关于分数应用题作线段图分析

合集下载

分数应用题解题技巧4则

分数应用题解题技巧4则

分数应用题解题技巧4则分数应用题是数学中的一大类题目,涉及的概念和计算方法较为抽象,对于很多学生来说是一个难题。

但只要我们掌握了一些基本的解题技巧,这类题目便会迎刃而解。

下面,就为大家介绍四种实用的分数应用题解题技巧。

技巧一:明确题目中的分数表示的是什么很多学生在解分数应用题时,首先就被分数给弄糊涂了。

实际上,我们需要明白,分数只是一个表示比例或者部分的形式。

因此,首要任务就是明确题目中的分数到底表示的是什么。

例如,它可能表示一个整体中的部分,也可能是两个量之间的比例关系。

只有明确了分数的具体意义,我们才能进行下一步的计算。

技巧二:合理转化分数形式在明确了分数的具体意义后,下一步就是进行合理的分数形式转化。

有些分数应用题中,给出的分数形式可能并不适合直接计算,这时就需要我们将其转化为更容易计算的形式。

例如,可以将带分数转化为假分数,或者将复杂的分数化简为更简单的形式。

这样,计算过程就会变得更加简便。

技巧三:利用线段图进行分析对于一些较为复杂的分数应用题,我们可以尝试利用线段图进行分析。

线段图可以直观地表示出各个量之间的关系,使我们更容易理解题目的意思。

通过线段图,我们可以清晰地看出各个部分之间的关系,进而找出解决问题的方法。

技巧四:注意检验答案的合理性在解完分数应用题后,很多学生都忽视了检验答案这一重要步骤。

实际上,检验答案的合理性是非常必要的。

我们可以通过逆运算或者代入原题等方法,检验我们的答案是否正确。

如果答案不合理,那么我们就需要重新审视自己的解题过程,找出错误所在。

以上就是四种实用的分数应用题解题技巧。

当然,要想真正掌握这些技巧,还需要大量的练习和思考。

只有通过不断的实践,我们才能更加熟练地运用这些技巧,解决各种复杂的分数应用题。

希望这些技巧能对大家有所帮助,祝大家在数学学习中取得更大的进步!。

数学课件《画线段图解分数应用题》

数学课件《画线段图解分数应用题》

课本P18 第5题
单位“1”
杨树: 柳树: 槐树:
杨树的 9
10
柳树的 2
3
画线段图解应用题时,要注意:
1、画两条线段图时,要上下并列画。 2、两条线段图各端点要对齐。 3、线段要按要求平均分。 4、各线段的名称要写清楚。 5、已知条件和问题要显示完整、清楚。 6、量与率的数据,方向相反。 7、要用直尺画大括号。 8、增加的部分画实线,减少的部分画虚线。 9、合理安排书写空间,排版要整洁美观。
画线段图解应用题
1、鸡的孵化期是21天,鸭的孵化期比鸡长 1 ,鸭的孵化 3
期是多少天?
答:鸭的孵化期是28天。
鸡: 鸭:
单位“1”
21天

1 3
?天
2、小军的飞机模型在空中飞行了6分钟,小峰的飞机模型 飞行时间比小军的短 1 ,小峰的飞机模型飞行了几分钟?
3
答:小峰的飞机模型飞行了4分钟。
小军: 小峰:
kg放入第二袋,那么两袋面粉同样重,两袋面粉一共重多 少千克?
答:两袋面粉一共重28.5千克。
第一袋: 第二袋:
15kg
3
取出 4 kg
?kg
3
放入 4 kg
课本P16 第7题
430千米/时
磁悬浮列车:
?千米/时
普通列车:
慢 36
43
课本P17 第3题
广州:
北京:
单位“1”
1608小时
1
多2
?小时
2012: 2015:
单位“1”
2000人
1
减Байду номын сангаас 5
?人
5、有两筐苹果,第一筐重30kg,如果从第一筐中取出 1 2

分数应用题线段图画法

分数应用题线段图画法

“分数应用题线段图画法”之我见
我们知道线段图能帮助学生直观形象地理解题意,分析数量关系;也等于给学生搭建了一个解决实际问题的平台。

分数应用题是小学高年级教学的一个重点也是一个难点。

如果教会学生迅速正确地画出分数应用题的线段图,那么这道题学生就已经会了百分之五十。

怎样使学生尽快掌握线段图的画法呢?本人积三十年教高年级之经验,总结出了行之有效的方法,不妨称为“中点法”。

不管是传统的教材还是新课改后的课本,分数应用题都是先学了分数乘法应用题后再学分数除法应用题。

这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。

(二)一种量比另一种量多几分之几。

(三)一种量比另一种量少几分之几。

在审题确定单位“1”的量后,首先用线段表示出这个单位“1”的量,分率的分母是几就把单位“1”的量平均分成几份。

怎样才能分的正确呢?当然可以用直尺画,学生要首先计算把单位“1”的量平均分成几份,然后再画,耗时费力,教学实践证实这样太慢。

怎样才能画得又快又对呢?我们知道初学分数应用题时,题中的分率的分母一般都是除0和1以外的不超过10的自然数,如果分率的分母是2就在所画单位“1”的那条线段的中点估计着点个点,这就把单位“1”的量。

画线段图解答分数应用题

画线段图解答分数应用题

用画线段图的方法理解题意,再解答。

1、一种电脑,现价比原价降低了152,正好降低了800元,这种电脑原价多少元?2、某养兔专业户,养的白兔比黑兔多120只,黑兔的只数是白兔的32,这个专业户养白兔多少只?3、甲仓库存粮60吨,乙仓库比甲仓库少52,两个仓库共存粮多少吨?4、普通客车和快车每小时共行132千米,普通客车的速度相当于快车的65,普通客车和快车每小时各行多少千米?5、三个工人一天共做螺钉148个,其中甲做的个数是乙的32,丙做的个数是乙车的54,甲、乙、丙三人各做了多少个螺钉?6、刘师傅第一天做零件80个,第二天比第一天多做了10个,两天共完成了总任务的65,这批零件共有多少个?7、刘星做一批小红花,当做完这批花的83时,再做10朵就完成了一半,刘星应做多少朵?8、张师傅加工一批零件,已经加工了5天,每天加工这批零件的252,已完成了260个,还要加工多少个?9、某车间加工一批零件,已经做好530个,比计划的73多80个,计划加工多少个?10、某商店第一天卖出所有油的51,第二天卖出40千克,第三天卖出所有油的41,三天共卖出124.6千克,这个商店共有油多少千克?11、修一条公路,第一天修了全长的83,第二天修了全长的103,两天修的比全长的一半还多2.8千米,这条公路全长多少千米?某班有学生55人,调出女生人数的61后,这时男女生人数相等,这个班原来有男女生各多少名?初夏早上六点,清亮透明的月儿还躲藏在云朵里,不忍离去,校园内行人稀少,我骑着单车,晃晃悠悠的耷拉着星松的睡眼。

校园内景色如常,照样是绿意盈盈,枝繁叶茂,鸟儿歌唱。

经过西区公园,看那碧绿的草地,飞翔中的亭子,便想起十七那年,在这里寻找春天的日子。

本想就此停车再感受一遍,可惜心中记挂北区的荷塘。

回想起冬日清理完荷塘的枯枝败叶,一片萧条的景色:湖水变成墨绿色,没有鱼儿游动,四处不见了鸟儿的踪影,只有莲藕躺在湖底沉沉睡去。

清洁大叔撑着竹竿,乘一叶扁舟,把一片片黑色腐烂的枯叶残枝挑上船。

利用线段图巧学分数应用题

利用线段图巧学分数应用题

利用线段图巧学分数应用题作者:陈万福来源:《新课程·上旬》2014年第02期分数应用题是小学阶段教学的一个重、难点,学生理解困难,思路不清晰,大部分学生看见分数应用题就感觉无从入手,从而害怕学习数学,这非常不利于以后数学知识的学习。

在解答分数应用题时,学生的困难往往并不在于如何运算,而是在于如何分析题意,弄清题目的数量关系,列出正确、合理的算式。

那么,我们有什么好的办法让学生能更好地学习分数应用题,激发学生学习数学的兴趣和信心呢?在教学中我用画线段图的方法进行分数应用题的分析和教学,让学生理解和分析题意,学生能够根据线段图直观地解答分数应用题,减轻了学生的学习负担,降低了学习的难度,能更好地激发学生学习数学的信心和兴趣。

那么,利用线段图进行分数应用题的教学该怎样进行呢?一、正确判断单位“1”在分数应用题中,如何判断单位“1”(也就是标准量)是解答分数应用题的首要任务,单位“1”可以看作标准量。

单位“1”不仅可以表示一个计量单位,而且可以表示一个整体。

有很多学生在学习分数应用题时对单位“1”的判断喜欢用找关键词的方法,比如,“是”“像”“比”“相当于”……的方法去判断单位“1”的量,这有其局限性。

要找到单位“1”的量,应从分率入手,抓住一点“谁的几分之几,谁就是单位“1”的量,分析清楚“谁是谁的几分之几”。

分数除法应用题的特点是:单位“1”的量是多少是未知的,就是要求单位“1”。

解题的关键是找出单位“1”的“几分之几正好是多少”这一对应关系,并用已知量除以已知量的对应分率等于单位“1”的量即标准量。

也就是:几分之几相对应的量÷几分之几=单位“1”的量。

根据线段图找准了“量”“率”的对应关系,我们便能轻松地解答分数应用题了。

三、复杂分数应用题中线段图的应用当简单的分数应用题中,根据线段图找准了“量”“率”的对应关系后,在复杂的分数应用题中首先判断单位“1”的量是已知的还是未知的,如果单位“1”的量是未知的,我们要根据“量”“率”的对应关系,首先求出单位“1”的量,再来分析所求的问题,便能轻松地解答分数应用题了。

小六培优专题20-分数应用题(图示法)

小六培优专题20-分数应用题(图示法)

图示法解分数应用题一、夯实基础图示法就是用线段图(或其它图形)把题目中的已知条件和问题表示出来,这样可以把抽象的数量关系具体化,往往可以从图中找到解题的突破口。

运用图示法教学应用题,是培养思维能力的有效方法之一。

图示法不仅可以形象地、直观地反映分数应用题中的“对应量和对应分率”间的关系,启发学生的解题思路,帮助学生找到解题的途径,而且通过画图的训练,可以调动学生思维的积极性,提高学生分析问题和解决问题的能力。

二、典型例题例1.一条鱼重的53加上43千克就是这条鱼的重量,这条鱼重多少千克? 分析与解:从题意可以知道,这条鱼的重量是单位“1”,用线段图帮助我们分析数量关系从图上可以看出43千克对应的分率是(1-53)。

鱼的重量:43÷(1-53) = 187(千克)。

答:这条鱼重187千克。

例2.一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。

原来这桶油有多少千克?分析与解:从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22 则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)。

答:原来这桶油有70千克。

例3.缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?分析与解:解题的关键是找到与具体数量144人的相对应的分率。

从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。

全厂的人数为:144÷(1-207-207)=480(人)答:缝纫机厂共有职工480人。

小升初培优冲刺(图示法解分数应用题)一、熟能生巧1.张亮从甲城到乙城,第一天行了全程的40%,第二天行了全程的920,距乙城还有18千米,甲、乙两城相距多少千米?2.李玲看一本书,第一天看了全书的16,第二天看了18页,这时正好看了全书的一半。

用画线段图解决分数问题

用画线段图解决分数问题

己知一个数比另一个数多(少)几分之几,求另一个数比一个数少(多)几分之几的问题-----运用线段图解决复杂的分数问题教学设计教学内容:己知一个数比另一个数多(少)几分之几,求另一个数比一个数少(多)几分之几的问题教学目标:1.知识与技能:学生自主探究解决“己知一个数比另一个数多(少)几分之几,求另一个数比一个数少(多)几分之几”的应用题;进一步培养学生画线段图的能力,从而提高学生解答这类应用题的熟练程度。

加深对两种应用题的认识,同时培养学生比较、归纳的能力。

2.情感态度与价值观:通过应用所学知识解决生活中的实际问题,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学重点:通过画线段图分析,正确熟练的解决实际问题。

教学难点:通过画线段图分析,正确熟练的解决实际问题。

教法与学法:自主探究、讨论交流教学准备及手段:课件教学流程:一、复习旧知1.找出单位“1”和比较量并说说两者之间数量关系式。

(1)桃树棵树是杏树棵树的 3/5 ,桃树棵树比杏树少()【单位“1”是(),比较量是()。

数量关系式()】(2)甲数比乙数少 1/3 ,甲数是乙数的()【单位“1”是(),比较量是()。

数量关系式:()】(3)把( )看做单位“1”,用去的占总数的( ),还剩总数的( ),还剩多少千克,列式是( )。

师:请同学们观察后,自己独立思考。

汇报时,让你找到单位“1”的量和比较量,根据关键句能说出基本的数量关系。

2、你还会画线段图解决下面问题吗?(1)小汽车有400辆,大客车比小汽车多 1/4 ,大客车有多少辆?(2)、院子里有鸡40只,鸭比鸡少 1/8 ,鸭有多少只?(3)、为迎接运动会,同学们做了25面黄旗,30面红旗,做的红旗比黄旗多多少面,多几分之几?(4)、一件衣服现在360元,比原价便宜了60元,便宜了几分之几?师:下面我们先来解决问题(1)小汽车有400辆,大客车比小汽车多 1/4,大客车有多少辆?师:第一步,请同学们先找出关键句,确定出单位“1”是谁?生:关键句是大客车比小汽车多 1/4 ,小汽车有400辆是单位“1”的量。

用画线段图的办法巧解分数应用题

用画线段图的办法巧解分数应用题

2014-01课堂内外分数应用题的教学是小学数学教学中的一个难点。

学生对稍有难度的应用题就找不准对应率,对难度较大的应用题则更无从下手。

但借助线段图学生就能容易理解有关数量与单位“1”的对应关系,故在教学中,应重视画线段图教学。

下面就我解分数应用题的一些探索介绍如下:一、画线段图,找准量率对应关系,提高解题速度例:某工厂10月份用水480吨,比原计划节约了19,10月份原计划用水多少吨?分析:“10月份用水比原计划节约了19”,可以把原计划用水吨数看作单位“1”,先画表示“原计划用水”的线段,才能画出比它少19的“实际用水”的线段。

?吨480吨1-19比原计划节约19原计划用水:实际用水:从图上可以明显看出,480吨相当于原计划用水的(1-19),求原计划用水吨数,列式为:480÷(1-19)由上题可以看出,借助线段图能巧妙地寻找分数应用题中的对应关系,使解题的症结化解,对分析应用题的重点、难点起到了“提领而顿,百毛皆顺”的作用。

在教学中除了引导学生画线段图,从图中找量率列算式外,还必须通过练习,引导学生比较分析分率的加、减与题目的叙述的关系,使学生悟出:提高、增长、重、多、超、盈利、上升、收入等含有“多”的意思,一般“1+?”;节约、减少、下降、轻、短、支出、降低、亏损等含有“少”的意思,一般都用“1-?”找分率的规律,进而提高学生解题列式的速度。

另外还要注意,有些题目的具体数量,用线段表示不容易确定线段的长短的比例,我们就要采用先画分率,再画具体数量的方法来画线段。

如:张静打一份稿件,第一天打了50页,第二天打了40页,还剩58没有打,这份稿件共有多少页?画线段图时50页和40页,不容易画准它们的长度,就要先画还剩的58,再在其余的(1-58)里面画50页和40页就方便多了。

11-58(50+40)页还剩58共有?页二、画线段图,优化解题思路,简化解题步骤,提高解题效率例:某工程队修一条高速公路,前5个月修了20千米,正好修了全长的14,照这样计算,剩下的公路还需几个月?(请用最简单的方法解答)按一般分析计算,往往先求出每月修的距离,然后再用剩下的距离除以每月修的距离,这样分析复杂而且容易出错。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于分数应用题作线段图分析
要注意的几个问题
分数应用题是小学应用题中的重点也是难点,学生在分析应用题的时候往往是由于找不准单位“1”或者无法找到正确的数量关系而束手无策或者错误,正确的线段图能直观的反应出单位“1”和应用题中的数量关系,是解决分数应用题的有效的方法之一,教会学生正确作线段图是我们教学中的很重要的环节,如果学生掌握了有效的作线段图的方法,对正确解决有关分数应用题是十分有帮助的。

那么,如何使学生掌握作线段图的技巧和方法呢,根据我的教学经验,我认为,首先,必须让学生理解分数在应用题中的“意义”。

比如“①一袋大米,吃了4/5,还剩15千克,这袋大米有多少千克?”这里的“4/5”是表示什么意思呢?必须让学生明白:4/5表示把一袋大米平均分成5份,吃了其中的4份。

再比如“②柳树棵数的14/15是杨树,杨树有28棵,柳树有多少棵?”这里的“14/15”表示把柳树的棵数平均分成15份,杨树的棵数占其中的14份。

学生弄清楚分数在应用题中的“意义”了,才能正确地理解下面的作图过程。

下面,重点来说说如何作线段的问题。

作线段要分三步走:
第一步:要弄清作一条线段还是作一条以上的线段的问题。

原来我没仔细研究过这个问题,结果往往作出的线段图不是很科学,学生听了也似懂非懂,有时连我自己也是一头雾水。

后来,我细心琢磨发现,解决这个问题也没那么复杂,其实,只要弄清楚量之间是什么关系即可,这里的“关系”是指:他们是“整体与部分”的关系还是“比较”关系,如果是“整体与部分”的关系,作一条线段即可,在一条线段上分析;如果是“比较”关系,则需要作两条或两条以上的线段。

比如上面的应用题①,属于“整体与部分”的关系,作一条线段即可,在一条线段里表示出“吃了的”、“剩下的”和“一袋大米”的关系;而应用题②则反映的是“杨树棵数”和“柳树棵数”的关系,是一种“比较”关系,则需要作两条线段,一条线段表示柳树的棵数,另一条线段表示杨树的棵数。

需要注意的是,作两条以上的线段,它们的起点要在同一垂线上,即,起点一样。

第二步:线段作多长的问题。

线段要作多长,这跟线段的要分“份数”有关系。

大家知道,“份数”和应用题中分数的分母有关系。

我是这样要求学生的:当“份数”小于或者等于10时,即分母小于或等于10时,每一份的长度为1厘米;如果“份数”在10~20之间,每一份的长度取0.5厘米;如果“份数”在20以上,每一份的长度取0.1厘米,这时提示学生不必把每一份都标出来,以免耽误时间。

以应用题①为例,“一袋大米的重量”画一条长5厘米的线段、平均分成5份即可,而应用题②中柳树的棵数作7.5厘米、平均分成15份即可。

第三步:线段标注的问题。

这是作线段图的重点和难点。

如果标注错误,那么整个分析也就是错误的。

所以正确的标注十分重要。

一条线段,有三种标注:“1”或分数、线段名称及具体数量。

标注“1”或分数:“1”或分数一定要标注在线段相应的上方。

“1”标注在第一条线段上,同时确定第一条线段的名称。

只要弄清楚表示把“谁”平均分成若干份,“谁”就是第一条线段;然后把“分数”标注在线段“1”内或者标注在另一条线段上,表示:是“谁”的几分之几,或者表示:比“谁”多(少)几分之几;
线段的名称标注要分如下情况进行标注:一、如果线段反映的是整体和部分的关系的,即在一条线段分析的,线段名称应该标注在线段的上,以便反映出线段整体与部分间的关系;二、线段反映的是比较关系的,即需要作两条或两条以上的线段进行比较分析的,线段名称一般写在线段的前方,并且用冒号分开;联系两条关系的那部分线段,
则其名称应标注在该线段的上;
具体数量则应标注在线段相应的下方。

作好线段图,并正确标注好。

以刚才的两道题为例,图如下:
第①题图:
第②题图:
接下来就是引导学生观察分析线段图、找数量关系的问题了。

如果学生能正确作出线段图,通过线段图找数量关系是比较容易的,但分析数量关系也有讲究,这个环节把握不好也会出问题。

比如第①题,学生得到如下数量关系:
“一袋大米= 吃了+还剩
4/5 15”
如是,学生得到下面的结果:
“4/5+15=15.8(千克)
答:这袋大米有15.8千克。


问题出在哪呢?其实,数量关系没问题,但数据标注错了。

那么,正确的数量关系和数据分析应该是怎样的呢?我是这样做的:
设一袋大米重X千克,则吃了的重量为千克。

于是,上面的关系式写成如下形式:
然后根据数量关系
解:设一袋大米重X千克。

得方程:
解方程即可。

也可以列算式求解,具体如下:
求单位“1”的数量,列式为:
第②题的数量关系及数据分析如下:
求解过程在此就不细述了。

总之,关于分数应用题作线段图分析,让学生学会作图,需要注意如下几点:
第一、理解分数在应用题中的“意义”;
第二、掌握如何作线段图及线段图的标注问题;
第三、根据线段图找出数量关系并能正确分析数量关系;
第四、能根据数量关系解决问题。

以上就是我对分数应用题作线段图分析的一点个人心得,如有不妥之处,欢迎指正。

相关文档
最新文档