2012浙江省湖州市中考数学真题及答案
2012年全国各地中考数学试卷分类汇编与圆有关的位置关系

2012年全国各地中考数学试卷分类汇编:与圆有关的位置关系 31.1 直线与圆的位置关系11.(2012山东省荷泽市,11,3)如图,PA 、PB 是⊙o 的切线,A 、B 为切点,AC 是⊙o的直径,若∠P=46∘,则∠BAC=______.【解析】因为PA 、PB 是⊙o 的切线,所以PA=PB ,OA ⊥PA ,又因∠P=46∘,所以∠PAB=67∘,所以∠BAC=∠OAP-∠PAB=90∘-67∘=23∘,【答案】23∘【点评】当圆外一点向圆引两条切线,可以利用切线长定理及切线的性质定理,利用等腰三角形的性质及及垂直的性质来计算角的度数.14.(2012连云港,14,3分)如图,圆周角∠BAC=55°,分别过B 、C 两点作⊙O 的切线,两切线相交于点P ,则∠BPC= °。
【解析】连结OB ,OC ,则OB ⊥PB ,OC ⊥PC 。
则∠BOC=110°,在四边形PBOC 中,根据四边形的内角和为360°,可得∠BPC=70°。
【答案】70【点评】本题考查了圆周角与圆心角的关系以及切线的性质。
14. (2012湖南湘潭,14,3分)如图,ABC 的一边AB 是⊙O 的直径,请你添加一个条件,使BC 是⊙O 的切线,你所添加的条件为 .【解析】根据切线的定义来判断,B C ⊥AB ,或∠ABC=900。
【答案】B C ⊥AB ,或∠ABC=900。
【点评】此题考查切线的定义。
圆的切线垂直于过切点的半径。
20. (2012浙江丽水8分,20题)(本题8分)如图,AB 为⊙O 的直径,EF 切⊙O 于点D ,过点B 作BH ⊥EF 于点H ,交⊙O 于点C ,连接BD.(1)求证:BD 平分∠ABH ;第14题图(2)如果AB=12,BC=8,求圆心O 到BC 的距离.【解析:】(1)欲证BD 平分∠ABH ,只需证∠OBD=∠DBH.连接OD ,则∠OBD=∠ODB ,为止只需证∠ODB=∠DBH 即可.(2)过点O 作OG ⊥BC 于点G ,在Rt △OBG 中,利用勾股定理即可求得OG 的值.【解】:(1)证明:连接OD.∵EF 是⊙O 的切线,∴OD ⊥EF.又∵BH ⊥EF ,∴OD ∥BH ,∴∠ODB=∠DBH.而OD=OB ,∴∠ODB=∠OBD ,∴∠OBD=∠DBH ,∴BD 平分∠ABH.(2)过点O 作OG ⊥BC 于点G ,则BG=CG=4,在Rt △OBG 中,OG=52462222=-=-BG OB .【点评】:已知圆的切线,常作过切点的半径构造直角三角形,以便于利用勾股定理求解问题.20.(2012福州,20,满分12分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D ,AD 交⊙O 于点E 。
2012年浙江省湖州市中考数学试卷

2012年浙江省湖州市中考数学试卷一、选择题(本题共有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框内涂黑,不选、多选、错选均不给分。
1.(3分)﹣2的绝对值等于()A.2B.﹣2C.D.±22.(3分)计算2a﹣a,正确的结果是()A.﹣2a3B.1C.2D.a3.(3分)要使分式有意义,x的取值范围满足()A.x=0B.x≠0C.x>0D.x<04.(3分)数据5,7,8,8,9的众数是()A.5B.7C.8D.9、5.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD 的长是()A.20B.10C.5D.6.(3分)如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角度数是()A.36°B.72°C.108°D.180°7.(3分)下列四个水平放置的几何体中,三视图如图所示的是()A.B.C.D.8.(3分)△ABC中的三条中位线围成的三角形周长是15cm,则△ABC的周长为()A.60cm B.45cm C.30cm D.cm9.(3分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°10.(3分)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.B.C.3D.4二、填空题(本题共有6小题,每题4分,共24分)11.(4分)当x=1时,代数式x+2的值是.12.(4分)因式分解:x2﹣36=.13.(4分)甲、乙两名射击运动员在一次训练中,每人各打10发子弹,根据命中环数求得方差分别是甲0.6,乙0.8,则运动员的成绩比较稳定.14.(4分)如图,在△ABC中,D、E分别是AB、AC上的点,点F在BC的延长线上,DE∥BC,∠A=46°,∠1=52°,则∠2=度.15.(4分)一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为.16.(4分)如图,将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n个边长为1的小三角形,若,则△ABC的边长是.三、解答题(本题共有8小题,共66分)17.(6分)计算:(﹣2)2+tan45°.18.(6分)解方程组.19.(6分)如图,已知反比例函数y(k≠0)的图象经过点(﹣2,8).(1)求这个反比例函数的解析式;(2)若(2,y1),(4,y2)是这个反比例函数图象上的两个点,请比较y1、y2的大小,并说明理由.20.(8分)已知:如图,在▱ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.(1)说明△DCE≌△FBE的理由;(2)若EC=3,求AD的长.21.(8分)某市开展了“雷锋精神你我传承,关爱老人从我做起”的主题活动,随机调查了本市部分老人与子女同住情况,根据收集到的数据,绘制成如下统计图表(不完整)老人与子女同住情况百分比统计表根据统计图表中的信息,解答下列问题: (1)求本次调查的老人的总数及a 、b 的值;(2)将条形统计图补充完整;(画在答卷相对应的图上)(3)若该市共有老人约15万人,请估计该市与子女“同住”的老人总数.22.(10分)已知,如图,在梯形ABCD 中,AD ∥BC ,DA =DC ,以点D为圆心,DA长为半径的⊙D 与AB 相切于A ,与BC 交于点F ,过点D 作DE ⊥BC ,垂足为E . (1)求证:四边形ABED 为矩形; (2)若AB =4,,求CF 的长.23.(10分)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵. (1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?24.(12分)如图1,已知菱形ABCD的边长为2,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B 作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)2012年浙江省湖州市中考数学试卷参考答案与试题解析一、选择题(本题共有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框内涂黑,不选、多选、错选均不给分。
湖州市中考数学命中对照卷

浙江省2012年初中毕业生学业考试(湖州市)(与九年级报纸相同题对照)数 学●1.2-的绝对值是( )(A )2 (B )2- (C )12(D )2 相同题:中考课标版第27期2版随堂练习1-1第1题●2.计算2a a -,正确的结果是( )(A )22a - (B )1 (C )2 (D )a 相近题:中考课标版第27期3版随堂练习1-2第2题●3.要使分式1x有意义,x 的取值满足( ) (A )0x = (B )0x ≠ (C )0x > (D )0x <相同题:中考课标版第28期1版典型例题分析例1(1)●4.数据5,7,8,8,9的众数是( )(A )5 (B )7 (C )8 (D )9 相同题:中考课标合订本第17页第5题●6.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角度数是( ) (A )36(B )72(C )108(D )180相同题:中考课标版第44期3版第10题●7.下列四个水平放置的几何体中,三视图如右图所示的是( )相近题:浙教版第23期2版《4.3简单物体的三视图》第2题●12.因式分解:236x -= ▲ .相同题:中考课标合订本第23页第10题●13.甲、乙两名射击运动员在一次训练中,每人各打10发子弹,根据命中环数求得方差分别为20.6S =甲,20.8S =乙,则运动员 ▲ 的戌绩比较稳定.相同题:中考课标合订本第33页第9题●14.如图,在ABC △中,D ,E 分别是AB 、AC 上的点,点F 在BC 的延长线上,DE BC ∥,46A =∠,152=∠,则2=∠▲ 度.相近题:中考课标版第34期2版随堂练习4-2第7题●15.一次函数y kx b =+(k ,b 为常数,且0k ≠)的图象如图所示,根据图象信息可求得关于x 的方程4k x b +=的解是 ▲ .相近题:中考课标合订本第21页第19题●17.(本小题6分)21(2)tan 452012⎛⎫+-+ ⎪⎝⎭.相同题:中考课标版第27期2版随堂练习1-1第8题(1)●18.(本小题6分) 解方程组281x y x y +=⎧⎨-=⎩,.相同题:中考课标版第29期1版典型例题分析例2(2)●19.(本小题6分) 如图,已知反比例函数(0)ky k x=≠的图象经过点(28)A -,. (1)求这个反比例函数的解析式;(2)若1(2)y ,,2(4)y ,是这个反比例函数图象上的两个点,请比较1y ,2y 的大小,并说明理由.相近题:中考课标版第33期3版第20题●21.(本小题8分)某市开展了“雷锋精神你我传承,关爱老人从我做起”的主题活动,随机调查了本市部分老人与子女同住情况,根据收集到的数据,绘制成如下统计图表(不完整);根据统计图表中的信息,解答下列问题: (1)求本次调查的老人总数及a ,b 的值; (2)将长形统计图补充完整;(画在答题卷相对应的图上)(3)若该市共有老人约15万人,请估算计该市与子女“同住”的老人总数. 相近题:中考课标版第51期4版第24题相近题:中考课标合订本第22页第21题。
2012年全国各地中考数学解析_二元一次方程组

2012年全国各地中考数学解析汇编4 二元一次方程组1.(2012山东德州中考,5,3,)已知24,328.a b a b +=⎧⎨+=⎩则a b +等于( )(A )3 (B )83(C )2 (D )1 2. (2012山东省临沂市,10,3分)关于x 的方程组⎩⎨⎧=+=n my x m x y -3的解是⎩⎨⎧==11y x ,则|m-n|的值是( )A.5B. 3C. 2D. 13.(2012山东省荷泽市,4,3)已知{21x y ==是二元一次方程组{81mx ny nx my +=-=的解,则2m-n 的值为( )4.(2012连云港,10,3分)方程组326x y x y +=⎧⎨-=⎩的解为 。
【5. (2012广州市,17, 9分)解方程组8312x y x y -=⎧⎨+=⎩6.(2012浙江省湖州市,18,6分)解方程组⎩⎨⎧==+1-8y 2x y x4.2 二元一次方程组的应用1. ( 2012年浙江省宁波市,24,10)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信:已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元 (1) 求a,b 的值(2) 随着夏天的到来用水量将增加,为了节约开支,小王计划把6月份水费控制在家庭月收入的2 %,若小王家月收入为9200元,则小王家6月份最多能用水多少吨?2.(2012山东省滨州,1,3分)李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x,y分钟,列出的方程是()A.14250802900x yx y⎧+=⎪⎨⎪+=⎩B.15802502900x yx y+=+=⎧⎨⎩C.14802502900x yx y⎧+=⎪⎨⎪+=⎩D.15250802900x yx y+=+=⎧⎨⎩3.(2012湖南衡阳市,11,3)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A .B .C .D .4. (2012呼和浩特,23,8分)(8分)如图,某化工厂与A,B两地有公路和铁路相连。
2012年浙江省湖州市中考数学试题含答案.docx

2012 年中考真題2012 年中考数学试题(浙江湖州卷)(本试卷满分120 分,考试时间 120 分钟)参考公式:二次函数y ax2bx c a 0图象的顶点坐标是 (b 4ac b 22a ,) .4a一、选择题(本题共有10 小题,每题 3 分,共 30 分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框内涂黑,不选、多选、 错选均不给分。
1.- 2 的绝对值等于【 A 】 A . 2B .- 2C .1D . ±222.计算 2a - a ,正确的结果是【D】3B . 1C .2D . aA .- 2a3.要使分式 1有意义, x 的取值范围满足【B 】xA . x=0B . x ≠ 0C . x > 0D . x < 04.数据 5, 7, 8, 8, 9 的众数是【 C 】A . 5B . 7C .8D .9、5.如图,在 Rt △ ABC 中,∠ ACB=90°,AB=10 , CD 是 AB 边上的中线,则 CD 的长是【 C 】A . 20B . 10C . 5D .526.如图是七年级( 1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角 度数是【B】A . 36°B . 72°C . 108 °D . 180 °2012 年中考真題7.下列四个水平放置的几何体中,三视图如图所示的是【D】A .B .C. D .8.△ ABC 中的三条中位线围成的三角形周长是15cm,则△ ABC 的周长为【C】A . 60cm B. 45cm C. 30cm D.15cm 29.如图,△ ABC 是⊙ O 的内接三角形, AC 是⊙ O 的直径,∠C=50°,∠ ABC 的平分线BD 交⊙ O 于点 D ,则∠ BAD 的度数是【B】A . 45°B. 85°C. 90°D. 95°10.如图,已知点 A (4,0), O 为坐标原点, P 是线段 OA 上任意一点(不含端点O,A ),过 P、 O 两点的二次函数y1和过 P、A 两点的二次函数y2的图象开口均向下,它们的顶点分别为 B 、C,射线 OB 与 AC 相交于点 D .当 OD=AD=3 时,这两个二次函数的最大值之和等于【A】A .5B .45C. 3D. 4 32012 年中考真題二、填空题(本题共有 6 小题,每题 4 分,共 24 分)11.当x=1时,代数式x+2的值是▲【答案】3。
湖州中考数学试卷真题

湖州中考数学试卷真题一、选择题1. 设等差数列{a_n}的公差为d,首项为a_1,若其前n项和S_n满足S_n = n^2,则该等差数列的首项a_1为A. -2B. -1C. 0D. 1E. 2解析:根据等差数列的前n项和公式Sn = (a_1 + a_n)n/2,代入题目中的条件Sn = n^2,得到(a_1 + a_n)n/2 = n^2。
由于等差数列的首项为a_1,公差为d,第n项为a_n = a_1 + (n-1)d,代入得到(a_1 + a_1 + (n-1)d)n/2 = n^2,化简得到(2a_1 + (n-1)d)n = 2n^2。
根据选项的限定,由于n为正整数,去除掉负数选项(A和B),继续化简得到2a_1n = 2n^2,去掉分母2,得到a_1n = n^2。
由此可知,首项a_1一定等于n。
由于等差数列的首项可以是任意整数,所以答案为C. 0。
2. 在△ABC中,∠ACB = 90°,D为BC上的动点,P为∠BAD的平分线与AC的交点,Q为∠DAC的平分线与AB的交点。
若APBQ构成平行四边形,求证:∠BCD = 60°。
解析:在△ABC中,根据角平分线的性质,有∠PAQ = ∠CAB。
由于APBQ是平行四边形,所以AP // BQ,根据平行四边形的性质,有∠PAB = ∠BQD。
再由于PD是∠PAD的平分线,所以∠PDB = ∠PDA = ∠PAD/2。
同理,QD是∠QAD的平分线,所以∠QDB = ∠QDA = ∠QAD/2。
又因为∠PAD = ∠QAD,所以∠PDB = ∠QDB。
综上所述,△PDB ≌△QDB,由此可知PB = QB。
再观察△BCD和△PBD,根据条件可以得知∠DBC = ∠BPD,且∠CBD = ∠PDB。
由于PB = QB,所以BD = CD(平行四边形的性质),即△BCD为等腰三角形。
由于∠BCA = 90°,所以∠BCD = 60°。
2007--2013年浙江省湖州市中考数学试卷及答案

2008年浙江省湖州市中考数学试卷及答案友情提示:1.全卷分卷Ⅰ和卷Ⅱ两部分,共8页.考试时间为100分钟.2.第四题为自选题,供考生选做,本题分数将计入本学科的总分,但考生所得总分最多为120分.3.卷Ⅰ中试题(第1-12小题)的答案填涂在答题卡上,写在试卷上无效. 4.请仔细审题,细心答题,相信你一定会有出色的表现!5.参考公式:抛物线y =ax 2+bx +c 的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.卷Ⅰ一、选择题(本题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卡上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分. 1.2的相反数是( ) A .2-B .2C .12-D .122.当1x =时,代数式1x +的值是( ) A .1 B .2 C .3 D ,4 3.数据2,4,4,5,3的众数是( ) A .2 B .3 C .4 D .5 4.已知35α∠=,则α∠的余角的度数是( )A .55B .45C .145D .1355.计算23()x x - 所得的结果是( ) A .5xB .5x -C .6xD .6x -6.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是红球的概率是( ) A .15B .25C .35D .237.已知两圆的半径分别为3cm 和2cm ,圆心距为5cm ,则两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内切8.下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是( ) A .32 B .16 C .8 D .49.如图,已知圆心角78BOC ∠=,则圆周角BAC ∠的度数是( ) A .156B .78C .39D .1210.如图,已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( ) A .sin 40mB .cos 40mC .tan 40mD .tan 40m11.解放军某部接到上级命令,乘车前往四川地震灾区抗震救灾.前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往.若部队离开驻地的时间为t (小时),离开驻地的距离为S (千米),则能反映S 与t 之间函数关系的大致图象是( )12.已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90得1OA ,则点1A 的坐标为( ) A .()a b -,B .()a b -,C .()b a -,D .()b a -,卷Ⅱ二、填空题(本题有6小题,每小题4分,共24分) 13.计算:12-+= .14.已知等腰三角形的一个底角为70,则它的顶角为 度.15.利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .16.如图,AB 是O 的直径,CB 切O 于B ,连结AC 交O 于D ,若8cm BC =,DO AB ⊥,则O 的半径OA = cm .17.一个长、宽、高分别为15cm ,10cm ,5cm 的长方体包装盒的表面积为 cm 2. 18.将自然数按以下规律排列,则2008所在的位置是第 行第列.三、解答题(本题有6小题,共60分) 19.(本题有2小题,每小题5分,共10分) (1)计算:200825(1)2sin 30+-- ;(2)解不等式组:2113110.x x x ->+⎧⎨+>⎩,①②20.(本小题8分) 如图,在ABC △中,D 是BC 边的中点,F E ,分别是AD 及其延长线上的点,CF BE ∥. (1)求证:BDE CDF △≌△.(2)请连结BF CE ,,试判断四边形BECF是何种特殊四边形,并说明理由.21.(本小题10分)为了解九年级学生每周的课外阅读情况,某校语文组调查了该校九年级部分学生某周的课外阅读量(精确到千字),将调查数据经过统计整理后,得到如下频数分布直方图.请根据该频数分布直方图,回答下列问题: (1)填空:①该校语文组调查了 名学生的课外阅读量; ②左边第一组的频数= ,频率= . (2)求阅读量在14千字及以上的人数.(3)估计被调查学生这一周的平均阅读量(精确到千字).22.(本小题10分)为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.(1)按此计划,该公司平均每天应生产帐篷 顶;(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人....的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷? 23.(本小题10分)如图甲,在等腰直角三角形OAB 中,90OAB ∠=,B 点在第一象限,A 点坐标为(10),.OCD △与OAB △关于y 轴对称.(1)求经过D O B ,,三点的抛物线的解析式;(2)若将OAB △向上平移(0)k k >个单位至O A B '''△(如图乙),则经过D O B ',,三点的抛物线的对称轴在y 轴的 .(填“左侧”或“右侧”)(3)在(2)的条件下,设过D O B ',,三点的抛物线的对称轴为直线x m =.求当k 为何值时,13m =?24.(本小题12分)已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.四、自选题(本题5分)请注意:本题为自选题,供考生选做.自选题得分将计入本学科总分,但考试总分最多为120分.25.对于二次函数2y ax bx c =++,如果当x 取任意整数时,函数值y 都是整数,那么我们把该函数的图象叫做整点抛物线(例如:222y x x =++).(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的解析式 .(不必证明)(2)请探索:是否存在二次项系数的绝对值小于12的整点抛物线?若存在,请写出其中一条抛物线的解析式;若不存在,请说明理由.2008年浙江省湖州市中考数学试卷参考答案一、选择题(每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABCAACBDCBAC二、填空题(每小题4分,共24分) 13.114.4015.勾股定理,222a b c +=16.417.550 18.18,45 三、解答题(共60分) 19.(本题有2小题,每小题5分,共10分) (1)解:原式15122=+-⨯5= (2)解:由①得2x > 由②得3x >所以不等式组的解集为3x >. 20.(本小题8分)(1)证明:CF BE ∥,EBD FCD ∴∠=∠. 又BDE CDF ∠=∠ ,BD CD =, BDE CDF ∴△≌△.(2)四边形BECF 是平行四边形. 由BDE CDF △≌△,得ED FD =.BD CD = ,∴四边形BECF 是平行四边形. 21.(本小题10分)(1)①40;②4,0.1(每答对一个得2分)(2)由图知,阅读量在14千字及以上的学生人数为12820+=人. (3)估计被调查学生这一周的平均阅读量为:1(466910*********)1340⨯+⨯+⨯+⨯+⨯≈(千字). 答:被调查学生这一周的平均阅读量约为13千字. 22.(本小题10分) 解:(1)2000(2)设该公司原计划安排x 名工人生产帐篷,则由题意得:20002000022000(125)(1022)(50)x x -⨯+=--+%, 5163(50)x x ∴=+. ∴解这个方程,得750x =.经检验,750x =是所列方程的根,且符合题意.答:该公司原计划安排750名工人生产帐篷. 23.(本小题10分) 解:(1)由题意可知:经过D O B ,,三点的抛物线的顶点是原点, 故可设所求抛物线的解析式为2y ax =.OA AB = ,B ∴点坐标为(11),.…… (11)B ,在抛物线上,211a ∴=⨯,…1a =,∴经过D O B ,,三点的抛物线解析式是2y x =.(2)左侧.(3)由题意得:点B '的坐标为(11)k +,,抛物线过原点,故可设抛物线解析式为211y a x b x =+,抛物线经过点(11)D -,和点(11)B k '+,, 111111a b k a b =-⎧∴⎨+=+⎩ 得122k a +=,12k b =.抛物线对称轴必在y 轴的左侧,0m ∴<,而13m =,13m ∴=-,122322kk ∴-=-+⨯,4k ∴=.即当4k =时,13m =.24.(本小题12分)(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S , 由题意得11k y x =,22k y x =. 1111122S x y k ∴==,2221122S x y k ==. 12S S ∴=,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33kE ⎛⎫ ⎪⎝⎭,,44kF ⎛⎫ ⎪⎝⎭,,1111432234ECF S EC CF k k ⎛⎫⎛⎫∴==-- ⎪⎪⎝⎭⎝⎭△, 11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S ∴=---=---=--△△△△△△矩形11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫∴=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△2112S k k ∴=-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值. (3)解:设存在这样的点F ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠= ,EMN MFB ∴∠=∠.又90ENM MBF ∠=∠=,ENM MBF ∴△∽△.EN EM MB MF ∴=,11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭∴==⎛⎫-- ⎪⎝⎭,94MB ∴=. 222MB BF MF += ,222913444k k ⎛⎫⎛⎫⎛⎫∴+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =.21432k BF ∴==. ∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.四、自选题(共5分) 25.(1)如:21122y x x =+,21122y x x =--等等 (只要写出一个符合条件的函数解析式)(2)解:假设存在符合条件的抛物线,则对于抛物线2y ax bx c =++ 当0x =时y c =,当1x =时y a b c =++, 由整点抛物线定义知:c 为整数,a b c ++为整数,a b ∴+必为整数.又当2x =时,4222()y a b c a a b c =++=+++是整数,2a ∴必为整数,从而a 应为12的整数倍,0a ≠ ,12a ∴≥.∴不存在二次项系数的绝对值小于12的整点抛物线.浙江省2009年初中毕业生学业考试(湖州市)数 学 试 卷友情提示:一、全卷分卷Ⅰ与卷Ⅱ两部分,考试时间为100分钟.二、第四题为自选题,供考生选做,本题分数计入本学科的总分,但考生所得总分最多为120分.三、试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效. 四、请仔细审题,细心答题,相信你一定会有出色的表现!参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.卷Ⅰ一、选择题:(本题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上相应题次中对应字母的方框涂黑,不选、多选、错选均不给分. 1.下列各数中,最大的数是( ) A .1-B .0C .1D .22.4的算术平方根是( ) A .2 B .2- C .2± D .163.如图是由4个大小相同的小立方块搭成的几何体,其主视图是( )A .B .C .D .4.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为( )A.40.2110-⨯ B .42.110-⨯C .52.110-⨯D .62110-⨯5.如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( )A .3sin 2A =B .1tan 2A =C .3cos 2B = D .tan 3B =主视方向 (第3题) BCA(第5题)6.下列图形中,不是中心对称图形的是( )A .B .C .D .7.已知1O ⊙与2O ⊙外切,它们的半径分别为2和3,则圆心距12O O 的长是( ) A .12O O =1 B .12O O =5 C .1<12O O <5 D .12O O >5 8.在一个布袋中装着只有颜色不同,其它都相同的红、黄、黑三种小球 各一个,从中任意摸出一个球,记下颜色后放回并搅匀,再摸出一个球, 两次摸球所有可能的结果如图所示,则摸出的两个球中,一个是红球, 一个是黑球的概率是( ) A .19 B .29C .13 D .499.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙 种糖果30千克混合成的什锦糖果的单价应定为( ) A .11元/千克 B .11.5元/千克C .12元/千克D .12.5元/千克10.如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为S ,则S 关于t 的函数图象大致为( )11.如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE AC ⊥,EF AB ⊥,FD BC ⊥,则DEF △的面积与ABC △的面积之比等于( ) A .1∶3B .2∶3C .3∶2D .3∶312.已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个?( ) A .6 B .7 C .8 D .9第一次第二次红红 黄 黑 黄红黄黄 黑红 黄 黑(第8题) (第12题)(第11题) DC E F A B第(10)题B A O A. B.C. D. S t S t S t S t O O O O卷Ⅱ二、填空题:(本题有6小题,每小题4分,共24分) 13.计算:|3|2--= . 14.分解因式:34a a -= .15.如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .16.如图,已知矩形ABCD ,将B C D △沿对角线BD 折叠,记点C 的对应点为C ′,若ADC ∠′=20°,则BDC ∠的度数为 _.17.已知抛物线2y ax bx c =++(a >0)的对称轴为直线1x =,且经过点()()212y y -1,,,,试比较1y 和2y 的大小:1y _2y (填“>”,“<”或“=”)18.如图,已知Rt ABC △,1D 是斜边AB 的中点, 过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则n S =________ABC S △(用含n 的代数式表示).三、解答题:(本题有6个小题,共60分) 19.(本题有2小题,每小题5分,共10分) (1)计算:()02cos 602009π9--+° (2)解方程:22333x x x-+=-- 20.(本小题8分)(第16题) C ′A D CB 20° BCAE 1 E 2 E 3D 4D 1D 2D 3(第18题)(第15题) CABS 1S 2如图:已知在ABC △中,AB AC =,D 为BC 边的中点,过点D 作DE AB DF AC ⊥,⊥, 垂足分别为E F ,. (1) 求证:BED CFD △≌△;(2)若90A ∠=°,求证:四边形DFAE 是正方形.21.(本小题10分)某校为了解九年级男生1000米长跑的成绩,从中随机抽取了50名男生进行测试,根据测试评分标准,将他们的得分进行统计后分为A B C D ,,,四等,并绘制成下面的频数分布表和扇形统计图.(1)试直接写出x y m n ,,,的值;(2)求表示得分为C 等的扇形的圆心角的度数;(3)如果该校九年级共有男生200名,试估计这200名男生中成绩达到A 等和B 等的人数共有多少人?22.(本小题10分)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1) 若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?(2) 为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.23.(本小题10分) 如图,在平面直角坐标系中,直线l ∶y =28x --分别与x 轴,y 轴相交于A B ,两点,点()0P k ,是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作P ⊙.等第 成绩(得分) 频数(人数) 频率 A10分 7 0.14 9分 x m B8分 15 0.30 7分8 0.16 C 6分 4 0.08 5分y n D 5分以下3 0.06 合计50 1.00 (第20题)D CB E A F B 等 A 等38% C 等 D 等(1)连结PA ,若PA PB =,试判断P ⊙与x 轴的位置关系,并说明理由;(2)当k 为何值时,以P ⊙与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?24.(本小题12分) 已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .直线12y x a =-分别与x 轴,y 轴相交于B C ,两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则()()M N , , , ; (2)如图,将NAC △沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连结CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线22y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.四、自选题:(本题5分)请注意:本题为自选题,供考生选做,自选题得分将计入本学科总分,但考试总分最多为120分.25.若P 为ABC △所在平面上一点,且120APB BPC CPA ∠=∠=∠=°,则点P 叫做ABC △的费马点.(1)若点P 为锐角ABC △的费马点,且60ABC PA PC ∠===°,3,4,则PB 的值为第(2)题 x y B CO D A M N N ′ x y B CO AM N备用图 (第24题) (第23题) B A O x l y P A Ox l y (备用图) AC B B '第(25)题________;(2)如图,在锐角ABC △外侧作等边ACB △′连结BB ′. 求证:BB ′过ABC △的费马点P ,且BB ′=PA PB PC ++.浙江省2009年初中毕业生学业考试(湖州市)数学试题参考答案与评分标准一、选择题(每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DADCDABBBCAC二、填空题(每小题4分,共24分)13.1 14.()()22a a a +- 15.2π 16.55° 17.> 18.()211n +三、解答题(共60分) 19.(本题有2小题,每小题5分,共10分) (1)解:原式=12132⨯-+……………3分 =3.……………2分(2)解:去分母得:()2332x x -+-=-……………2分化简得25x =,解得52x =,……………2分 经检验,52x =是原方程的根. ……………1分 ∴原方程的根是52x =.20.(本小题8分)(1)DE AB DF AC ⊥,⊥,90BED CFD ∴∠=∠=°,……………1分 AB AC = ,B C ∴∠=∠,……………1分 D 是BC 的中点,BD CD ∴=,……………1分 BED CFD ∴△≌△.……………1分 (2) DE AB DF AC ⊥,⊥, 90AED AFD ∴∠=∠=°, 90A ∠= °,∴四边形DFAE 为矩形. ……………2分 BED CFD △≌△, DE DF ∴=,∴四边形DFAE 为正方形.……………2分21.(本小题10分)(1)120.240.02x y m n =,=1,=,=.……………4分(2)C 等扇形的圆心角的度数为:()0.080.0236036+⨯=︒°.……………3分(3)达到A 等和B 等的人数为:()0.140.240.30.16200168+++⨯=人.……………3分22.(本小题10分)(1) 设家庭轿车拥有量的年平均增长率为x ,则:()2641100x +=,……………2分解得:11254x ==%,294x =-(不合题意,舍去),……………2分 ()100125%125∴+=.……………1分答:该小区到2009年底家庭轿车将达到125辆.……………1分(2) 设该小区可建室内车位a 个,露天车位b 个,则:0.50.1152 2.5a b a b a +=⎧⎨⎩①≤≤②……………2分 由①得:b =150-5a 代入②得:20a 150≤≤7, a 是正整数,a ∴=20或21,当20a =时50b =,当21a =时45b =.……………2分∴方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个.23.(本小题10分)第(1)题BA Oxl y P BA O xl y C EDP 1P 2第(2)题解:(1)P ⊙与x 轴相切.……………1分直线28y x =--与x 轴交于()40A -,,与y 轴交于()0B ,-8, 48OA OB ∴==,, 由题意,8OP k PB PA k =-∴==+,.在Rt AOP △中,()222483k k k +=+∴=-,,……………2分 OP ∴等于P ⊙的半径,P ∴⊙与x 轴相切. ……………1分 (2)设P ⊙与直线l 交于C D ,两点,连结PC PD ,. 当圆心P 在线段OB 上时,作PE CD ⊥于E .PCD △为正三角形,13333222DE CD PD PE ∴===∴=,,. 90AOB PEB ABO PBE AOB PEB ∠=∠=∠=∠∴ °,,△∽△, AO PE AB PB ∴=,即3343152245PB PB =∴=,,……………2分 31531580822PO BO BP P ⎛⎫∴=-=-∴- ⎪ ⎪⎝⎭,,, 31582k ∴=-.……………2分 当圆心P 在线段OB 延长线上时,同理可得315082P ⎛⎫- ⎪ ⎪⎝⎭,-, 31582k ∴=--,……………2分 ∴ 当31582k =-或31582k =--时,以P ⊙与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.24.(本小题12分)第(2)题xy B CO D A MN N ′xyBC OAM N P 1P 2备用图(1)()411133M a N a a ⎛⎫--⎪⎝⎭,,,.……………4分(2)由题意得点N 与点N ′关于y 轴对称,N '∴4133a a ⎛⎫-- ⎪⎝⎭,,将N ′的坐标代入22y x x a =-+得21168393a a a a -=++, 10a ∴=(不合题意,舍去),294a =-.……………2分334N ⎛⎫∴- ⎪⎝⎭,,∴点N 到y 轴的距离为3.904A ⎛⎫- ⎪⎝⎭ ,,N '334⎛⎫⎪⎝⎭,,∴直线AN '的解析式为94y x =-, 它与x 轴的交点为904D ⎛⎫∴ ⎪⎝⎭,,点D 到y 轴的距离为94. 1919918932222416ACN ACD ADCN S S S ∴=+=⨯⨯+⨯⨯=△△四边形.……………2分 (3)当点P 在y 轴的左侧时,若ACPN 是平行四边形,则PN 平行且等于AC ,∴把N 向上平移2a -个单位得到P ,坐标为4733a a ⎛⎫- ⎪⎝⎭,,代入抛物线的解析式, 得:27168393a a a a -=-+ 10a ∴=(不舍题意,舍去),238a =-,12P ⎛⎫∴- ⎪⎝⎭7,8.……………2分当点P 在y 轴的右侧时,若APCN 是平行四边形,则AC 与PN 互相平分,OA OC OP ON ∴==,.P ∴ 与N 关于原点对称,4133P a a ⎛⎫∴- ⎪⎝⎭,,将P 点坐标代入抛物线解析式得:21168393a a a a =++, 10a ∴=(不合题意,舍去),2158a =-,5528P ⎛⎫∴- ⎪⎝⎭,.……………2分∴存在这样的点11728P ⎛⎫- ⎪⎝⎭,或25528P ⎛⎫- ⎪⎝⎭,,能使得以P A C N ,,,为顶点的四边形是平行四边形.四、自选题(本题5分) 25.(1)23. ……………2分(2)证明:在BB '上取点P ,使120BPC ∠=°, 连结AP ,再在PB '上截取PE PC =,连结CE .120BPC ∠= °,60EPC ∴∠=°, PCE ∴△为正三角形,……………1分 60PC CE PCE CEB '∴=∠=∠,°,=120°,ACB ' △为正三角形,AC B '∴=C ACB '∠,=60°,PCA ACE ACE ECB '∴∠+∠=∠+∠=60°, PCA ECB '∴∠=∠′, ACP B '∴△≌△CE .APC B '∴∠=∠120CE PA EB '==°,, 120APB APC BPC ∴∠=∠=∠=°, P ∴为ABC △的费马点,BB '∴过ABC △的费马点P ,且BB '=EB '+PB PE PA PB PC +=++.……………2分AC B P E 第(25)题B '浙江省2011年初中毕业生学业考试(湖州市)数学试题卷友情提示:1. 全卷分为卷Ⅰ与卷Ⅱ两部分,考试时间为120分钟,试卷满分为120分。
[中考12年]浙江湖州2002-2021年中考数学试题分类解析 专题 07 统计与概率
![[中考12年]浙江湖州2002-2021年中考数学试题分类解析 专题 07 统计与概率](https://img.taocdn.com/s3/m/f59a81dd31126edb6e1a1087.png)
一、1. (2002年浙江湖州3分)某人对去莫干山旅游的游客人数进行了统计:10天中,有3天每天的游客人数为400人,有2天每天的游客人数为600人,有5天每天的游客人数为350人,那么这10天中平均每天的游客人数为【】A.415 B.425 C.450 D.4002.(2005年浙江湖州3分)有一道四选一的选择题,某同学完全靠猜测获得结果,则这个同学答对的概率是【】A、12B、14C、13D、153. (2005年浙江湖州3分)菱湖是全国著名的淡水鱼产地,某养鱼专业户为了估计他承包的鱼塘时有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条鱼做上标记,然后放回塘里,过了一段时间,待带标记的鱼和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,则塘里大约有鱼【】A、-1B、0C、0.1D、14. (2006年浙江湖州3分)数据2、4、4、5、7的众数是【】A、2B、4C、5D、7【答案】B。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是4,故这组数据的众数为4。
故选B。
5. (2006年浙江湖州3分)在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于【】A、1B、12C、13D、236. (2007年浙江湖州3分)要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是【】。
A、平均数B、中位数C、众数D、方差7. (2007年浙江湖州3分)如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是【】。
A、该班总人数为50人B、骑车人数占总人数的20%C、步行人数为30人D、乘车人数是骑车人数的2.5倍8. (2008年浙江湖州3分)数据2,4,4,5,3的众数是【】A.2 B.3 C.4 D.5【答案】C。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是4,故这组数据的众数为4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012浙江省湖州市中考数学真题及答案(本试卷满分120分,考试时间120分钟)参考公式:二次函数()2y ax bx c a 0=++≠图象的顶点坐标是2b 4ac b ()2a 4a--,.一、选择题(本题共有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框内涂黑,不选、多选、错选均不给分。
1.-2的绝对值等于【 A 】 A .2 B .-2 C .12D .±2 2.计算2a -a ,正确的结果是【 D 】 A .-2a 3B .1C .2D .a 3.要使分式1x有意义,x 的取值范围满足【 B 】 A .x=0 B .x ≠0 C .x >0 D .x <0 4.数据5,7,8,8,9的众数是【 C 】 A .5 B .7 C .8 D .9、5.如图,在Rt △ABC 中,∠ACB=90°,AB=10,CD 是AB 边上的中线,则CD 的长是【 C 】A .20B .10C .5D .526.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角度数是【 B 】A .36°B .72°C .108°D .180°7.下列四个水平放置的几何体中,三视图如图所示的是【 D 】A. B. C. D.8.△ABC中的三条中位线围成的三角形周长是15cm,则△ABC的周长为【 C 】A.60cm B.45cm C.30cm D.152cm9.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是【 B 】A.45° B.85° C.90° D.95°10.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于【 A 】A .5B .453C .3D .4 二、填空题(本题共有6小题,每题4分,共24分) 11.当x=1时,代数式x+2的值是 ▲ 【答案】3。
12.因式分解:x 2-36= ▲ 【答案】(x +6)(x -6)。
13.甲、乙两名射击运动员在一次训练中,每人各打10发子弹,根据命中环数求得方差分别是22S 0.6S 0.8==乙甲,,则 ▲ 运动员的成绩比较稳定. 【答案】甲。
14.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,点F 在BC 的延长线上,DE ∥BC ,∠A=46°,∠1=52°,则∠2= ▲ 度.【答案】98。
15.一次函数y=kx+b (k ,b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为 ▲【答案】x=-1。
16.如图,将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n个边长为1的小三角形,若m47n25=,则△ABC的边长是▲【答案】12。
三、解答题(本题共有8小题,共66分)17.计算:2116 2tan452012⎛⎫-+-+︒⎪⎝⎭().【答案】解:原式=4-1+4+1=8。
18.解方程组2x y8 x y1+=⎧⎨-=⎩【答案】解:2x y8x y1+=⎧⎨-=⎩①②,①+②得3x=9,解得x=3,把x=3代入②,得3-y=1,解得y=2。
∴原方程组的解是x3y2=⎧⎨=⎩。
19.如图,已知反比例函数kyx=(k≠0)的图象经过点(-2,8).(1)求这个反比例函数的解析式;(2)若(2,y1),(4,y2)是这个反比例函数图象上的两个点,请比较y1、y2的大小,并说明理由.【答案】解:(1)把(-2,8)代入kyx=,得k82=-,解得:k=-16。
∴这个反比例函数的解析式为16yx=-。
(2)y1<y2。
理由如下:∵k=-16<0,∴在每一个象限内,函数值y随x的增大而增大。
∵点(2,y1),(4,y2)都在第四象限,且2<4,∴y1<y2。
20.已知:如图,在ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.(1)说明△DCE≌△FBE的理由;(2)若EC=3,求AD的长.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC。
∴∠CDE=∠F。
又∵BF=AB,∴DC=FB。
在△DCE和△FBE中,∵∠CDE=∠F,∠CED=∠BEF, DC=FB,∴△DCE≌△FBE(AAS)。
(2)解:∵△DCE≌△FBE,∴EB=EC。
∵EC=3,∴BC=2EB=6。
∵四边形ABCD是平行四边形,∴AD=BC。
∴AD=6。
21.某市开展了“雷锋精神你我传承,关爱老人从我做起”的主题活动,随机调查了本市部分老人与子女同住情况,根据收集到的数据,绘制成如下统计图表(不完整)老人与子女同住情况百分比统计表老人与子女同住情况同住不同住(子女在本市)不同住(子女在市外)其他a 50%b 5%根据统计图表中的信息,解答下列问题:(1)求本次调查的老人的总数及a、b的值;(2)将条形统计图补充完整;(画在答卷相对应的图上)(3)若该市共有老人约15万人,请估计该市与子女“同住”的老人总数.【答案】解:(1)老人总数为25÷5%=500(人),b=75 500 ×100%=15%,a=1-50%-15%-5%=30%。
(2)补充条形统计图如图:(3)该市与子女“同住”的老人的总数约为15×30%=4.5(万人)。
22.已知,如图,在梯形ABCD中,AD∥BC,DA=DC,以点D为圆心,DA长为半径的⊙D与AB相切于A,与BC交于点F,过点D作DE⊥BC,垂足为E.(1)求证:四边形ABED为矩形;(2)若AB=4,AD3BC4=,求CF的长.【答案】(1)证明:∵⊙D与AB相切于点A,∴AB⊥AD。
∵AD∥BC,DE⊥BC,∴DE⊥AD。
∴∠DAB=∠ADE=∠DEB=90°。
∴四边形ABED为矩形。
(2)解:∵四边形ABED为矩形,∴DE=AB=4。
∵DC=DA,∴点C在⊙D上。
∵D为圆心,DE⊥BC,∴CF=2EC。
∵AD3BC4=,设AD=3k(k>0)则BC=4k。
∴BE=3k,EC=BC-BE=4k-3k=k,DC=AD=3k。
由勾股定理得DE2+EC2=DC2,即42+k2=(3k)2,∴k2=2。
∵k>0,∴。
∴。
23.为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?【答案】解:(1)已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,∴乙种树每棵200元,丙种树每棵32×200=300(元)。
(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000-3x)棵.根据题意:200·2x+200x+300(1000-3x)=210000,解得x=30。
∴2x=600,1000-3x=100,答:能购买甲种树600棵,乙种树300棵,丙种树100棵。
(3)设购买丙种树y棵,则甲、乙两种树共(1000-y)棵,根据题意得:200(1000-y)+300y≤210000+10120,解得:y≤201.2。
∵y为正整数,∴y最大为201。
答:丙种树最多可以购买201棵。
24.如图1,已知菱形ABCD的边长为A在x轴负半轴上,点B在坐标原点.点D的坐标为(,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t< 3 )①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)【答案】解:(1)由题意得AB的中点坐标为(-3 ,0),CD的中点坐标为(0,3),分别代入y=ax2+b,得()23a+b=0b3⎧-⎪⎨=⎪⎩,解得,a=1b3-⎧⎨=⎩。
∴这条抛物线的函数解析式为y=-x2+3。
(2)①存在。
如图2所示,在Rt△BCE中,∠BEC=90°,BE=3,BC=23,∴BE3sinCBC23==。
∴∠C=60°,∠CBE=30°。
∴EC=123 3。
又∵AD∥BC,∴∠ADC+∠C=180°。
∴∠ADC=180°-60°=120°要使△ADF与△DEF相似,则△ADF中必有一个角为直角。
(I)若∠ADF=90°,∠EDF=120°-90°=30°。
在Rt△DEF中,3EF=1,DF=2。
又∵E(t,3),F(t,-t2+3),∴EF=3-(-t2+3)=t2。
∴t2=1。
∵t>0,∴t=1 。
此时AD23DF22=2DE EF13===,,∴AD DF=DE EF。
又∵∠ADF=∠DEF,∴△ADF∽△DEF。
(II)若∠DFA=90°,可证得△DEF∽△FBA,则DE EF FB BA=。
设EF=m,则FB=3-m。
∴,即m2-3m+6=0,此方程无实数根。
∴此时t不存在。
(III)由题意得,∠DAF<∠DAB=60°,∴∠DAF≠90°,此时t不存在。
综上所述,存在t=1,使△ADF与△DEF相似。
②t≤。