零输入响应与初始状态的关系
一阶电路的零输入响应

dt
50 1 e1500t 0.05 1500 e1500t
50 25e1500tV
第17页/共26页
§10.4 一阶电路的全响应 一、全响应的分解
全响应:电路中输入激励和储能元件的储能共同产生的响应。
R
+
+ uR – i
–US
C
uC 0 U0
电路方程
ui US
+u US-U0 C
一、RC电路的零输入响应
12 i
uC i
特征根
p
1
+ U0
—
R0
+ C uC
—
+ R uR
—
U0
U0
R
uC
i
0
RC
t
uC Ae RC t 0
确定积分常数
t
uC 0 U0
uC 0 U0
电路方程
uR uC 0
电压与电流的关系
u R iR
电路方程
RC
duC dt
uC
0
t>0
通解
uC Aept
二、全响应的分解
1.全响应可分解为稳态分量和瞬态分量。
t
uC = uC′+ uC″ = US + (U0 - US)e
τ
稳态分量 瞬态分量
强制分量 自由分量
2.全响应可分解为零输入响应和零状态响应。
t
t
uc = uc1 + uc2 = U0e τ + US(1-e τ )
零输入响应 零状态响应
uC US
+ uR –
uR uC i
+
R+i
零输入响应和零状态响应

计算方法
利用系统的传递函数和初始条 件进行计算。
通过求解常微分方程或差分方 程ห้องสมุดไป่ตู้找到系统的零输入响应。
在MATLAB/Simulink等仿真软 件中,可以通过设置系统的初 始状态来模拟零输入响应。
02 零状态响应
定义
零状态响应:是指在系统无输入 信号的情况下,系统对初始状态
产生的响应。
描述了系统在没有输入信号作用 时,其内部状态的变化情况。
零状态响应完全取决于系统本身 的特性,与输入信号无关。
产生原因
系统内部存在储能元件(如电容、电 感),当输入信号为零时,储能元件 的能量不会立即消失,而是会以某种 形式继续存在并产生响应。
系统参数(如电阻、电感、电容等) 发生变化,导致系统内部状态发生变 化,从而产生零状态响应。
计算方法
根据系统的传递函数 和初始状态进行计算。
针对复杂系统和多尺度问题,发展基于零输入响应和零状态响应的跨学科 解决方案,促进各领域之间的交流与合作。
探索零输入响应和零状态响应在可持续发展、环境保护、公共安全等领域 的潜在应用价值,为社会发展和人类福祉做出贡献。
技术创新
开发高效、稳定的零输入响应和零状态响应算 法,提高计算效率和精度,降低计算成本。
零状态响应
零状态响应描述的是系统在外部输入作用下的输出变化。通过研究零状态响应, 可以了解系统对不同类型输入的响应特性,进而设计出更好的控制系统。
系统建模与仿真
零输入响应
在系统建模与仿真中,零输入响应用 于描述系统的内部动态特性。通过分 析零输入响应,可以深入了解系统的 内部工作原理和稳定性。
零状态响应
零状态响应用于描述系统对外部输入 的响应特性。通过研究零状态响应, 可以预测系统在不同输入条件下的行 为表现,有助于优化系统的设计和控 制。
初始值的计算,零输入响应,零状态响应,全响应及三要素公式的推导(1)

i R 0 u L 0
, u 0 uS(0+)
R
NR
, i 0 iS(0+) c
uC(0+) iL(0+)
(b)t=0+时等效电路
电路分析基础
3.8 电路初始值的计算
9
计算非独立初始值的具体方法: A、画出t =0+电路,
a、若 若
uc (0 ) uc (0 ) U cs ,
6
以电容上电压为未知变量列写电路的方程。
换路后由图(b)可知,其KVL方程为:
uczi (t ) uRzi (t ) 0
而uRzi(t)=izi(t) R,
izi ( t )
C
d u C zi ( t dt
)
,代入上式可得:
RC
duCzii (0+ )= RI S
则电容用一个电压源UCS代替;
uc (0 ) 0 , 则电容用短路线代替。
b、若 iL (0 ) iL (0 ) ILs ,
则电感用一个电流源ILS 代替; 若 iL (0 ) 0 , 则电感作开路处理。
B、现在可用求解电阻电路的各种方法来求解指定的非独立初始值。
电路分析基础
3.8 电路初始值的计算
(或称内部激励)共同作用引起的响应。
f t 0
N
y t
xk 0 0 k1,2,,n
实际上,由线性电路的性质知:
全响应 零输入响应 零状态响应
即:
y t yzi t yzs t
电路分析基础
xk 0 0 k 1,2,,n
3.4 电感的串联和并联
6
思考题
1. 解释电路零输入响应的定义; 2. 解释电路零状态响应的定义; 3. 解释电路全响应的定义;
零输入响应与零状态响应

零输入响应与零状态响应一、零输入响应1定义在没有外加激励时,仅有t = 0时刻的非零初始状态引起的响应。
取决于初始状态和电路特性,这种响应随时间按指数规律衰减。
2简介系统的零输入响应完全由系统本身的特性所决定,与系统的激励无关。
当系统是线性的,它的特性可以用线性微分方程表示时,零输入响应的形式是若干个指数函数之和。
指数函数的个数等于微分方程的阶数,也就是系统内部所含"独立"储能元件的个数。
假定系统的内部不含有电源,那么这种系统就被称为"无源系统"。
实际存在的无源系统的零输入响应随着时间的推移而逐渐地衰减为零。
零输入响应是系统微分方程齐次解的一部分。
3起始状态所谓的起始状态,是反映一个系统在初始观察时刻的储能状态。
以电系统为例,我们做如下约定:在研究t=0以后的响应时,把t=0(-)时的值uc(0-)和il(0-)等称为起始状态,而把t=0+时的值uc(0+)和il(0+)以及它们的各阶导数称为初始值或初始条件。
二、零状态响应1定义在动态电路中,动态元件的初始储能为零(即零初始状态)下,仅有电路的输入(激励)所引起的响应。
三、两种响应的区别零状态响应:0时刻以前响应为0(即初始状态为0),系统响应取决于从0时刻开始加入的信号f(t);零输入响应:从0时刻开始就没有信号输入(或说输入信号为0),响应取决于0时刻以前的初始储能。
四、两种响应的判断方法如果有电源激励就是,而元件本身没有电压或电流就是零状态,相反没有电源激励只有元件本身初始值电压电流,就是零输入响应。
五、两种响应的求解方法1零输入响应:就是没有外加激励,由初始储能产生的响应,它是齐次解的一部分;2零状态响应:就是初始状态为零,外加激励产生的响应。
它可以通过卷积积分来求解。
零状态响应等于单位样值相应和激励的卷积。
其中,单位样值相应就是系统函数的反拉式变换或z变换。
六、两种响应之间的联系引起电路响应的因素有两个方面,一是电路的激励,而是动态元件储存的初始能量。
初始值的计算,零输入响应,零状态响应,全响应及三要素公式的推导(2)

法:先用三要素求出iL(t)的全响应,iL(t) = iL(0+)e-t/τ+ iL(∞)(1- e-t/τ), 其中iLzi(t) = iL(0+)e-t/τ,iLzs(t) = iL(∞)(1- e-t/τ),
即若所求响应为iL(t)或uC(t)时,可直接从全响应的三要
素公式中把其零输入响应和零状态响应分离出。 利用
应用阶跃函数表示其他信号
电路分析基础
3.15 阶跃函数
2
1. 单位阶跃函数定义
单位阶跃函数用ε(t)表示,其定义为:
(t
def
)
1
0
,t 0 ,t 0
该函数在t = 0处发生单位跃变,波形如图(a)。
f
(t )
def
K (t)
K
0
,t 0 ,t 0
电路分析基础
3.15 阶跃函数
τC=RCC=2×1=2s,τL=L/RL =2/(2//2+1) =1s
电路分析基础
3.14 一阶电路三要素计算
7
iL(0+) =iL(0-)=4(A) uC (0+)= uC(0-)=4(V) τC==2s, τL=1s 画出换路后的0+等效电路如图 (d)所示。 i1(0+) =2A,i2(0+) =1A。
τ2= (R2//R3)C =1s
uC(t) = 4 - 2.53e-(t-2) (V) ,t ≥2s
电路分析基础
3.13 一阶电路三要素计算
7
例3 如图 (a)所示电路,在t < 0时开关S位于b点,
电路已处于稳态。t = 0时开关S由b点切换至a点。
求t≥0时的电压uC(t)和电流i(t)。
信号与系统选择题

【课程信息】课程名称:信号与系统课程编码:任课教师:王秀贞【录入】王秀贞【章节】第一章信号的函数表示与系统分析方法【知识点】1、信号的函数表示说明:连续函数和奇异函数、信号分解2、系统数学模型说明:系统性质【单选题】1、f (5-2t )是如下运算的结果( )。
A .f (-2t )右移5B .f (-2t )左移5C .f (-2t )右移25D .f (-2t )左移25答案:C难度:1分值:2知识点:1【判断题】1.偶函数加上直流后仍为偶函数。
( )答案:T2. 不同的系统具有不同的数学模型。
( )答案:F3. 任何信号都可以分解为偶分量与奇分量之和。
( )答案:T4.奇谐函数一定是奇函数。
( )答案:T【简答题】1.信号、信息与消息的差别?答案:信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等信息:所接收到的未知内容的消息,即传输的信号是带有信息的。
2.单位冲激信号的物理意义及其取样性质?答案:冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。
它表达的是一类幅度很强,但作用时间很短的物理现象。
其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰【录入】王秀贞【章节】第二章连续时间系统的时域分析【知识点】【单选题】1.系统微分方程式),()(),(2)(2)(t u t x t x t y dtt dy ==+若 34)0(=-y ,解得完全响应y (t )=)0(,1312≥+-t e t 当 则零输入响应分量为 ( )。
A .t e 231-B .21133t e --C .te 234-D .12+--t e答案:C难度:1分值:2知识点:12.已知)()(),()(21t u e t f t u t f at -==,可以求得=)(*)(21t f t f ()。
一阶电路的零输入响应

3、原始能量增大A倍,则零输入响应将相应增大A倍,这种原始能量与零输 入响应的线性关系称为零线性。
零输入响应就是无电源一阶线性电路,在初始储能作用下产生的响应,
其形式表示为:
f (t) f (0) et
t 0
式中 f (0) 为变量的初始值 uC (0 ) 或 iL (0 )
为时间常数 RC (电容)
L R
(电感)
一、RC电路的零输入响应
如右图,已知uc(0-)=U0,K于t=0 时刻闭合,分析t≧0时uc(t) 、 i(t)的变化规律。
0
一阶常系数齐次微分方程
其特征根方程:
S 1 0
特征根
RC
1
S
RC
uc (t )
Ae st
1t
Ae RC (t
0)
又有初始条件: uc(0+) = uc(0-) =U0 (换路定理)
1t
uc (t ) U0e RC (t 0)
i(t ) C duc
U0
1t
e RC (t
0)
dt
R
i(t)
E
uL(t)的变化规律。
R0 K R
iL
+ L uL
-
(a) 分析:t<0时已达稳态,L中电流为I0=E/R0
t≧0时,电感以初始储能来维持电流iL (t)(放电)
①
换路后( t≧0),由KVL有:
L diL dt
RiL (t ) 0
即:
diL dt
R L
iL (t )
0
特征根:
零输入响应和零状态响应

零输入响应和零状态响应
线性非时变系统的完全响应也可分解为零输 入响应和零状态响应。在激励信号加入系统之 前,系统原有的储能(如电容上的初始电压, 电感上的初始电流等)构成了系统的初始状态。
1.1 零输入响应的求取
1.2 零状态响应的求取
其中零状态响应的完全解的系数应在零状 态响应的全解中由初始条件
即
。因此,零状态响应的特解、齐次
解和完全解分别为
将零状态响应的初始条件 解得
代入上式
因此,此系统的零状态响应为 (3)求系统的完全响应。
其中,
信号与系统
确定。
1.3 系统的完全响应
系统的完全响应按性质可分为自由响应和 强迫响应,按来源可分为零输入响应和零状态 响应,它们的关系为
式中,
。
例1.1 已知某系统的微分方程模型为
初始条件
,输入
系统的零输入响应 ,零状态响应
全响应 。
解:(1)求零输入响应 。
由特征方程
,求 以及完
得单根
,因此零输入响应为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t≥0
t≥0
式中 V0和 I0分别为两个电路的初始条件,V0和 I0还分别 称为 RC电路和RL电路的初始状态。 对于一阶线性定常电路来说,零输入响应可以看作是在 0≤t<∞区间内定义的一个波形,它是初始状态的一个线 性函数。
零输入响应与初始状态的关系
零输入响应与初始状态的关系
零输入响应是在电路输入为零时,仅由初始状态引起的响 应,它取决于电路的初始状态和电路的元件参数和拓扑结 构,对于线性定常的一阶RC电路和RL电路来说,它们的 零输入响应分别为:
vC (t ) = V0 e
iL (t ) = I 0 e
− R L
ห้องสมุดไป่ตู้
−
t RC