误差理论与测量平差期试题汇总

合集下载

误差理论与测量平差习题

误差理论与测量平差习题
31
−1 1 2
试求函数方差1 ,2 和相互协方差1 2 。
解:1 =421 +322
2 =18
1 2 =72 - 1
3.2.14 已知边长 S 及坐标方位角 α 的中误差各位 和 ,试求坐标增量 ΔX=S·cosα 和 ΔY=S·sinα 的
中误差。
2
解: =√cos 2 2 + ()2 2 ∕
3.2.10 设有观测值向量 = [1
31
4
=[0
0
试分别求下列函数的方差:
(1)1 =1 -33 ;
(2)2 =32 3 。
解:1 =22
2 =1822 +2723
2 3 ]T,其协方差阵为
0 0
3 0],
0 2
6 −1 −2
3.2.11 设有观测值向量 = [1 2 3 ] ,其协方差阵为 =[−1 4
误差理论与测量平差习题
第一章
绪论
1.1.04 用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定
(1)误差的性质及符号:
(2)长不准确;
(3)尺尺不水平;
(4)估读小数不准确;
(5)尺垂曲;
(6)尺端偏离直线方向。
1.1.05 在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的
̂2 =2.4
̂1 =2.7
̂2 =3.6
两组观测值的平均误差相同,而中误差不同。由于中误差对大的误差反应灵敏,故通常采用中误差作
为衡量精度的指标。本题中,̂1 <̂2 ,因此,第一组观测值的精度高。
2.6.18 设有观测值向量 = [1
21
4 −2
2
解: =(

误差理论和测量平差试卷及答案6套试题+答案

误差理论和测量平差试卷及答案6套试题+答案

误差理论和测量平差试卷及答案6套试题+答案(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《误差理论与测量平差》课程自测题(1)一、正误判断。

正确“T”,错误“F”。

(30分)1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y 相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

二、用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为±;23±。

则:1.这两段距离的中误差( )。

2.这两段距离的误差的最大限差( )。

3.它们的精度( )。

4.它们的相对精度( )。

三、 选择填空。

只选择一个正确答案(25分)。

1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。

a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±秒,如果要使其中误差为±秒,则还需增加的测回数N=( )。

误差理论与测量平差基础试题

误差理论与测量平差基础试题

误差理论与测量平差基础试题平差练习题及题解第一章1.1.04 用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;系统误差。

当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。

(2)尺不水平;系统误差,符号为“-”。

(3)估读小数不准确;偶然误差,符号为“+”或“-”。

(4)尺垂曲;系统误差,符号为“-”。

(5)尺端偏离直线方向。

系统误差,符号为“-”。

第二章2.6.17 设对某量进行了两组观测,他们的真误差分别为:第一组:3,-3,2,4,-2,-1,0,-4,3,-2第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差?1、?2^^^^^和中^?1、?2,并比较两组观测值的精度。

^^解:?1=2.4,?2=2.4,?1=2.7,?2=3.6。

两组观测值的平均误差相同,而中误差不同。

由于中误差对大的误差反应灵敏,故通常采用中误差作为衡量精度的指标。

本题中?1<?2,因此,第一组观测值的精度高。

^^第三章3.2.14 已知观测值向量L1、L2和L3及其协方差阵为n1n2n3D11 D12 D13 D21 D22 D23 D31D32 D ,现组成函数:X=AL1+A0,Y=BL2+B0,Z=CL3+C0,式中A、B、C为系数阵,A0、B0、C0为常数阵。

令W=[X Y Z],试求协方差阵DWW 解答:XX DXY DXZ 11A AD12B AD13CDWW = DYX DYY DYZ = BD21A BD22B BD23CZX DZY D 31A CD32B CD33C3.2.19 由已知点A(无误差)引出支点P,如图3-3所示。

其中误差为?0,?0为起算方位角,观测角β和边长S的中误差分别为??和?S,试求P点坐标X、Y的协方差阵。

TTTTTTTTTT图3-1解答:令P点坐标X、Y的协方差阵为2 ?xyx2xy ?2???XAP2222?02 式中:?x=()?S+?YAP-2+?YAP2 ?S?22???YAP2222?02)?S+?XAP-2+?XAP2 ?y=(?S?2???XAP?YAP?022)?S-?XAP?YAP2-?XAPYAP2 ?xy=(2?S?2?xy=?yx3.5.62 设有函数F=f1x+f2y,其中x??1L1??2L2????nLn,y??1L1??2L2????nLn,?i,?i(i?1,2,?n)为无误差的常数,而L1,L2?Ln的权分别为P1,P2?Pn,试求函数F的权倒数1。

误差理论与测量平差期试题讲解

误差理论与测量平差期试题讲解

《 误差理论与测量平差 》试卷(D )卷 考试时间:100 分钟 考试方式:闭 卷学院 班级 姓名 学号一、填空题 (共20分,每空 2 分)1、观测误差产生的原因为:仪器、 、2、已知一水准网如下图,其中A 、B 为已知点,观测了8段高差,若设E 点高程的平差值与B 、E 之间高差的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为C3、取一长度为d 的直线之丈量结果的权为1,则长度为D 的直线之丈量结果的权为 ,若长度为D 的直线丈量了n 次,则其算术平均值的权为 。

4、已知某点(X 、Y)的协方差阵如下,其相关系数ρXY = ,其点位方差为2=mm 2⎪⎪⎭⎫ ⎝⎛=00.130.030.025.0XXD二、设对某量分别进行等精度了n 、m 次独立观测,分别得到观测值),2,1(,n i L i =,),2,1(,m i L i =,权为p p i =,试求:1)n 次观测的加权平均值][][p pL x n=的权n p 2)m 次观测的加权平均值][][p pL x m=的权m p 3)加权平均值mn mm n n p p x p x p x ++=的权x p (15分)三、 已知某平面控制网中待定点坐标平差参数y xˆˆ、的协因数为 ⎪⎪⎭⎫ ⎝⎛=2115.1ˆˆX X Q 其单位为()2s dm ,并求得2ˆ0''±=σ,试用两种方法求E 、F 。

(15分)四、得到如下图所示,已知A 、B 点,等精度观测8个角值为:L1L2L3L4L5L6L7L8ABCD若选择∠ABC 平差值为未知参数Xˆ,用附有参数的条件平差法列出其平差值条件方程式。

(10分)五、如图所示水准网,A 、B 、C 三点为已知高程点,P 1,P 2为未知点,各观测高差及路线长度如下表所列。

《误差理论与测量平差基础》考试试卷(含参考答案)

《误差理论与测量平差基础》考试试卷(含参考答案)

《误差理论与测量平差基础》考试试卷一、名词解释1.观测条件2.偶然误差3.精确度4.多余观测5.权6.权函数式7.相对误差椭圆8.无偏性二、填空题1.观测误差包括偶然误差、、。

2.偶然误差服从分布,其图形越陡峭,则方差越。

3.独立观测值L1和L2的协方差为。

4.条件平差的多余观测数为减去。

5.间接平差的未知参数协因数阵由计算得到。

6.观测值的权与精度成关系,权越大,则中误差越。

7. 中点多边形有个极条件和个圆周条件。

8. 列立测边网的条件式时,需要确定与边长改正数的关系式。

9. 秩亏水准网的秩亏数为个。

三、 问答题1. 写出协方差传播律的应用步骤。

2. 由最小二乘原理估计的参数具有哪些性质?3. 条件平差在列立条件式时应注意什么?什么情况下会变为附有参数的条件平差?4. 如何利用误差椭圆求待定点与已知点之间的边长中误差?5. 为什么在方向观测值的误差方程式里面有测站定向角参数?6. 秩亏测角网的秩亏数是多少?为什么?7. 什么是测量的双观测值?举2个例子说明。

8. 方向观测值的误差方程式有何特点?四、 综合题1. 下列各式中的Li (i=1,2,3)均为等精度独立观测值,其中误差为σ,试求X 的中误差:(1) 321)(21L L L X ++= ,(2)321L L L X =。

2. 如图1示,水准网中A,B,C 为已知高程点,P1,P2,P3为待定点,h1~h6为高差观测值,按条件平差方法,试求: (1) 全部条件式; (2) 平差后P2点高程的权函数式。

3. 如图2示,测边网中A,B,C 为已知点,P 为未知点,观测边长为L1~L3,设P 点坐标P X 、P Y 为参数,按间接平差方法,试求: (1) 列出误差方程式; (2) 按矩阵符号写出法方程及求解参数平差值的公式; (3) 平差后AP 边长的权函数式。

4. 在条件平差中,0=+∆WA ,试证明估计量^L 为其真值~L 的无偏估计。

(提示:~)(L L E =,须证明0)(=V E )5. 在某测边网中,设待定点P 的坐标为未知参数,即[]TX X X 21^=,平差后得到^X 的协因数阵为⎥⎦⎤⎢⎣⎡=yy xyxy xx XX Q Q Q Q Q ^^,且单位权中误差为0^σ,求:(1)P 点的纵横坐标中误差和点位中误差; (2)P 点误差椭圆三要素 E ϕ、E 、F 。

误差理论与测量平差基础习题集

误差理论与测量平差基础习题集

第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。

1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。

1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。

§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。

§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。

误差理论与测量平差基础习题集

误差理论与测量平差基础习题集

第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。

1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。

1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。

§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。

§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。

误差理论和测量平差试题+问题详解

误差理论和测量平差试题+问题详解

《误差理论与测量平差》(1)1.正误判断。

正确“T”,错误“F”。

(30分)1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

16.用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m ±3.5cm;600.686m ±3.5cm 。

则:1.这两段距离的中误差( )。

2.这两段距离的误差的最大限差( )。

3.它们的精度( )。

4.它们的相对精度( )。

17. 选择填空。

只选择一个正确答案(25分)。

1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。

a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《 误差理论与测量平差 》试卷(D )卷 考试时间:100 分钟 考试方式:闭 卷学院 班级 姓名 学号一、填空题 (共20分,每空 2 分)1、观测误差产生的原因为:仪器、 、2、已知一水准网如下图,其中A 、B 为已知点,观测了8段高差,若设E 点高程的平差值与B 、E 之间高差的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为C3、取一长度为d 的直线之丈量结果的权为1,则长度为D 的直线之丈量结果的权为 ,若长度为D 的直线丈量了n 次,则其算术平均值的权为 。

4、已知某点(X 、Y)的协方差阵如下,其相关系数ρXY = ,其点位方差为2=mm 2⎪⎪⎭⎫ ⎝⎛=00.130.030.025.0XXD二、设对某量分别进行等精度了n 、m 次独立观测,分别得到观测值),2,1(,n i L i =,),2,1(,m i L i =,权为p p i =,试求:1)n 次观测的加权平均值][][p pL x n=的权n p 2)m 次观测的加权平均值][][p pL x m=的权m p 3)加权平均值mn mm n n p p x p x p x ++=的权x p (15分)三、 已知某平面控制网中待定点坐标平差参数y xˆˆ、的协因数为 ⎪⎪⎭⎫ ⎝⎛=2115.1ˆˆX X Q 其单位为()2s dm ,并求得2ˆ0''±=σ,试用两种方法求E 、F 。

(15分)四、得到如下图所示,已知A 、B 点,等精度观测8个角值为:L1L2L3L4L5L6L7L8ABCD若选择∠ABC 平差值为未知参数X ˆ,用附有参数的条件平差法列出其平差值条件方程式。

(10分)五、如图所示水准网,A 、B 、C 三点为已知高程点,P 1,P 2为未知点,各观测高差及路线长度如下表所列。

(20分)用条件平差法计算未知点P 1,P 2的高程平差值及其中误差;AC六、如下图所示,A,B点为已知高程点,试按间接平差法求证在单一附合水准路线中,平差后高程最弱点在水准路线中央。

(20分)A参考答案及评分标准一、填空题 (共20分,每空 2 分) 1:外界环境、观测者 2:4、4、5、1 3:d/D 、nd/D 4:0.6、1.25 二、解:因为p p i =1)()()()()T n n n n L L L nL L L n pL pL pL np p pL x 212121*111111][][=+++=+++==(2分) 根据协因数传播定律,则x n 的权n p :()np n np p pp n 11111**11111111=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=(2分) 则:np p n = (1分)2)()()()()T m m m m L L L mL L L m pL pL pL m p p pL x 212121*111111][][=+++=+++==(2分) 根据协因数传播定律,则x m 的权m p :()m p m mp p pp m 11111**11111111=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=(2分) 则:mp p m = (1分)3)⎪⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛++=++=++=m n m n m n m m n n x x m n m mn nmp np x mp x np p p x p x p x ** (2分) 根据协因数传播定律,则x 的权x p :p m n m n m m n n m n m mn np mp npx )(1111+=⎪⎪⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛++= (2分)则:p m n p x )(+= (1分)三、解:(1)极值方向的计算与确定425.11*222tan 0-=-=-=yyxx xy Q Q Q ϕ所以︒︒=︒︒=018.142018.52036.284036.104200;;ϕϕ因为Q xy >0,则极大值E 在一、三象限,极小值F 在二、四象限,则:︒︒=︒︒=018.322018.142018.232018.52;;F E ϕϕ (5分)(2)极大值E 、极小值F 的计算 方法一 根据任意方向位差计算公式123.11))018.52*2sin(*1018.52sin *2018.52cos *5.1(*4)2sin sin cos (ˆ2222202=︒+︒+︒=++=E xy E yy E xx Q Q Q E ϕϕϕσ 877.2))018.142*2sin(*1018.142sin *2018.142cos *5.1(*4)2sin sin cos (ˆ2222202=︒+︒+︒=++=F xy F yy F xx Q Q Q F ϕϕϕσ dm F dmE 70.134.3±=±= (5分)⎪⎪⎭⎫⎝⎛=2115.1ˆˆX X Q 方法二5.325.15.025.1=+=+=-=-yy xx yy xx Q Q Q Q062.21*45.04)(2222=+=+-=xy yy xx Q Q Q H877.2)062.25.3(*4*21)(21123.11)062.25.3(*4*21)(21202202=-=-+==+=++=H Q Q F H Q Q E yy xx yy xx σσdmF dm E 70.134.3±=±= (5分) 四、解:本题n =8,t=4,r=n-t=4,u=1 (4分) 其平差值条件方程式为:1ˆsin *ˆsin *ˆsin ˆsin *ˆsin *ˆsin 0ˆˆˆ0180ˆˆˆ0180ˆˆˆ0180ˆˆˆˆˆˆ14265365854761654321==-+=︒-++=︒-++=︒-+++++L L L L L L X L L L L L L L L L L L L L L (6分)五、解:1)本题n=4,t=2,r=n-t=2 (2分)则平差值条件方程式0ˆ0=+A h A 为: 0ˆˆˆ0ˆˆ13412=-++-=-++A C AB H h h h H H h h H (2分)则改正数方程式0=-w Av 为:02431121=--+=-+w v v v w v v则⎪⎪⎭⎫⎝⎛-=10101011A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321v v v v v ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-++--++-=+-=42)(134120A CA B H h h h H H h h H A Ah W (3分)令C =1,观测值的权倒数为:⎪⎪⎪⎪⎪⎭⎫⎝⎛=-11111P (1分) 则组成法方程,并解法方程:⎪⎪⎭⎫ ⎝⎛==-31121TA AP N ⎪⎪⎭⎫ ⎝⎛-==-221W N K (2分)求改正数,计算平差值⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==⎪⎪⎪⎭⎫ ⎝⎛=-22201321K A P v v v v T ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=+=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=245.1543.0309.1044.1ˆˆˆˆˆ4321v h h h h h h (2分) 则P 1,P 2点高程为:mh H H m h H H C P A P 051.32ˆ044.33ˆ4211=-==-= (1分)2)单位权中误差:mm pvv r pv v T T 45.262ˆ0±=±=±=±=σ (1分)由上知:()()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+=-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+=-=432142432111ˆˆˆˆ1000ˆˆˆˆˆ0001ˆh h h h H h H H h h h hH h H H CC P AA P (2分)由L L T L L L L LL AQ N A Q Q Q 1ˆˆ--=则P 1,P 2点的权倒数为:53521211=-==-=--TLL T LL T LL p T LL T LL T LL p f AQ N A fQ f fQ Q f AQ N A fQ f fQ Q (2分) 则P 1,P 2点的中误差为:m mm m Q m m m m Q P P P P 90.11053ˆˆ55.11552ˆˆ202101±=±==±=±==σσσσ(2分)六、证明:设AC 距离为T ,则BC 距离为S-T ; 设每公里中误差为单位权中误差,则AC 之间的高差的权为1/T ,BC 之间高差的权为1/(S-T);则其权阵为:⎪⎪⎭⎫⎝⎛-=)/(100/1T S T P (5分)选C 点平差值高程为参数Xˆ,则 平差值方程式为:X H h H X h BAˆˆˆˆ21-=-= (3分)则⎪⎪⎭⎫ ⎝⎛-=11B (2分)则平差后C 点高程的权倒数为:()ST S T PB B N Q P TX X C )(111ˆˆ-====-- (5分) 求最弱点位,即为求最大方差,由方差与协因数之间的关系可知,也就是求最大协因数(权倒数),上式对T 求导令其等零,则02=-STS T=S/2 (3分) 则在水准路线中央的点位的方差最大,也就是最弱点位,命题得证。

(2分)中国矿业大学2008~2009学年第 二 学期 《 误差理论与测量平差 》试卷(B )卷 考试时间:100 分钟 考试方式:闭 卷一、填空题 (共20分,每空 2 分)1、如下图,其中A 、B 、C 为已知点,观测了5个角,若设L 1、L 5观测值的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为ABCDEL 1L 2L 3L 4L 52、测量是所称的观测条件包括 、观测者、3、已知某段距离进行了同精度的往返测量(L 1、L 2),其中误差cm 221==σσ,往返测的平均值的中误差为 ,若单位权中误差cm 40=σ,往返测的平均值的权为4、已知某观测值X 、Y 的协因数阵如下,其极大值方向为 ,若单位权中误差为±2mm ,极小值F 为 mm 。

⎪⎪⎭⎫⎝⎛--=0.15.05.00.2XXQ二、已知某观测值X 、Y 的协因数阵如下,求X 、Y 的相关系数ρ。

(10分)⎪⎪⎭⎫ ⎝⎛--=25.015.015.036.0XXQ三、设有一函数2535+=x T ,6712+=y F 其中:⎩⎨⎧+++=+++=n n nn L L L y L L L x βββααα 22112211 αi =A 、βi =B (i =1,2,…,n )是无误差的常数,L i 的权为p i =1,p ij =0(i≠j )。

相关文档
最新文档