术是提高运放精度的重要措施之一,通过补 偿由于温度变化引起的参数漂移,可以减小运放输出误 差。
详细描述
温度补偿技术通常采用热敏电阻等温度敏感元件,实时 监测运放的工作温度,并根据温度变化调整运放的增益 、偏置等参数,以保持电路性能的稳定。
失调电压调整技术
总结词
失调电压调整技术是提高运放精度的关键措施之一, 通过调整运放的失调电压,可以减小运放的输入误差 。
放大器设计
总结词
放大器是运算电路中用于信号放大的单元, 其精度受到运放精度的直接影响。
详细描述
放大器的作用是将输入信号进行放大,以便 后续处理。如果运放的精度不高,会导致放 大后的信号存在误差,从而影响整个运算电 路的性能。因此,在放大器设计中,需要选 择高精度的运放,以确保放大后的信号精度。
比较器设计
未来发展趋势和展望
运放参数详解,超详细

运放参数的详细解释和分析1—输入偏置电流和输入失调电流一般运放的datasheet中会列出众多的运放参数,有些易于理解,我们常关注,有些可能会被忽略了。
在接下来的一些主题里,将对每一个参数进行详细的说明和分析。
力求在原理和对应用的影响上把运放参数阐述清楚。
由于本人的水平有限,写的博文中难免有些疏漏,希望大家批评指正。
第一节要说明的是运放的输入偏置电流Ib和输入失调电流Ios .众说周知,理想运放是没有输入偏置电流Ib和输入失调电流Ios .的。
但每一颗实际运放都会有输入偏置电流Ib和输入失调电流Ios .我们可以用下图中的模型来说明它们的定义。
输入偏置电流Ib是由于运放两个输入极都有漏电流(我们暂且称之为漏电流)的存在。
我们可以理解为,理想运放的各个输入端都串联进了一个电流源,这两个电流源的电流值一般为不相同。
也就是说,实际的运入,会有电流流入或流出运放的输入端的(与理想运放的虚断不太一样)。
那么输入偏置电流就定义这两个电流的平均值,这个很好理解。
输入失调电流呢,就定义为两个电流的差。
说完定义,下面我们要深究一下这个电流的来源。
那我们就要看一下运入的输入级了,运放的输入级一般采用差分输入(电压反馈运放)。
采用的管子,要么是三级管bipolar,要么是场效应管FET。
如下图所示,对于bipolar,要使其工作在线性区,就要给基极提供偏置电压,或者说要有比较大的基极电流,也就是常说的,三极管是电流控制器件。
那么其偏置电流就来源于输入级的三极管的基极电流,由于工艺上很难做到两个管子的完全匹配,所以这两个管子Q1和Q2的基极电流总是有这么点差别,也就是输入的失调电流。
Bipolar输入的运放这两个值还是很可观的,也就是说是比较大的,进行电路设计时,不得不考虑的。
而对于FET输入的运放,由于其是电压控制电流器件,可以说它的栅极电流是很小很小的,一般会在fA级,但不幸的是,它的每个输入引脚都有一对ESD保护二极管。
集成运放的主要参数以及测试方法

集成运放的性能主要参数及国标测试方法集成运放的性能可用一些参数来表示。
集成运放的主要参数:1.开环特性参数(1)开环电压放大倍数Ao。
在没有外接反馈电路、输出端开路、在输入端加一个低频小信号电压时,所测出输出电压复振幅与差动输入电压复振幅之比值,称为开环电压放大倍数。
Ao越高越稳定,所构成运算放大电路的运算精度也越高。
(2)差分输入电阻Ri。
差分输入电阻Ri是运算放大器的主要技术指标之一。
它是指:开环运算放大器在室温下,加在它两个输入端之间的差模输入电压变化量△V i与由它所引起的差模输入电流变化量△I i之比。
一般为10k~3M,高的可达1000M以上。
在大多数情况下,总希望集成运放的开环输入电阻大一些好。
(3)输出电阻Ro。
在没有外加反馈的情况下,集成运放在室温下其输出电压变化与输出电流变化之比。
它实际上就是开环状态下集成运放输出级的输出电阻,其大小反映了放大器带负载的能力,Ro通常越小越好,典型值一般在几十到几百欧。
(4)共模输入电阻Ric。
开环状态下,两差分输入端分别对地端呈现的等效电阻,称为共模输入电阻。
(5)开环频率特性。
开环频率特性是指:在开环状态下,输出电压下降3dB所对应的通频带宽,也称为开环-3dB带宽。
2.输入失调特性由于运算放大器输入回路的不对称性,将产生一定的输入误差信号,从而限制里运算放大器的信号灵敏度。
通常用以下参数表示。
(1)输入失调电压Vos。
在室温及标称电源电压下,当输入电压为零时,集成运放的输出电位Vo0折合到输入端的数值,即:Vos=Vo0/Ao失调电压的大小反映了差动输入级元件的失配程度。
当集成运放的输入端外接电阻比较小时。
失调电压及其漂移是引起运算误差的主要原因之一。
Vos一般在mV级,显然它越小越好。
(2)输入失调电流Ios。
在常温下,当输入信号为零时,放大器两个输入端的基极偏置电流之差称为输入失调电流。
即:Ios=Ib- — Ib+式中Ib-、Ib+为放大器内两个输入端晶体管的基极电流。
应用笔记--交流电压(电流)信号的采集放大

AN:交流电压(电流)信号的采集放大简介在采集交流电压、电流信号时,一般使用精密电阻分压或使用交流互感器感应出电流后精密电阻分压,之后使用运放采集和放大。
运放输入信号的精度由精密分压电阻和交流互感器保证。
本文讨论信号经过运放时,精度的影响因素和如何保证精度。
1、运放误差源偏置电流:理想运放的正负输入端的内阻无穷大,输入电流为零。
实际上,每个运放都有偏置电流,范围60fA~100uA。
1、这些电流在流过输入端的接地电阻时,就会产生电压,再经过放大,在小信号采集时,会引入很大的干扰。
2、当通过电阻接地,测量小电流信号时,偏置电流会分掉被测电流,使电压分压不准确。
措施:1、采用偏置电流较小的放大器。
2、减小外接电阻。
失调电流:运放正负输入端内部都是三极管和保护二极管,由于不可能完全一致,所以会使偏置电流不完全一样,其差值的模就是失调电流。
范围20fA~100uA。
失调电流的存在,导致经过输入电阻时,在输入端产生电压,经过运放放大后,会有一个毫伏级别的电压。
失调电压:失调电压包括输入失调电压和输出失调电压,两者的关系Vos_out=Af*Vos_in。
当运放的两个输入端都接大地时,由于失调电压,输出不为0,此电压为输出失调电压。
当一个输入端输入为0,调节一个输入端的电压,使输出电压为0,此电压为输入失调电压。
这个是运放本身特性,由设计和生产厂家决定,用户可以选择不同参数的器件。
温度和时间漂移:温度影响已上三个参数,当上述三个参数比较小时,各参数的温度和时间漂移的就会凸显出来。
备注:运放内部的晶体管种类影响偏置电流,双极性晶体管大于场效应管。
2、解决思路1、选择参数合适的运放,三个参数:偏置电流、失调电流、失调电压、温度漂移都尽可能低。
2、选择精度较高的外部电阻,输入电阻应选择较低的阻值,减小失调电流经过电阻产生的电压。
3、调零(批量生产时,不推荐)3、测断相说明:当断相时,R14左端悬空。
REF=1.240V当断相或者Vin=0时:Vout=REF*R19/(R19+R20)*(R16+R18)/(R16+R18+R13)=1.148V输出误差影响因素:电阻大小、电阻精度、REF精度。
运放参数详解超详细

运放参数详解超详细运放,全称为运算放大器,是一种主要用于电子设备中的放大电路。
它能够接收输入信号并在输出端放大,以达到放大信号的效果。
运放广泛应用于放大、滤波、积分、微分、求和、差分等电路中,是现代电子电路中不可或缺的元件之一在使用运放时,需要了解一些重要的参数,这些参数将影响到运放的性能和应用。
下面将详细介绍一些常见的运放参数:1.增益:增益指的是输入信号经过运放放大后的输出信号与输入信号之间的比例关系。
增益可以是小信号增益,即输入信号幅度相对较小的情况下的增益;也可以是大信号增益,即输入信号幅度较大的情况下的增益。
通常使用dB(分贝)来表示增益大小。
2.带宽:带宽是指运放能够正确放大的频率范围。
在带宽之外的信号将会被放大产生失真。
带宽通常以Hz(赫兹)表示,常见的运放带宽为几百kHz到几GHz。
3.输入电阻:输入电阻指的是运放输入端的电阻阻抗。
输入电阻越大,表示输入信号的损耗越小,输出信号与输入信号之间的电压差会更小。
输入电阻一般以欧姆(Ω)表示。
4.输出电阻:输出电阻指的是运放输出端的电阻阻抗。
输出电阻越小,表示运放输出信号的能力越强,能够驱动更大的负载。
输出电阻一般以欧姆(Ω)表示。
5.失调电流:失调电流是指运放输入端的两个输入电流之间的差异。
失调电流越小,表示运放的两个输入端能够更好地匹配,从而减小了对输入信号的失真。
失调电流一般以安培(A)表示。
6.偏置电压:偏置电压是指运放两个输入端相对于公共模式电压的偏差。
偏置电压越小,表示运放能够更好地接近理想运算放大器模型,减小了对输入信号的失真。
偏置电压一般以伏特(V)表示。
7.输出偏置电压:输出偏置电压是指运放输出端相对于公共模式电压的偏差。
输出偏置电压越小,表示运放输出信号更加准确,能够更好地匹配输入信号。
输出偏置电压一般以伏特(V)表示。
8.运放噪声:运放噪声是指运放输出信号中存在的由运放本身引起的随机噪声。
运放噪声分为输入噪声和输出噪声,通常以nV/√Hz(纳伏特/根赫兹)表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响运放电路的误差的几个主要参数(KCMR,VIO,Iib,Iio等) 1. 共模抑制比KCMR为有限值的情况
集成运放的共模抑制比为有限值时,以下图为例讨论。
VP=Vi
VN=Vo
共模输入电压为:
差摸输入电压为:
运算放大器的总输出电压为:vo=AVDvID+AVCvIC
闭环电压增益为:
可以看出,Avd和Kcmr越大,Avf越接近理想情况下的值,误差越小。
2.输入失调电压VIO
一个理想的运放,当输入电压为0时,输出电压也应为0。
但实际上它的差分输入级很难做到完全对称。
通常在输入电压为0时,存在一定的输出电压。
解释一:在室温25℃及标准电源电压下,输入电压为0时,为使输出电压为0,在输入端加的补偿电压叫做失调电压。
解释二:输入电压为0时,输出电压Vo折合到输入端的电压的负值,即VIO=- VO|VI=0/AVO
输入失调电压反映了电路的对称程度,其值一般为±1~10mV
3.输入偏置电流IIB
BJT集成运放的两个输入端是差分对管的基极,因此两个输入端总需要一定的输入电流IBN和IBP。
输入偏置电流是指集成运放输出电压为0时,两个输入端静态电流的平均值。
输入偏置电流的大小,在电路外接电阻确定之后,主要取决于运放差分输入级BJT的性能,当它的β值太小时,将引起偏置电流增加。
偏置电流越小,由于信号源内阻变化引起的输出电压变化也越小。
其值一般为10nA~1uA。
4.输入失调电流IIO
在BJT集成电路运放中,当输出电压为0时,流入放大器两输入端的静态基极电流之差,即IIO=|IBP-IBN|
由于信号源内阻的存在,IIO会引起一个输入电压,破坏放大器的平衡,使放大器输出电压不为0。
它反映了输入级差分对管的不对称度,一般约为
1nA~0.1uA。
5.输入失调电压VIO、输入失调电流IIO不为0时,运算电路的输出端将产生误差电压。
设实际的等效电路如下图大三角符号,小三角符号内为理想运放,根据VIO和IIO的定义画出。
为了分析方便,假设运放的开环增益AVO和输入电阻Ri均为无限大,外电路电阻R2=R1||Rf,利用戴维南定理和诺顿定理可得两输入端的等效电压和等效电阻,如下图所示
则可得同相输入端电压
反向输入端电压
因AVO→∞,有VP≈VN,代入得
Vo=(1+Rf/R1)[VIO+IIB(R1||Rf-R2)+ IIO(R1||Rf+R2)]
当取R2=R1||Rf时,由输入偏置电流IIB引起的输入误差电压可以消除,上式可简化为
Vo=(1+Rf/R1)(VIO+IIOR2)
可见,1+Rf/R1 和R2越大,VIO和IIO引起的输出误差电压越大。
当用作积分运算时,用1/(sC)代替Rf,输出误差电压为 vo(s)=[1+1/( sC
R1)][VIO(s)+IIO(s)R2]
当VIO和IIO随时间变化时,即有
由此式可以看出,积分时间常数τ=R1C越小或积分时间越长,VIO和IIO引起的输出误差电压越大。
在理想情况下,VIO和IIO都为0时,输出误差电压也为0。
可以在输入级加一调零电位器,或在输入端加一补偿电压或补偿电流,以抵消VIO和IIO的影响。
附:名词解析
PID:proportional-integral-differential,比例-微分-积分
CMR:Common-mode rejetion ratio共模抑制比
Offset currents and voltages失调电流与电压。