2019年概率统计复习题---1.doc
概率统计试卷复习资料

总复习一、填空题(每题3分)1、已知事件A 与B 独立,且5.0)(=A P ,7.0)(=B P ,则=)(AUB P2、设X 服从正态分布)3.2(2N ,且21C) X (=≤P ,则=C 3、设每次试验中成功的概率为P )1(<<P o ,则在二次重复独立试验中,至少失败一次的概率为 。
4、评价估计量优劣的三条标准是无偏性,一致性和 性。
5、已知随机变量X 服从),(2σμN ,则X 的概率密度函数为6、设X 1,…,X n 是总体X 的一个样本,且X 的期望μ=EX 和方差2σ=DX 均未知,则2σ的无偏估计是=∧2σ7、设X 服从二项分布),(p n B ,则)(X E =8、若X 与Y 独立,且6)(=X D ,3)(=Y D ,则)2(Y X D -=9、设X 服从),(2σμN ,则≤≥-)3(σμX P10、一口袋中装有8只球,在这6只球上分别标有-1,1,1,1,1,3,,3,3这样的数字,现从这只口袋中任取一球,用随机变量X 表示取得的球上标明的数字,求:(1)X 的概率分布律;(2)X 的概率分布函数;(3))34(-X E .11.袋中有4个乒乓球, 其中3个是黄球, 1个是白球. 今有两人依次随机地从袋中各取一球, 取后不放回, 则第2个人取得黄球的概率是 . 12、对事件,A B 和C ,已知1()()()5P A P B P C ,()()0P AB P BC ,1()8P AC ,则,A B ,C 中至少有一个发生的概率是_________.13、已知随机变量X 在区间[ 5,15 ]上服从均匀分布,则EX= .14、中心极限定理告诉我们,若随机变量X 服从参数为1000,0.06的二项分布,则X 也近似服从参数为___ __和______的正态分布.15、设(X 1,X 2,...,X n )是取自正态总体N (μ,σ2)的简单随机样本,统计量∑==n i i X n T 121,则T 的数学期望ET=16、设X 表示独立射击目标10次所击中目标的次数,每次击中的概率为0.3,则X 2的数学期望E(X 2)= .17、设随机变量X 服从正态分布N(2,0.22),已知标准正态分布函数值 Φ(2.5)=0.9938,则P{2<X<2.5}=___ .18、设随机变量X 和Y 满足DX =25, DY =9, ρXY =0.4, 则D (X-Y) =19 、设总体X 的概率密度为,,020)(⎩⎨⎧<<=其它x Ax x f 则A=20、若随机变量X 服从参数为1=λ的分布,则大数定律告诉我们:∑=ni i X n 11依概率收敛于21 ,设总体X 服从),(2σμN 分布,X 1,…,X n 是X 的一个样本,则统计量n / X σμ- 服从分布;)(1_1222X XS nni i-=∑=οο 服从 分布;212)(1μο-∑=ni iX服从 分布二,单选1 .若随机变量X 具有性质)()(X D X E =,则X 服从 分布 a 、正态 b 、二项 c 、泊松 d 、均匀2、若)()(1)(B P A P B A P -=+,则A 与B a 、互不相容 b 、独立c 、为对立事件d 、为任意事件3、设随机变量X 服从)2,1(2N ,12-=X Y ,则Y 服从 分布 a 、)4,2(2N b 、)4,1(2N c 、)4,1(N d 、)4,2(N4、设A 与B 为两个随机事件,若0)(=AB P ,则下列命题正确的是 a 、A 、B 互不相容 b 、AB 未必是不可能事件 c 、A ,B 独立 d 、0)(=A P 或0)(=B P5、从总体X 中抽取样本X ,X 2,若X 服从)1,(θN 分布,则θ的估计量中,最有效的是a 、217671X X + b 、212121X X + c 、215451X X + d 、216561X X +6、“A 、B 、C 三事件恰有一个发生”可表为 a 、C U B U A b 、C B Ac 、ABCd 、C B A C B A C B U U A7、5.0)(=A P ,8.0)(=B P ,9.0)(=AUB P ,则B A 与的关系是 a 、互不相容 b 、独立 c 、B A ⊃ d 、A B ⊃8、设随机变量X 服从分布, 则2)] X [E() X (=D a 、均匀 b 、标准正态 c 、二项 d 、泊松9、设),(y x F 是随机变量Y), X (的分布函数,则下列式子 成立。
2019年高考数学“概率与统计”专题复习(真题+答案)

2019年高考数学“概率与统计”专题复习(名师精选重点试题+实战真题演练+答案,建议下载保存) (总计65页,涵盖所有知识点,价值很高,可以达到事半功倍的复习效果,值得下载打印练习)1 随机事件的概率基础自测1.下列说法正确的是( )A.某事件发生的频率为P(A)=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件D.某事件发生的概率是随着试验次数的变化而变化的 答案 B2.在n 次重复进行的试验中,事件A 发生的频率为n m ,当n 很大时,P(A)与n m的关系是 ( )n mB. P(A)<nm>n mD. P(A)=nm答案3.给出下列三个命题,其中正确命题有 ( )①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. 个B.1个C.2个D.3个答案4.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1 小时内断头不超过两次的概率和断头超过两次的概率分别为 , . 答案 0.97 0.035.甲、乙两人下棋,两人和棋的概率是21,乙获胜的概率是31,则乙不输的概率是 . 答案656.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=21,P (B ) =61,则出现奇数点或2点的概率之和为答案32例1 盒中仅有4只白球5只黑球,从中任意取出一只球. (1)“取出的球是黄球”是什么事件?它的概率是多少? (2)“取出的球是白球”是什么事件?它的概率是多少? (3)“取出的球是白球或黑球”是什么事件?它的概率是多少?解 (1)“取出的球是黄球”在题设条件下根本不可能发生,因此它是不可能事件,其概率为0. (2)“取出的球是白球”是随机事件,它的概率是94. (3)“取出的球是白球或黑球”在题设条件下必然要发生,因此它是必然事件,它的概率是1. 例2 某射击运动员在同一条件下进行练习,结果如下表所示:(1)计算表中击中10环的各个频率;(2)这位射击运动员射击一次,击中10环的概率为多少?解 (1)击中10环的频率依次为0.8,0.95,0.88,0.93,0.89,0.906. (2)这位射击运动员射击一次,击中10环的概率约是0.9.例3 (12分)国家射击队的某队员射击一次,命中7~10环的概率如下表所示:求该射击队员射击一次(1)射中9环或10环的概率; (2)至少命中8环的概率; (3)命中不足8环的概率.解 记事件“射击一次,命中k 环”为A k (k ∈N ,k≤10),则事件A k 彼此互斥.2分(1)记“射击一次,射中9环或10环”为事件A ,那么当A 9,A 10之一发生时,事件A 发生,由互斥事件的加法公式得P (A )=P (A 9)+P (A 10)=0.32+0.28=0.60.5分(2)设“射击一次,至少命中8环”的事件为B ,那么当A 8,A 9,A 10之一发生时,事件B 发生.由互斥事件概率的加法公式得P (B )=P (A 8)+P (A 9)+P (A 10) =0.18+0.28+0.32=0.78.9分(3)由于事件“射击一次,命中不足8环”是事件B :“射击一次,至少命中8环”的对立事件:即B 表示事件“射击一次,命中不足8环”,根据对立事件的概率公式得 P ()=1-P (B )=1-0.78=0.22.12分1.在12件瓷器中,有10件一级品,2件二级品,从中任取3件. (1)“3件都是二级品”是什么事件? (2)“3件都是一级品”是什么事件? (3)“至少有一件是一级品”是什么事件?解 (1)因为12件瓷器中,只有2件二级品,取出3件都是二级品是不可能发生的,故是不可能事件. (2)“3件都是一级品”在题设条件下是可能发生也可能不发生的,故是随机事件.(3)“至少有一件是一级品”是必然事件,因为12件瓷器中只有2件二级品,取三件必有一级品. 2.某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检查结果如下表所示:(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位) 解 (1)依据公式p=nm,可以计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值虽然不同,但随着抽取球数的增多,却都在常数0.950的附近摆动,所以抽取一个乒乓球检测时,质量检查为优等品的概率为0.950. 3.玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿,从中取1球. 求:(1)红或黑的概率; (2)红或黑或白的概率.解 方法一 记事件A 1:从12只球中任取1球得红球; A 2:从12只球中任取1球得黑球; A 3:从12只球中任取1球得白球; A 4:从12只球中任取1球得绿球,则 P (A 1)=125,P (A 2)=124,P (A 3)=122,P (A 4)=121. 根据题意,A 1、A 2、A 3、A 4彼此互斥, 由互斥事件概率加法公式得 (1)取出红球或黑球的概率为 P (A 1+A 2)=P (A 1)+P (A 2)=125+124=43. (2)取出红或黑或白球的概率为P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3) =125+124+122=1211. 方法二 (1)取出红球或黑球的对立事件为取出白球或绿球,即A 1+A 2的对立事件为A 3+A 4, ∴取出红球或黑球的概率为P (A 1+A 2)=1-P (A 3+A 4)=1-P (A 3)-P (A 4) =1-122-121=129=43.(2)A 1+A 2+A 3的对立事件为A 4. P (A 1+A 2+A 3)=1-P (A 4)=1-121=1211.一、选择题1.已知某厂的产品合格率为90%,抽出10件产品检查,则下列说法正确的是( )合格产品少于9件 合格产品多于9件 合格产品正好是9件D.合格产品可能是9件答案2.某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是( )至多有1次中靶 B.2次都中靶 次都不中靶D.只有1次中靶答案3.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( ).甲是乙的充分条件但不是必要条件甲是乙的必要条件但不是充分条件甲是乙的充要条件甲既不是乙的充分条件,也不是乙的必要条件答案4.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 ( )A.2165 B.21625C.21631D.21691答案 D5.一个口袋内装有一些大小和形状都相同的白球、黑球和红球,从中摸出一个球,摸出红球的概率是0.3,摸出白球的概率是0.5,则摸出黑球的概率是( )D.0.答案6.在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为( )B.0.60答案 二、填空题7.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为73,乙夺得冠军的概率为41,那么中国队夺得女子乒乓球单打冠军的概率为 . 答案2819 8.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙二人下成和棋的概率为 . 答案 50% 三、解答题9.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或9环的概率; (2)不够7环的概率.解 (1)设“射中10环”为事件A ,“射中9环”为事件B ,由于A ,B 互斥,则 P (A+B )=P (A )+P (B )=0.21+0.23=0.44. (2)设“少于7环”为事件C ,则P (C )=1-P (C )=1-(0.21+0.23+0.25+0.28)=0.03.10.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:求:(1)派出医生至多2人的概率; (2)派出医生至少2人的概率. 解 记事件A :“不派出医生”, 事件B :“派出1名医生”, 事件C :“派出2名医生”, 事件D :“派出3名医生”, 事件E :“派出4名医生”, 事件F :“派出不少于5名医生”. ∵事件A ,B ,C ,D ,E ,F 彼此互斥, 且P (A )=0.1,P (B )=0.16,P (C )=0.3, P (D )=0.2,P (E )=0.2,P (F )=0.04. (1)“派出医生至多2人”的概率为P (A+B+C )=P (A )+P (B )+P (C ) =0.1+0.16+0.3=0.56.(2)“派出医生至少2人”的概率为P (C+D+E+F )=P (C )+P (D )+P (E )+P (F ) =0.3+0.2+0.2+0.04=0.74. 或1-P (A+B )=1-0.1-0.16=0.74.11.抛掷一个均匀的正方体玩具(各面分别标有数字1、2、3、4、5、6),事件A 表示“朝上一面的数是奇数”,事件B 表示“朝上一面的数不超过3”,求P (A+B ).解 方法一 因为A+B 的意义是事件A 发生或事件B 发生,所以一次试验中只要出现1、2、3、5四个可能结果之一时,A+B 就发生,而一次试验的所有可能结果为6个,所以P (A+B )=64=32. 方法二 记事件C 为“朝上一面的数为2”,则A+B=A+C ,且A 与C 互斥. 又因为P (C )=61,P (A )=21,所以P (A+B )=P (A+C )=P (A )+P (C )=21+61=32. 方法三 记事件D 为“朝上一面的数为4或6”,则事件D 发生时,事件A 和事件B 都不发生,即事件A+B 不发生.又事件A+B 发生即事件A 发生或事件B 发生时,事件D 不发生,所以事件A+B 与事件D 为对立事件.因为P (D )=62=31, 所以P (A+B )=1-P (D )=1-31=32. 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为41,得到黑球或黄球的概率是125,得到黄球或绿球的概率是21,试求得到黑球、黄球、绿球的概率各是多少? 解 分别记得到红球、黑球、黄球、绿球为事件A 、B 、C 、D.由于A 、B 、C 、D 为互斥事件,根据已知得到⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+++21)()(125)()(1)()()(41D P C P C P B P D P C P B P 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===31)(61)(41)(D P C P B P . ∴得到黑球、黄球、绿球的概率各是41,61,31. §2 古典概型1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为( )A.21 B.31 C.32答案 C2.掷一枚骰子,观察掷出的点数,则掷出奇数点的概率为( )A.31 B.41 C.21D.32答案 C3.袋中有2个白球,2个黑球,从中任意摸出2个,则至少摸出1个黑球的概率是( )A.43 B.65 C.61 D.31答案 B4.一袋中装有大小相同,编号为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号之和不小于15的概率为 ( )A.321 B.641 C.323D.643答案 D5.掷一枚均匀的硬币两次,事件M :“一次正面朝上,一次反面朝上” ;事件N :“至少一次正面朝上” .则下列结果正确的是( )A.P(M)=31,P(N)=21B.P(M)=21,P(N)=21C.P(M)=31,P(N)=43D.P(M)=21,P(N)=43答案例1 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x ,y )表示结果,其中x 表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出:基础自测(1)试验的基本事件;(2)事件“出现点数之和大于3”; (3)事件“出现点数相等”.解 (1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4).(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4). (3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4).例2 甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙 两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少? (2)甲、乙两人中至少有一人抽到选择题的概率是多少?解 甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法是10×9=90种,即基本事件总数是90.(1)记“甲抽到选择题,乙抽到判断题”为事件A ,下面求事件A 包含的基本事件数: 甲抽选择题有6种抽法,乙抽判断题有4种抽法,所以事件A 的基本事件数为6×4=24. ∴P (A )=n m =9024=154. (2)先考虑问题的对立面:“甲、乙两人中至少有一人抽到选择题”的对立事件是“甲、乙两人都未抽到选择题”,即都抽到判断题.记“甲、乙两人都抽到判断题”为事件B ,“至少一人抽到选择题”为事件C ,则B 含基本事件数为4×3= ∴由古典概型概率公式,得P (B )=9012=152, 由对立事件的性质可得 P (C )=1-P (B )=1-152=1513. 例3 (12分)同时抛掷两枚骰子.(1)求“点数之和为6”的概率; (2)求“至少有一个5点或6点”的概率. 解 同时抛掷两枚骰子,可能的结果如下表:共有36个不同的结果.6分 (1)点数之和为6的共有5个结果,所以点数之和为6的概率p=365.9分(2)方法一 从表中可以得其中至少有一个5点或6点的结果有20个,所以至少有一个5点或6点的概率p=3620=95. 12分方法二 至少有一个5点或6点的对立事件是既没有5点又没有6点,如上表既没有5点又没有6点的结果共有16个,则既没有5点又没有6点的概率p=3616=94, 所以至少有一个5点或6点的概率为1-94=95. 12分1.某口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球. (1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?解 (1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示): (1,2),(1,3),(1,4),(1,5), (2,3),(2,4),(2,5),(3,4), (3,5),(4,5).因此,共有10个基本事件.(2)如下图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到2只白球(记为事件A ), 即(1,2),(1,3),(2,3),故P (A )=103.故共有10个基本事件,摸出2只球都是白球的概率为103. 2.(2008·山东文,18)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求A 1被选中的概率; (2)求B 1和C 1不全被选中的概率.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2, B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等 可能的.用M 表示“A 1恰被选中”这一事件,则M={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而P (M )=186=31. (2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 有3个基本事件组成,所以P (N )=183=61,由对立事件的概率公式得 P (N )=1-P (N )=1-61=65. 3.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率: (1)A:取出的两球都是白球;(2)B :取出的两球1个是白球,另1个是红球.解 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取两个的方法为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.(1)从袋中的6个球中任取两个,所取的两球全是白球的总数,即是从4个白球中任取两个的方法总数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴取出的两个球全是白球的概率为P (A )=156=52. (2)从袋中的6个球中任取两个,其中1个为红球,而另1个为白球,其取法包括(1,5),(1,6), (2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8个. ∴取出的两个球1个是白球,另1个是红球的概率 P (B )=158.一、选择题1.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球.设第1个人摸出的1个球是黑球的概率为P 1,第10个人摸出黑球的概率是P 10,则( )10=101P 1B.P 10=91P 1 10=010=P 1答案2.采用简单随机抽样从含有n 个个体的总体中抽取一个容量为3的样本,若个体a 前2次未被抽到,第3次被抽到的概率等于个体a 未被抽到的概率的31倍,则个体a 被抽到的概率为 ( )A.21B.31C.41D.61 答案3.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依此类推,则从第十组中随机抽取一个数恰为3的倍数的概率为( )A.101B.103 C.51 D.53 答案4.从数字1,2,3中任取两个不同数字组成两位数,该数大于23的概率为( )A.31B.61 C.81D.41 答案5.设集合A={1,2},B={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a,b )落在直线x+y=n 上”为事件C n (2≤n≤5,n ∈N ),若事件C n 的概率最大,则n 的所 有可能值为 ( )C.2和D.3和答案6.(2008·温州模拟)若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x+y=5下方的概率是( )A.31B.41C.61D.121 答案二、填空题7.(2008·江苏,2)一个骰子连续投2次,点数和为4的概率为 . 答案121 8.(2008·上海文,8)在平面直角坐标系中,从五个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、 E (2,2)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 答案54三、解答题9.5张奖券中有2张是中奖的,首先由甲然后由乙各抽一张,求: (1)甲中奖的概率P (A ); (2)甲、乙都中奖的概率; (3)只有乙中奖的概率; (4)乙中奖的概率.解 (1)甲有5种抽法,即基本事件总数为5.中奖的抽法只有2种,即事件“甲中奖”包含的基本事件数为2,故甲中奖的概率为P 1=52. (2)甲、乙各抽一张的事件中,甲有五种抽法,则乙有4种抽法,故所有可能的抽法共5×4=20种,甲、乙都中奖的事件中包含的基本事件只有2种,故P 2=202=101. (3)由(2)知,甲、乙各抽一张奖券,共有20种抽法,只有乙中奖的事件包含“甲未中”和“乙中”两种情况,故共有3×2=6种基本事件,∴P 3=206=103. (4)由(1)可知,总的基本事件数为5,中奖的基本事件数为2,故P 4=52. 10.箱中有a 个正品,b 个次品,从箱中随机连续抽取3次,在以下两种抽样方式下:(1)每次抽样后不放回;(2)每次抽样后放回.求取出的3个全是正品的概率解 (1)若不放回抽样3次看作有顺序,则从a+b 个产品中不放回抽样3次共有A 3b a +种方法,从a 个正品中不放回抽样3次共有A 3a种方法,可以抽出3个正品的概率p=33A A ba a +.若不放回抽样3次看作无顺序,则从a+b 个产品中不放回抽样3次共有C 3b a +种方法,从a 个正品中不放回抽样3次共有C 3a 种方法,可以取出3个正品的概率p=33C C ba a +.两种方法结果一致(2)从a+b 个产品中有放回的抽取3次,每次都有a+b 种方法,所以共有(a+b)3种不同的方法,而3个全是正品的抽法共有a 3种,所以3个全是正品的概率p=333)(⎪⎭⎫ ⎝⎛+=+b a a b a a . 11.袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为71.现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有1人取到白球时即终止.每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数; (2)求取球2次终止的概率; (3)求甲取到白球的概率.解 (1)设袋中有n 个白球,从袋中任取2个球是白球的结果数是2)1(-n n . 从袋中任取2个球的所有可能的结果数为276⨯=21. 由题意知71=212)1(-n n =42)1(-n n , ∴n (n-1)=6,解得n=3(舍去n=-2). 故袋中原有3个白球.(2)记“取球2次终止”为事件A ,则P (A )=6734⨯⨯=72. (3)记“甲取到白球”的事件为B , “第i 次取到白球”为A i ,i=1,2,3,4,5,因为甲先取,所以甲只有可能在第1次,第3次和第5次取球. 所以P (B )=P (A 1+A 3+A 5). 因此A 1,A 3,A 5两两互斥,∴P (B )=P (A 1)+P (A 3)+P (A 5)=73+567334⨯⨯⨯⨯+3456731234⨯⨯⨯⨯⨯⨯⨯⨯ =73+356+351=3522. (2008·海南、宁夏文,19)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下: 5,6,7,8,9,10.把这6名学生的得分看成一个总体. (1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解 (1)总体平均数为61(5+6+7+8+9+10)=7.5. (2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本结果.事件A 包括的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果.所以所求的概率为P (A )=157. §3 几何概型基础自测1.质点在数轴上的区间[0,2]上运动,假定质点出现在该区间各点处的概率相等,那么质点落在区间 [0,1]上的概率为( )4131C.21D.以上都不对答案2.某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为 ( )A.π2 B.π1C.32D.31答案3.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是 ( )A.53B.54 C.52 D.51答案4.设D 是半径为R 的圆周上的一定点,在圆周上随机取一点C ,连接CD 得一弦,若A 表示“所得弦的长大于圆内接等边三角形的边长”,则P (A )= . 答案315.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA , 则射线OA 落在∠yOT 内的概率为 . 答案 61例1 有一段长为10米的木棍,现要截成两段,每段不小于3米的概率有多大?解 记“剪得两段都不小于3米”为事件A ,从木棍的两端各度量出3米,这样中间就有10-3-3=4(米).在中间的4米长的木棍处剪都能满足条件, 所以P (A )=103310--=104=0.4. 例2 街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小 圆板,规则如下:每掷一次交5角钱,若小圆板压在正方形的边,可重掷一次;若掷在正方形内,须再交5角钱可玩一次;若掷在或压在塑料板的顶点上,可获1元钱.试问: (1)小圆板压在塑料板的边上的概率是多少? (2)小圆板压在塑料板顶点上的概率是多少?解 (1)考虑圆心位置在中心相同且边长分别为7 cm 和9 cm 的正方形围成的区域内,所以概率为22979-=8132. (2)考虑小圆板的圆心在以塑料板顶点为圆心的41圆内,因正方形有四个顶点,所以概率为819ππ=. 例3 (12分)在1升高产小麦种子中混入一粒带麦锈病的种子,从中随机取出10毫升,含有麦锈病 种子的概率是多少?从中随机取出30毫升,含有麦锈病种子的概率是多少? 解 1升=1 000毫升,2分记事件A :“取出10毫升种子含有这粒带麦锈病的种子”. 4分 则P (A )=000110=0.01,即取出10毫升种子含有这粒带麦锈病的种子的概率为0.01. 7分记事件B :“取30毫升种子含有带麦锈病的种子”.9分 则P (B )=000130=0.03,即取30毫升种子含有带麦锈病的种子的概率为0.03.12分 例4 在Rt △ABC 中,∠A=30°,过直角顶点C 作射线CM 交线段AB 于M ,求使|AM|>|AC|的概率. 解 设事件D“作射线CM ,使|AM|>|AC|”.在AB 上取点C′使|AC′|=|AC|,因为△ACC′是等腰三角形, 所以∠ACC′=230180-=75°, A μ=90-75=15,Ωμ=90,所以,P (D )=9015=61. 例5 甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离 去.求两人能会面的概率.解 以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x-y|≤15.在如图所示平面直角坐标系下,(x,y )的所有可能结果是边长为60的正方形区域,而事件A“两人能够会面”的可能结果由图中的阴影部分表示.由几何概型的概率公式得:P (A )=S S A =222604560-=600302526003-=167.所以,两人能会面的概率是167.1.如图所示,A 、B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C 、D ,问A 与C ,B 与D 之间的距离都不小于10米的概率是多少?解 记E :“A 与C ,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30×31=10(米),∴P (E )=3010=31. 2.(2008·江苏,6)在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为 .答案16π 3.如图所示,有一杯2升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升水,求小杯水中含有这个细菌的概率.解 记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵A μ=0.1升,Ωμ=2升, ∴由几何概型求概率的公式, 得P (A )=ΩA μμ=21.0=201=0.05. 4.在圆心角为90°的扇形AOB 中,以圆心O 为起点作射线OC ,求使得∠AOC 和∠BOC 都不小于30°的概率.解 如图所示,把圆弧 三等分,则∠AOF=∠BOE=30°,记A 为“在扇形AOB 内作一射线OC ,使∠AOC 和∠BOC 都不小于30°”,要使∠AOC 和∠BOC 都不小于30°,则OC 就落在∠EOF 内, ∴P (A )=9030=31. 5.将长为l 的棒随机折成3段,求3段构成三角形的概率.解 设A=“3段构成三角形”,x,y 分别表示其中两段的长度,则第3段的长度为l-x-y. 则试验的全部结果可构成集合Ω={(x ,y )|0<x <l,0<y <l,0<x+y <l},要使3段构成三角形,当且仅当任意两段之和大于第3段,即x+y>l-x-y ⇒x+y >2l,x+l-x-y >y⇒y <2l ,y+l-x-y >x ⇒x <2l . 故所求结果构成集合A=⎭⎬⎫⎩⎨⎧<<>+2,2,2|),(l x l y l y x y x . 由图可知,所求概率为P (A )=的面积的面积ΩA =22212l l ⎪⎭⎫ ⎝⎛∙=41.一、选择题1.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a <20的概率是( )A.31 B.21 C.103 D.107答案2.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( )A.259 B.2516C.103D.51答案3.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( ) A.121B.83C.161D.65答案4.如图为一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为()A.π2B.π1 C.21 D.1-π2答案5.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S的概率是 ( ) A.41 B.21 C.43 D.32答案6.已知正方体ABCD —A 1B 1C 1D 1内有一个内切球O,则在正方体ABCD —A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是( )A.4πB.8πC.6πD.12π答案二、填空题7.已知下图所示的矩形,其长为12,宽为5.在矩形内随机地撒1 000颗黄豆,数得落在阴影部分的黄豆数为550颗,则可以估计出阴影部分的面积约为 .答案 338.在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为 . 答案2517 三、解答题9.射箭比赛的箭靶涂有5个彩色的分环,从外向内白色、黑色、蓝色、红色,靶心为金色, 金色靶心叫“黄心”,奥运会的比赛靶面直径是122 cm ,靶心直径2 cm,运动员在70米 外射箭,假设都能中靶,且射中靶面内任一点是等可能的,求射中“黄心”的概率. 解 记“射中黄心”为事件A ,由于中靶点随机的落在面积为π41×1222 cm 2的大圆 内,而当中靶点在面积为π41×22 cm 2的黄心时,事件A 发生,于是事件A 发生 的概率P (A )=2212242.1241⨯⨯ππ=0.01,所以射中“黄心”的概率为0.01.10.假设你家订了一份报纸,送报人可能在早上6∶30至7∶30之间把报纸送到你家,你父亲离开家去工作的时间在早上7∶00至8∶00之间,问你父亲在离开家前能得到报纸(称为事件A )的概率是多少?解 设事件A“父亲离开家前能得到报纸”.在平面直角坐标系内,以x 和y 分别表示报纸送到和父亲离开家的时间,则父亲能得到报纸的充要条件是x≤y,而(x,y)的所有可能结果是边长为1的正方形,而能得到报纸的所有可能结果由图中阴影部分表示,这是一个几何概型问题,A μ=12-21×21×21=87,Ωμ =1, 所以P (A )=ΩμμA =87. 11.已知等腰Rt △ABC 中,∠C=90°.(1)在线段BC 上任取一点M ,求使∠CAM <30°的概率; (2)在∠CAB 内任作射线AM ,求使∠CAM <30°的概率. 解 (1)设CM=x ,则0<x <a.(不妨设BC=a ). 若∠CAM <30°,则0<x <33a , 故∠CAM <30°的概率为P (A )=的长度区间的长度区间),0(33,0a a ⎪⎪⎭⎫ ⎝⎛=33. (2)设∠CAM=θ,则0°<θ<45°. 若∠CAM <30°,则0°<θ<30°, 故∠CAM <30°的概率为 P (B )=的长度的长度)45,0()30,0( =32.设关于x 的一元二次方程x 2+2ax+b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.解 设事件A 为“方程x 2+2ax+b 2=0有实根”.当a≥0,b≥0时,方程x 2+2ax+b 2=0有实根的充要条件为a≥b. (1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1), (3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.。
2019年高考专题:概率与统计试题及答案

2019年高考专题:概率与统计1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A .0.5 B .0.6 C .0.7 D .0.8 【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70, 则其与该校学生人数之比为70÷100=0.7.故选C . 2.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n=+()n *∈N ,若8610n =+,解得15n =,不合题意;若200610n =+,解得19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A .23B .35 C .25D .15【解析】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B , 则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B b c A ,{,,},{,,},{,,}b c B b A B c A B ,共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,,},{,,}b c A b c B ,共6种,所以恰有2只做过测试的概率为63105=,故选B .4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 6.【安徽省江淮十校2019届高三年级5月考前最后一卷】《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面、一枚反面的概率为 A .18B .14 C .38D .12【解析】抛掷三枚古钱币出现的基本事件有:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反,共8种,其中出现两正一反的共有3种,故所求概率为38.故选C . 7.【山东省济宁市2019届高三第一次模拟考试】某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为( )A .32 B .33 C .41 D .42 【解析】因为相邻的两个组的编号分别为14,23,所以样本间隔为23149-=, 所以第一组的编号为1495-=,所以第四组的编号为53932+⨯=,故选A . 8.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( ) A .100,10B .100,20C .200,10D .200,20【解析】由题得样本容量为(350020004500)2%100002%200++⨯=⨯=,抽取的高中生人数为20002%40⨯=人,则近视人数为400.520⨯=人,故选D .9.【西藏拉萨中学2019届高三第六次月考】某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小队积分的方差为( ) A .0.5B .0.75C .1D .1.25【解析】四个小队积分分别为11.5,13.5,13.5,11.5,平均数为11.513.513.511.512.54+++=,故四个小队积分的方差为221[(11.512.5)2(13.512.5)2]14⨯-⨯+-⨯=,故选C . 10.【陕西省2019届高三第三次联考】口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.38,摸出白球的概率是0.32,那么摸出黑球的概率是( ) A .0.42B .0.28C .0.3D .0.7【解析】在口袋中摸球,摸到红球、摸到黑球、摸到白球这三个事件是互斥的,因为摸出红球的概率是0.38,摸出白球的概率是0.32,且摸出黑球是摸出红球或摸出白球的对立事件,所以摸出黑球的概率是10.380.320.3--=.故选C .11.【河南省郑州市2019届高三第三次质量检测】某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是( )A .12 B .14 C .16 D .18【解析】因为中位数为12,所以4x y +=,数据的平均数为1(223420191910x y ⨯+++++++++2021)11.4+=,要使该总体的标准差最小,即方差最小,所以22(1011.4)(1011.4)x y +-++-=2222.8( 1.4)( 1.4)2()0.722x y x y +--+-≥=,当且仅当 1.4 1.4x y -=-,即2x y ==时取等号,此时总体标准差最小,4212x y +=,故选A . 12.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为( ) A .35,33,30B .36,32,30C .36,33,29D .35,32,31【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为1849,1649,1549, 因此,各年级抽取人数分别为18983649⨯=,16983249⨯=,15983049⨯=,故选B . 13.【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是( )A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为40000.251000⨯=,故B 正确;由频率分布直方图可得:平均分等于450.1550.15650.2750.3850.15⨯+⨯+⨯+⨯+⨯+950.170.5⨯=,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误.故选D . 14.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =<B .270,75x s =>C .270,75x s ><D .270,75x s ><【解析】由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-22212481[(70)(70)(70)500]50x x x =-+-++-+, 22222212481[(70)(70)(70)(8070)(7070)]50s x x x =-+-++-+-+-22212481[(70)(70)(70)100]7550x x x =-+-++-+<,所以275s <.故选A .15.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=, 因此男顾客对该商场服务满意的概率的估计值为0.8. 女顾客中对该商场服务满意的比率为300.650=, 因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010) 4.76250507030K ⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.16.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈.【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i i i s n y y ==-∑222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.17.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b =---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.18.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i)见解析,(ii)11 15.【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i)从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C{, },{, },{, },{, {,}},,B D B E B FCD C E{,},C F {,},{,},{,}D E D F E F,共15种.(ii)由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B CE BF E C F D F E F,共11种.所以,事件M发生的概率11 ()15P M .19.【北京市清华大学附属中学2019届高三第三次模拟考试】手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性、300名男性)进行调查,对手机进行评分,评分的频数分布表如下:(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(2)把评分不低于70分的用户称为“评分良好用户”,能否有90%的把握认为“是否是评分良好用户”与性别有关?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【解析】(1)女性用户和男性用户的频率分布直方图分别如下图所示:女性用户男性用户由图可得女性用户的波动小,男性用户的波动大.(2)由题可得22⨯列联表如下:则22500(14012018060)1255.208 2.70620030032018024K⨯⨯-⨯=≈>⨯⨯⨯=,所以有90%的把握认为“是否是评分良好用户”与性别有关.20.【2019年甘肃省兰州市高考数学一诊】“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;(2)根据上表的数据,填写下列22⨯列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【解析】(1)以200人中“热烈参与者”的频率作为概率,可得该市“热烈参与者”的人数约为40 200004000200⨯=.(2)由题可得22⨯列联表如下:则22200(35551055)1757.292 6.635401601406024K⨯⨯-⨯==≈>⨯⨯⨯,所以能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关.21.【四川省成都七中2019届高三5月高考模拟测试】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长T(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.(1)求图中m的值;(2)估计该校担任班主任的教师月平均通话时长的中位数;(3)在[450,500),[500,550]这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.【解析】(1)依题意,根据频率分布直方图的性质,可得:50(0.00400.00500.00660.00160.0008)1m⨯+++++=,解得0.0020m=.(2)设该校担任班主任的教师月平均通话时长的中位数为t.因为前2组的频率之和为(0.00200.0040)500.30.5+⨯=<,前3组的频率之和为(0.00200.00400.0050)500.550.5++⨯=>,所以350400t <<,由0.30.0050(350)0.5t +⨯-=,得390t =.所以该校担任班主任的教师月平均通话时长的中位数为390分钟.(3)由题意,可得在[450,500)内抽取0.0016640.00160.0008⨯=+人,分别记为a b c d ,,,, 在[500,550]内抽取2人,记为,e f ,则6人中抽取2人的取法有:{,}a b ,{,}a c ,{,}a d ,{,}a e ,{,}a f ,{,}b c ,{,}b d ,{,}b e ,{,}b f ,{,}c d ,{,}c e ,{,}c f ,{,}d e ,{,}d f ,{,}e f ,共15种等可能的取法.其中抽取的2人恰在同一组的有{,}a b ,{,}a c ,{,}a d ,{,}b c ,{,}b d ,{,}c d ,{,}e f ,共7种取法,所以从这6人中随机抽取的2人恰在同一组的概率715P =. 22.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考(六)】某种产品的质量按照其质量指标值M 进行等级划分,具体如下表: 质量指标值M80M < 80110M ≤< 110M ≥ 等级 三等品 二等品 一等品现从某企业生产的这种产品中随机抽取了100件作为样本,对其质量指标值M 进行统计分析,得到如图所示的频率分布直方图.(1)记A 表示事件“一件这种产品为二等品或一等品”,试估计事件A 的概率;(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10000件该产品的利润;(3)根据该产品质量指标值M 的频率分布直方图,求质量指标值M 的中位数的估计值(精确到0.01).【解析】(1)记B 表示事件“一件这种产品为二等品”,C 表示事件“一件这种产品为一等品”, 则事件B ,C 互斥,且由频率分布直方图估计()0.20.30.150.65P B =++=,()0.10.090.19P C =+=,又()()()()0.84P A P B C P B P C =+=+=,所以事件A 的概率估计为0.84.(2)由(1)知,任取一件产品是一等品、二等品的概率估计值分别为0.19,0.65,故任取一件产品是三等品的概率估计值为0.16,从而10000件产品估计有一等品、二等品、三等品分别为1900,6500,1600件,故利润估计为190010650061600261200⨯+⨯+⨯=元.(3)因为在产品质量指标值M的频率分布直方图中,质量指标值90M<的频率为0.060.10.20.360.5++=<,质量指标值100M<的频率为0.060.1020.30.660.5+++=>,故质量指标值M的中位数估计值为0.50.369094.670.03-+≈.。
2019-12春季概率论与数理统计复习题8页

《概率论与数理统计》复习题一、选择题:1、设A 、B 为两个随机事件,且1)(=A B p ,则 ( )。
A 、A 是必然事件B 、0)(=A B pC 、B A ⊃D 、 B A ⊂2、对任意的两个事件A 和B ,下列讨论正确的是( )。
A 、若Φ≠AB ,则A 、B 一定独立 B 、若Φ≠AB ,则A 、B 可能独立C 、若Φ≠AB ,则A 、B 一定不独立D 、若Φ=AB ,则A 、B 一定独立3、某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( )。
A 、334⎛⎫ ⎪⎝⎭B 、23144⎛⎫⨯ ⎪⎝⎭C 、21344⎛⎫⨯ ⎪⎝⎭ D 、2241344C ⎛⎫⨯⨯ ⎪⎝⎭ 4、设随机变量X ~N (-3,1),Y ~N (2,1),且X 和Y 相互独立,设随机变量Z =X -2Y +7,则Z 服从( )。
A 、 N (0,5)B 、 N (0,-3)C 、 N (0,46)D 、 N (0,54)5、设随机变量X 服从泊松分布,且()()()312240P X P X P X =+===,则X 的期望与方差分别是( )。
A 、 ( 1,1)B 、 ( 2,2)C 、 ( 1,2)D 、. ( 2,1)6、随机变量X 的概率分布可用公式),10(,)1()(<<-==-p p p i X p i n i i n C ),,1,0(n i Λ=表示,则比值=EXDX ( )。
A 、p1 B 、p C 、p -11 D 、 p -1 7、若随机变量X 服从正态分布),(2σμN ,则随σ的增大,概率}{σμ〈-X p 怎样变化? ( )。
A 、单调增大B 、单调减少C 、保持不变D 、增减不定8、设随机变量X 服从均匀分布]5,1[-U ,则X 的方差为( )。
A.3B.-1C.2D. 不确定9、设正态随机变量X 的概率密度为+∞<<-∞=+-x e x f x ,221)(8)2(2π,则=)(2X E ( )。
2019年高考概率统计试题汇编及分析 Word版含解析

2019高考全国一卷为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.解析:(1)首先根据题意,随机试验一轮试验共4个结果,我们用符号+-分别表示治愈和未治愈。
则甲+乙+,甲+乙-,甲-乙+,甲-乙-。
p甲乙=(1-)p(X=0)= 甲乙+甲乙=p甲乙=(1-)所以的分布列为:(2)当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效。
假设四轮试验都是甲+乙—,则甲药比乙药多四只,认为甲药更有效。
此时甲药得分为4分,乙药得分为-4分,所以甲药、乙药在试验开始时都赋予4分。
(0,1,,8)ip i=表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则00p=表示四轮试验都是甲-乙+,乙药有效,81p=表示四轮试验都是甲+乙-,甲药有效。
2019概率论与数理统计期末考试试卷及答案.doc

《概率论与数理统计》试卷A(考试时间:90分钟; 考试形式:闭卷)(注意:请将答案填写在答题专用纸上,并注明题号。
答案填写在试卷和草稿纸上无效)一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、A B2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。
《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题1.未知p(ab)?p(a),则a与b的关系就是单一制。
2.未知a,b互相矛盾,则a与b的关系就是互相矛盾。
3.a,b为随机事件,则p(ab)?0.3。
p(a)?0.4,p(b)?0.3,p(a?b)?0.6,4.已知p(a)?0.4,p(b)?0.4,p(a?b)?0.5,则p(a?b)?0.7。
25.a,b为随机事件,p(a)?0.3,p(b)?0.4,p(ab)?0.5,则p(ba)?____。
36.已知p(ba)?0.3,p(a?b)?0.2,则p(a)?2/7。
7.将一枚硬币重复投掷3次,则正、反面都至少发生一次的概率为0.75。
8.设立某教研室共计教师11人,其中男教师7人,贝内旺拉拜教研室中要自由选择3名叫优秀教师,则3名优秀教师中至少存有1名女教师的概率为___26____。
339.设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。
611110.3人单一制截获一密码,他们能够单独所译的概率为,,,则此密码被所译的5343概率为______。
5后不送回,则第2次取出的就是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235cp(1?p)7次顺利的概率为______。
12.已知3次独立重复试验中事件a至少成功一次的概率为1事件a顺利的概率p?______。
319,则一次试验中27c35813.随机变量x能取?1,0,1,取这些值的概率为,c,c,则常数c?__。
24815k14.随机变量x原产律为p(x?k)?,k?1,2,3,4,5,则p(x?3x?5)?_0.4_。
15x??2,?0?x?15.f(x)??0.4?2?x?0,是x的分布函数,则x分布律为__??pi?1x?0?0??__。
0.40.6??2?0,x?0??16.随机变量x的分布函数为f(x)??sinx,0?x??,则2?1,x2?p(x??3)?__3__。
概率论与数理统计复习题1

概率论与数理统计复习题一、 填空题(每题2分)1、设连续型随机变量的概率密度函数为()f x ,则()f x dx +∞-∞=⎰12、 随机变量X 服从泊松分布,其分布律{},0,1,2...!kP X k e k k λλ-===3、 随机变量X 服从标准正态分布,其概率密度函数22()x f x -=4、一批产品,由甲厂生产的占31,其次品率为5%,由乙厂生产的占32,其次品率为10%,从这批产品中随机取一件,恰好取到次品的概率为1125、 随机变量X~N (2,22),则P {X ≤0}=0.1587 (Φ(1)=0.8413)6、甲、乙两门高射炮彼此独立地向一架飞机各发一炮, 甲、乙击中飞机的概率分别为0.3和0.4,则飞机至少被击中一炮的概率为0.58 二、 选择题(每题2分)1. 设随机变量X 的概率密度函数为2(1)8()x f x +-=,则X ~ B 。
A. (1,2)N -B. (1,4)N -C. (1,8)N -D. (1,16)N - 2. 设随机变量X 、Y 都服从区间[0,1]上的均匀分布,则E(X+Y)= C 。
A. 16B. 12C. 1D. 23. X 为随机变量,其方差存在,c 为任意非零常数,则下列等式正确的是 A 。
A. D(X+c)=D(X)B. D(X+c)=D(X)+cC. D(X-c)=D(X)-cD. D(cX)=cD(X)4. 设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则 D 。
A.()1()P A P B =- B.()()()P AB P A P B = C.()1P A B ⋃= D. ()1P AB =5. 设A 、B 为随机事件,且P(B)>0,P(A|B)=1,则必有 A 。
A.()()P A B P A ⋃= B.A B ⊂ C.()()P A P B = D. ()()P AB P A = 三、 计算题(每题8分)1. 把10本书任意放在书架的一排上,求其中指定的3本书放在一起的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习题(1)--(A )备用数据:220.9950.0250.975(8) 3.3554,(8) 2.1797,(8)17.5345t χχ===,,9772.0)2(,8413.0)1(=Φ=Φ.95.0)645.1(=Φ一、填空题(18分)1、 (6分)已知()0.3,()0.4,()0.32,P A P B P A B ===则 ()P A B ⋃=___ __ ,()P AB = ,()P A B ⋃= .2、 (6分)设一个袋中装有两个白球和三个黑球,现从袋中不放回地任取两个球,则取到的两个球均为白球的概率为 ;第二次取到的球为白球的概率为 ;如果已知第二次取到的是白球,则第一次取到的也是白球的概率为 .3、 (6分)假设某物理量X 服从正态分布),(2σμN ,现用一个仪器测量这个物理量9次,由此算出其样本均值56.32,x =样本标准差0.22s =,则μ的置信水平0.99的双侧置信区间为_____________,σ的置信水平0.95的双侧置信区间为__________ _____.二、(12分)设有四门火炮独立地同时向一目标各发射一枚炮弹,若有两发或两发以上的炮弹命中目标时,目标被击毁.(1) 如果每发炮弹命中目标的概率(即命中率)为0.9,求目标被击毁的概率; (2) 若四门火炮中有两门A 型火炮和两门B 型火炮,A 型火炮发射的炮弹的命中率为0.9,B 型火炮发射的炮弹的命中率为0.8,求目标被击毁的概率.三、(12分)设某保险公司开办了一个农业保险项目,共有一万农户参加了这项保险,每户交保险费1060元,一旦农户因病虫害等因素受到损失可获1万元的赔付,假设各农户是否受到损失相互独立.每个农户因病虫害等因素受到损失的概率为0.10.不计营销和管理费用. (要求用中心极限定理解题)(1)求该保险公司在这个险种上产生亏损的概率; (2)求该保险公司在这个险种上的赢利不少于30万的概率.四、(16分)设随机变量X 的分布函数为22,0()0,0x A Be x F x x -⎧⎪+>=⎨⎪≤⎩. 其中,A B 为常数.(1)求常数,A B ; (2)求X 的概率密度函数; (3)求概率(12)P X <<; (4)求2(),(),()E X E X D X .五、(16分)若),(Y X 的联合密度函数为1,01(,)0,y x x f x y ⎧≤≤≤⎪=⎨⎪⎩且其他(1)分别求Y X ,边缘密度函数; (2)求 (),(),()E X E Y E XY ; (3)问:Y X ,是否相互独立?Y X ,是否相关?为什么?请说明理由. (4)求11(,)22P X Y ≤≤.六、(12分) 设126,,,X X X 是取自正态总体),0(2σN 的简单随机样本,02>σ,分别求下列统计量服从的分布:(1) 22121222234562()X X T X X X X +=+++ ; (2)2T =七、(14分)设12,,,n X X X 是取自总体X 的样本,X 的密度函数为21,()20,x e x f x x ϑϑϑ--⎧≥⎪=⎨⎪<⎩, 其中ϑ未知.(1) 求ϑ的极大似然估计;(2) 问: ϑ的极大似然估计是ϑ的无偏估计吗? 如果是,请给出证明;如果不是,请将其修正为ϑ的无偏估计.参考答案:一、 1.0.5720.1280.8722.0.10.40.253.[56.0739,56.5660],[0.022,0.1776]二、 (1)0.9963(2)0.9892 三、 (1)1(2)(2)(1)-ΦΦ四、 (1)1,1A B ==- 22,0(2)()0,0x xe x f x x -⎧⎪>=⎨⎪≤⎩ 122(3)(12)P X e e --<<=-2(4)()()2,()222E X E X D X π===- 五、2,011||,0||1(1)()()0,0,X Y x x y y f x f y <<-<<⎧⎧==⎨⎨⎩⎩其余其余2(2)(),()0,()0311(3)(,0)()(0),()()()33(4)(||0.5,||0.5)0.25X Y E X E Y E XY X Y f f f E XY E X E Y P X Y ===≠=≤≤=与不独立,因为 也不相关,因为 六、12(1)(2,4)(2)(3)T F T t七、(1)2ˆˆ(1)(2)()X E n θθθθ==+≠,所以不是无偏估计,1(1)2ˆX nθ=-为无偏估计。
复习题(1)(B )备用数据:220.950.0250.975(9) 1.833,(9) 2.700,(9)19.023t χχ===,,9772.0)2(,8413.0)1(=Φ=Φ.95.0)645.1(=Φ 45.161)1,1(95.0=F .一、填空题(18分)1、 (6分)掷一颗均匀的骰子两次,以,x y 表示先后掷出的点数,记{}(,):10A x y x y =+<,{}(,):B x y x y =>则 ()P A B ⋃=___ __ ,()P AB = ,()P B A = .2、 (6分)某公共汽车站从上午7:00起每15分钟发一班车,如果小王是在7:00到7:30之间(等可能地)随机到达该汽车站的,则小王在车站的等候时间不超过5分钟的概率为 ;小王在车站的平均等候时间为 分钟,小王在车站的等候时间的标准差为 分钟.3、 (6分)假设某物理量X 服从正态分布),(2σμN ,现用一个仪器测量这个物理量10次,由此算出其样本均值14.705,x =样本标准差 1.843s =,则μ的置信水平0.90的双侧置信区间为_________________,σ的置信水平0.95的双侧置信区间为__________ _____.二、(12分)某种电子元件在电源电压不超过200伏、200伏至240伏之间及超过240伏这三种情况下使用时损坏的概率依次为0.1、0.001及0.2,设电源电压)400,220(~N X . (1) 求此种电子元件在使用时损坏的概率;(2) 求此种电子元件在遭损坏时电源电压在200伏至240伏之间的概率.三、(12分)每个正常男性成人血液中每毫升所含的白细胞数的数学期望为7300,标准差为700.现准备随机抽查100个正常男性成人的血液,记第i 个被抽查人的血液中每毫升所含的白细胞数为i X ,.100,,2,1 =i 记∑==10011001i i X X .求概率()73707230≤≤X P 的近似值.(要求用中心极限定理解题)四、(16分)设随机变量X 的密度函数为⎪⎩⎪⎨⎧<<-=其他,011,23)(2x x x f . 记2Y X =.(1) 求Y 的概率密度函数;(2)求)(),(),(XY E Y E X E ; (3)问:Y X ,是否相互独立?Y X ,是否不相关?请说明理由.五、(16分)若),(Y X 的联合密度函数为⎪⎩⎪⎨⎧<<<<+=其他且,02010),2(76),(2y x xyx y x f (1) 分别求Y X ,边缘密度函数; (2) 求 Y X ,的协方差和相关系数; (3)求11(,)22P X Y ≤≤.六、(12分) 设4321,,,X X X X 是取自正态总体),0(2σN 的简单随机样本,02>σ.(1) 求统计量24321⎪⎪⎭⎫ ⎝⎛-+=XX X X Y 服从的分布; (2) 求小于1的常数C 使得05.0)()()(243221221=⎪⎪⎭⎫ ⎝⎛>-+++C X X X X X X P .七、(14分)设12,,,n X X X 是取自总体X 的样本,X 的密度函数为ϑϑϑxex f -=21);( 其中ϑ未知,0>ϑ.(1) 求ϑ的极大似然估计;(2) 问: ϑ的极大似然估计是ϑ的无偏估计吗? 如果是,请给出证明;如果不是,请将其修正为ϑ的无偏估计.参考答案: 一、 8121151.2.18.7599332;3.[13.6367,15.7732],[1.607,11.322]二、 (1)0.0483(2)0.三、 2(1)1Φ-四、01(1)()0,y f y <<=⎪⎩其余3(2)()0,(),()051111(3)(,)()(),()()()2424X Y E X E Y E XY X Y F F F E XY E X E Y ===≠=与不独立,因为 也不相关,因为五、261(2),01(43),02(1)()()7140,0,X Y x x x y y f x f y ⎧⎧+<<+<<⎪⎪==⎨⎨⎪⎪⎩⎩其余其余9(2)ov(,),(,)4911(3)(||0.5,||0.5)448c X Y X Y P X Y ρ==≤≤=六、161.45161.45(1)(1,1)(2)161.451162.45YF c ==+七、11ˆˆ(1)||(2)()nii X E n θθθ===∑,所以是无偏估计。
复习题 (2)--(A )备用数据:220.990.9950.9950.0050.9952.326,(99) 2.575,(99)66.510,(99)138.987u t u χχ=≈===一、选择题(20分,每题4分,请将你选的答案填在( )内)1、 下列结论哪一个不正确 ( ))(A 设A,B 为任意两个事件,则A B A B -=; )(B 若A B =,则A,B 同时发生或A,B 同时不发生; )(C 若A B ⊂,且B A ⊂,则A B =; )(D 若A B ⊂,则A-B 是不可能事件.2、 设(,)X Y 的联合概率函数为则(1)概率(13,0)P Y X ≤<≥等于 ( ))(A 58; )(B 12; )(C 34; )(D 78.(2)Z X Y =+的概率函数为 ( ))(A()B()C()D3、 如果2EX <∞,2EY <∞,且X 与Y 满足()()D X Y D X Y +=-,则必有 ( ))(A X 与Y 独立;)(B X 与Y 不相关; )(C ()0D Y =; )(D ()()0D X D Y =. 4、若()25,()36D X D Y ==,X 和Y 的相关系数,0.4X Y ρ=,则,X Y 的协方差(,)Cov X Y 等于( ))(A 5; )(B 10; )(C 12; )(D 36.二、(12分)设X,Y 为随机变量,且3(0,0)7P X Y ≥≥=,4(0)(0)7P X P Y ≥=≥= 求(1)(min(,)0)P X Y <;(2)(max(,)0)P X Y ≥.三、(10分)一个男子在某城市的一条街道遭到背后袭击和抢劫,他断言凶犯是黑人.然而,当调查这一案件的警察在可比较的光照条件下多次重新展现现场情况时,发现受害者正确识别袭击者肤色的概率只有80%,假定凶犯是本地人,而在这个城市人口中90%是白人,10%是黑人,且假定白人和黑人的犯罪率相同,(1)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯确实是黑人的概率是多大? (2)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯是白人的概率是多大?四、(10分)某商业中心有甲、乙两家影城,假设现有1600位观众去这个商业中心的影城看电影,每位观众随机地选择这两家影城中的一家,且各位观众选择哪家影城是相互独立的.问:影城甲至少应该设多少个座位,才能保证因缺少座位而使观众离影城甲而去的概率小于0.01. (要求用中心极限定理求解.)五、(16分)设二维随机变量),(Y X 的联合概率密度函数为2,01(,)0,x y f x y <<<⎧=⎨⎩其它(1)求Y X ,的边缘密度函数(),()X Y f x f y ; (2)求条件概率113(0)224P X Y <<<<; (3)问:X 与Y 是否相互独立?请说明理由; (4)求Z X Y =+的概率密度函数()Z f z .六、(14分)某地交通管理部门随机调查了100辆卡车,得到它们在最近一年的行驶里程(单位:100km )的数据12100,,,x x x ,由数据算出145x =,样本标准差24s =.假设卡车一年中行驶里程服从正态分布),(2σμN ,分别求出均值μ和方差2σ的双侧0.99置信区间.(请保留小数点后两位有效数字.)七、(18分) 设n X X X ,,,21 是取自总体X 的简单随机样本,总体X 的密度函数为(1),(;)0,e x x ef x θθθθ-+⎧>=⎨⎩其它 ,其中θ为未知参数,01θ<<. (1)求出θ的极大似然估计; (2)记1αθ=,求参数α的极大似然估计;(3)问:在(2)中求到的α的极大似然估计是否为α的无偏估计?请说明理由.复习题(2)A 参考答案: 一、C B D C A ,,,, 二、73,74 三、139,134 四、847=a五、(1)⎩⎨⎧≥≤<<=⎩⎨⎧≥≤<<-=1,0,010,2)(1,0,010),1(2)(y y y y y f x x x x x f(2)54)4321|210(=<<<<Y X P (3)不独立,因为)31()21()31,21(f f f = (4)⎪⎩⎪⎨⎧<<-<<=其余,,,021210)(z z z z z f六、 [138.82,151.18] [17.095,35.724]七 、(1)1ln 11ˆ1-=∑=ni i X n θ(2)1ln 1ˆ1-=∑=ni i X n α(3)是无偏估计,)ˆ(αα=E复习题(2)---(B )备用数据:220.9750.0250.9750.995(2)0.9772,(8) 2.31,(8) 2.18,(8)17.54, 2.575,t u χχΦ=====一、选择题(共20分,每题4分,请将你选的答案填在( )内)1、 下列命题哪一个是正确的? ( )()A 若()()0P A P B >>,则()()P A B P B A <; ()B 若()()0P A P B >>,则()()P A B P B A ≥; )(C 若()0P B >,则()()P A P A B ≥; )(D 若()0P B >,则()()P A B P AB ≤.2、已知1()()()2P A P B P C ===,1()()()4P AB P AC P BC ===,()0P ABC =,判断下列结论哪一个是正确的 ( ))(A 事件A ,B ,C 两两不独立,但事件A ,B ,C 相互独立;)(B 事件A ,B ,C 两两独立,同时事件A ,B ,C 相互独立;)(C 事件A ,B ,C 两两独立,但事件A ,B ,C 不相互独立; )(D 事件A ,B ,C 不会同时都发生.3、 设12,X X 相互独立,且都服从参数1的指数分布,则当0x >时,12min(,)X X 的分布函数()F x 为 ( ))(A 121(1)e ---; )(B 21(1)x e ---; )(C 2x e ; )(D 21x e --.4、 已知(,)X Y 的联合概率函数为若X ,Y 独立,则,αβ的值分别为 ( ))(A 12,99αβ==; )(B 21,99αβ==; )(C 15,1818αβ==; )(D 51,1818αβ==. 5、 设15,,X X 是取自正态总体(0,1)N 的样本,已知22212345()()X a X X b X X +-+- (0,0)a b >>服从2χ分布,则这个2χ分布的自由度 ( ))(A 5; )(B 4; )(C 3; )(D 2.二、(12分)已知男性患色盲的概率为0.005,女性患色盲的概率为0.0025,如在某医院参加体检的人群中,有3000个男性,2000个女性,现从这群人中随机地选一人,(1)求此人患有色盲的概率;(2)若经检验此人的确患有色盲,问:此人为男性的概率是多大?三、(12分)设随机变量Y 服从参数为1的指数分布(1)E .定义随机变量0,1,k Y k X Y k≤⎧=⎨>⎩ , 1,2.k =(1)求12(,)X X 的联合概率函数; (2)分别求12,X X 的边缘概率函数.四、(10分)有100位学生在实验室测定某种化合物的PH 值,假设各人测量都是独立进行的,每人得到的测定结果服从相同的分布,且这个相同分布的期望为5,方差为4,设i X 表示第i 位学生的测定结果,1,,100i =,10011100i i X X ==∑,求(4.6 5.4)P X << . (要求用中心极限定理求解.)五、(16分) 设二维随机变量),(Y X 的联合概率密度函数为 1,01,02(,)0,x y x f x y <<<<⎧=⎨⎩且其它求(1)Y X ,的边缘密度函数(),()X Y f x f y ; (2)21Z X =+的概率密度函数()Z f z ;(3)(2)(2)E X Y D X Y --和; (4)11()22P Y X ≤≤.六、(14分)某医生为研究铅中毒患者与正常成年人的脉搏数的关系,他随机调查了9例患者,测得其脉搏数分别为129,,,x x x ,并由此算出99211675,50657i i i i x x ====∑∑. 设铅中毒患者的脉搏数服从正态分布),(2σμN ,分别求出均值μ和标准差σ的置信水平0.95的双侧置信区间.(请保留小数点后两位有效数字.)七、(16分) 设n X X X ,,,21 是取自总体X 的简单随机样本,总体X 的概率密度函数为1,0(;)0x e x f x θθθ-⎧>⎪=⎨⎪⎩,其它 ,其中θ是未知参数,0θ>。