互斥事件、独立事件的概率
高中数学解题方法系列:概率的热点题型及其解法

高中数学解题方法系列:概率的热点题型及其解法概率主要涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合,在以后的高考中,可能出现概率与数列、函数、不等式等有关内容的结合的综合题,下面就谈一谈概率与数列、函数、不等式等有关知识的交汇处命题的解题策略。
题型一:等可能事件概率、互斥事件概率、相互独立事件概率的综合。
例1:甲、乙两人各射击一次,击中目标的概率分别是32和43.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.(Ⅰ)求甲射击4次,至少1次未击中目标的概率;(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(Ⅲ)假设某人连续2次未击中...目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?解:(1)设“甲射击4次,至少1次未击中目标”为事件A,则其对立事件A 为“4次均击中目标”,则()()426511381P A P A ⎛⎫=-=-= ⎪⎝⎭(2)设“甲恰好击中目标2次且乙恰好击中目标3次”为事件B,则()22323442131133448P B C C ⎛⎫⎛⎫⎛⎫=∙∙∙∙∙= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)设“乙恰好射击5次后,被中止射击”为事件C,由于乙恰好射击5次后被中止射击,故必然是最后两次未击中目标,第三次击中目标,第一次及第二次至多有一次未击中目标。
故()22123313145444441024P C C ⎡⎤⎛⎫⎛⎫=+∙∙∙∙=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦例2:某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.(Ⅰ)求3个景区都有部门选择的概率;(Ⅱ)求恰有2个景区有部门选择的概率.解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.(I)3个景区都有部门选择可能出现的结果数为!324⋅C (从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有624=C 种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为P(A 1)=.943!3424=⋅C (II)解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A 2和A 3,则事件A 3的概率为P(A 3)=271334=,事件A 2的概率为P(A 2)=1-P(A 1)-P(A 3)=.2714271941=--解法二:恰有2个景区有部门选择可能的结果为).!2(32414C C +⋅(先从3个景区任意选定2个,共有323=C 种选法,再让4个部门来选择这2个景区,分两种情况:第一种情况,从4个部门中任取1个作为1组,另外3个部门作为1组,共2组,每组选择2个不同的景区,共有!214⋅C 种不同选法.第二种情况,从4个部门中任选2个部门到1个景区,另外2个部门在另1个景区,共有24C 种不同选法).所以P(A 2)=.27143)!2(342424=+⋅C C 例3:某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7;在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(Ⅱ)求这三人该课程考核都合格的概率。
概率与统计1

【解析】三人均达标为0.8×0.6×0.5=0.24, 解析】三人均达标为0.8×0.6× 0.8 三人中至少有一人达标为1 三人中至少有一人达标为1-0.04=0.96
5.(湖北卷14)明天上午李明要参加奥运志愿者活动, 5.(湖北卷14)明天上午李明要参加奥运志愿者活动, 14 为了准时起床,他用甲、乙两个闹钟叫醒自己, 为了准时起床,他用甲、乙两个闹钟叫醒自己,假设 甲闹钟准时响的概率是0.80, 甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是 0.80 0.90, 0.90,则两个闹钟至少有一准时响的概率是 。.
题型二 相互独立事件同时发生的概率问题 2009北京卷文)(本小题共13分 北京卷文)(本小题共13 例2 (2009北京卷文)(本小题共13分) 某学生在上学路上要经过4个路口, 某学生在上学路上要经过4个路口,假设在各路口 是否遇到红灯是相互独立的, 是否遇到红灯是相互独立的,遇到红灯的概率都
1 1 1 4 P ( A) = 1 − × 1 − × = 3 3 3 27
(Ⅱ)设这名学生在上学路上因遇到红灯停留的总时间至多 是4min为事件B,这名学生在上学路上遇到 4min为事件B 为事件 的事件
Bk ( k = 0,1, 2 )
2 16 P ( B0 ) = = 3 81
1 的概率都是 2 若某人获得两个“支持” 则给予10万元的创业资助; 10万元的创业资助 .若某人获得两个“支持”,则给予10万元的创业资助;若只获得
一个“支持”,则给予5万元的资助;若未获得“支持”,则不予 一个“支持” 则给予5万元的资助;若未获得“支持” 资助. 资助.求: 该公司的资助总额为零的概率; (1) 该公司的资助总额为零的概率; (2)该公司的资助总额超过15万元的概率. 该公司的资助总额超过15万元的概率. 15万元的概率
第51讲 互斥与独立事件的概率、条件概率

第 51讲 互斥与独立事件的概率、条件概率【考点解读】1.了解互斥事件的概率加法公式. 2.了解独立事件和条件概率的概率公式.【知识扫描】1.不会同时发生的两个事件叫 .对互斥事件的理解,可以从集合的角度去加以认识.如果A 、B 是两个互斥事件,反应在集合上,是表示A 、B 这两个事件所包含结果组成的集合的交集为空集. 2.不能同时发生且必有一个发生的两个事件叫 .当事件A 与事件B 互斥时,有加法公式 .特别地,若事件A 与B 为对立事件,则P(A)与P(B)之间的关系是 .3.事件A (或B )是否发生对事件B (或A )发生的概率 ,这样的两个事件叫独立事件.4.设A ,B 是两个事件,则A ·B 表示这样一个事件:它的发生,表示事件A ,B ,类似地可以定义事件A 1·A 2·……A n .5.两个相互独立事件A ,B 同时发生的概率,等于每个事件发生的概率的积,即P(A ·B)= 一般地,如果事件12n A ,A ,,A 相互独立,那么:P(A 1·A 2……A n )= . 6.n 次独立重复试验中恰好发生k 次的概率:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是1k kn k n n P (k )C P (P )-=-.7. 条件概率:“事件A 发生的条件下事件B 发生的概率等价于局限在事件A 发生的范围内考虑事件A 和事件B 同时发生的概率”,从而将条件概率转化为古典概型的概率,用古典概型的概率公式推导出条件概率的计算公式.)()()()()(A P AB P A n AB n A B P ==将条件概率的计算公式进行变形,可得概率的乘法公式)()()(A B P A P AB P =【考计点拔】牛刀小试:1.若事件E 与F 相互独立,且P (E )=P (F )=14,则P (EF )的值等于( )A .0 B.116C.14D.12解析:选B.EF 表示E 与F 同时发生,∴P (EF )=P (E )·P (F )=116.故选B.2.某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是( )A.12125B.16125C.48125D.96125解析:选C.由题意,3粒种子恰有2粒发芽,相当于3次独立试验有2次发生,故P (X =2)=C 32·(45)2·(1-45)=48125.3.(湖北11年高考)如图,用K 、1A 、2A 三类不同的元件连接成一个系统。
随机事件的互斥事件和独立事件

随机事件的互斥事件和独立事件1. 互斥事件1.1 定义互斥事件(Mutually Exclusive Events)指的是两个事件不可能同时发生。
用数学符号表示为:A ∩ B = ∅,即事件A和事件B的交集为空集。
1.2 性质(1)完备性:对于任意事件A,有P(A) = P(A ∩ B’) + P(A ∩ B),其中B’为事件B的补集。
(2)互斥事件的概率公式:若A1, A2, …, An为互斥事件,则P(A1 ∪ A2 ∪ … ∪ An) = P(A1) + P(A2) + … + P(An)。
1.3 应用互斥事件在实际生活中有很多应用,如在抽奖活动中,中奖和不中奖这两个事件就是互斥的。
在统计分析中,也可以利用互斥事件来计算概率。
2. 独立事件2.1 定义独立事件(Independent Events)指的是两个事件的发生与否互不影响。
用数学符号表示为:P(A ∩ B) = P(A)P(B)。
2.2 性质(1)组合性:对于任意事件A和B,有P(A ∪ B) = P(A) + P(B) - P(A ∩ B)。
(2)独立事件的乘法公式:若A1, A2, …, An和B1, B2, …, Bm为独立事件,则P(A1 ∩ B1 ∩ … ∩ An ∩ Bm) = P(A1)P(B1) … P(An)P(Bm)。
2.3 应用独立事件在实际生活中也有很多应用,如在投掷两个骰子的情况下,第一个骰子出现1点,第二个骰子出现2点的概率就是独立事件。
在统计分析中,独立事件可以用来计算联合概率。
3. 互斥事件与独立事件的区别与联系3.1 区别(1)定义不同:互斥事件指的是两个事件不可能同时发生,而独立事件指的是两个事件的发生与否互不影响。
(2)概率公式不同:互斥事件的概率公式为P(A ∩ B’) + P(A ∩ B),独立事件的概率公式为P(A)P(B)。
3.2 联系(1)互补事件:互斥事件和独立事件都可以看作是互补事件。
高中数学概率与统计知识点

高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。
2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。
3、互斥事件不可能同时发生的两个事件叫互斥事件。
如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。
4、对立事件对立事件是指两个事件必有一个发生的互斥事件。
例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。
而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。
对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。
2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。
5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。
相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。
2)必然事件与任何事件都是相互独立的。
3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。
6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。
如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。
概率与统计中的独立与互斥事件

互斥事件的性质
互斥事件的定 义:两个事件 A和B是互斥的, 如果它们不能
同时发生。
概率与统计中的互斥事件:在决策分析中,互斥事件是指两个或多个事件不能同时发生,即一个事件的发生会阻止另一个 事件的发生。例如,在体育比赛中,每个参赛选手只能获得一个名次,一个选手获得第一名就会阻止其他选手获得该名次。
独立与互斥事件的实例分析:在决策分析中,独立与互斥事件的应用非常广泛。例如,在金融投资中,投资者可以根据不 同投资品种之间的独立性来分散投资风险;在生产管理中,企业可以根据不同生产环节之间的互斥性来优化生产流程。
独立与互斥事件的实例分析
第五章
生活中的独立与互斥事件实例
独立事件实例:抛掷一枚骰子,出现偶数点与出现点数大于3的事件是 独立事件,因为一个事件的发生不影响另一个事件的发生。
互斥事件实例:抽奖活动中,中奖与不中奖是互斥事件,因为两个事件 不能同时发生。
独立事件实例:投篮命中与投篮未命中是独立事件,因为一个事件的发 生不影响另一个事件的发生。
互斥事件实例:在掷骰子游戏中,出现1、2、3和出现4、5、6是互斥 事件,因为两个事件不能同时发生。
概率论中的经典独立与互斥事件问题解析
蒙提霍尔问题:一个著名的概率论问题,涉及到独立事件和概率计算。
生日悖论:一个经典的独立事件与互斥事件问题,通过实例分析理解概率 论在实际中的应用。
投掷硬币实验:通过投掷硬币的实验,分析独立事件和互斥事件的概率, 理解概率论的基本概念。
独立和互斥的关系图

独立和互斥的关系图如下:
独立和互斥的区别:
1、性质不同:相互独立事件可能是互斥事件,也可能不是互斥事件,而互斥事件一定不是独立事件。
相互独立事件:事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
相互独立事件同时发生的概率P(A*B)=P(A)*P(B)。
互斥事件指的是不可能同时发生的两个事件。
2、关系不同:互斥事件中的事件个数可以是两个或多个,而对立事件只是针对两个事件而言的,两个事件对立是这两个事件互斥的充分条件,但不是必要条件。
3、影响不同:独立事件之间的发生互不影响,但可能会同时发生。
互斥事件是不可能同时发生的事件即交集为空,但可能会产生相互影响(比如A发生,B就一定不发生了)。
从联系上来说独立事件可能是互斥事件也可能不是互斥的,而互斥事件一定不是独立事件。
2-互斥事件独立事件的概率(文)

(1(2(3互斥独立事件的概率(文)例,甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为1/3和1/4,求下列事件的概率: (1)两人都译出密码; (2)两人都译不出密码; (3)恰有一人译出密码; (4)至多一人译出密码; (5)译出密码。
例,有4名学生参加体育达标测验,4人各自合格的概率分别是1/3,1/4,1/5,1/6,求以下的概率: (1)四人中至少有二人合格的概率; (2)四人中恰好只有二人合格的概率.例,如图,电路中每个开关闭合的概率都为0.7,计算这段时间内线路正常工作的概率, 练习:1、从一批乒乓球产品中任取1个,如果其质量小于2.45g 的概率是0.22,质量不小于2.50g 的概率是0.20,那么质量在[)2.45,2.50g 范围内的概率是________.2、甲、乙两个气象台同时作天气预报,如果他们预报准确的概率分别为0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是___________.3、甲、乙两人下棋,甲不输的概率是80%,两个下成和棋的概率是50%,则甲获胜的概率为_______.4、抛掷一枚骰子,若事件A 为“朝上一面的点数是奇数”,事件B 为“朝上一面的点数不超过3”,求P (A+B )5、如图:用A 、B 、C 、D 四类不同的元件连接成系统N,当元件A 正常工作且元件B 、C 都正常工作,或当元件A 正常工作且元件D 正常工作时,系统N 正常工作.已知元件A 、B 、C 、D 正常工作的概率依次为.4,3,3,2 (1)求元件A 不正常工作的概率; (2)求元件A 、B 、C 都正常工作的概率; (3)求系统N 正常工作的概率.作业:1、某人在打靶中,连续射击2次,事件“至少有一次中耙”的互斥事件是 ( ) (A )至多有一次中耙 (B )两次都中耙 (C )两次都不中耙 (D )只有一次中耙2、甲、乙两种型号的导弹同时向一架敌机射击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5,则敌机被击中的概率为 .3、某射手在一次射击中射中10环,9环,8环的概率分别是0.24,0.28,0.19,计算这个射手在一次射击中 (1)射中10环或9环的概率 ;(2)不够8环的概率 .4、两个事件互斥是这两个事件对立的______________条件.5、一段外语录音,甲能听懂的概率是80%,乙能听懂的概率是70%,两人同时听这段录音,其中至少有一人能听懂的概率是多少?6,(03天津)有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
记为事件 A
例3:从1,2,3,……30这30个数中,随 机抽取一个数,求
(1)能被2整除的概率 (2)能被3整除的概率 (3)能被2或3整除的概率
有6 名献血者参加献血活动,其中A型有2人,O 型有3人,B型有1人,现从这6人中选取4人,其 中三种血型齐全的概率是多少?
用概率思想证明等式: n Cni 2 C2nn i0
2020年4月15日
互斥事件有一个发生 的概率
2020年4月15日
知识点回顾
1、互斥事件:不可能同时发生的两个事件A、B 叫做互斥事件。
如果 A1, A2 , A3 L An 中任何两个都是互斥事 件,则称 A1, A2 , A3 L An 彼此互斥。
2、对立事件:必有一个发生的互斥事件叫
做对立事件。记为:A, A
3、互斥事件有一个发生的概率
需列式)
从男女学生共36名的班级中,任意选出2名委员, 任何人都有同样的当选机会。如果选得同性委员的
1 概率等于 2 ,求男女生相差几名?
袋中有红、黄、白色球各一个,每次任取一个, 有放回地抽取三次,计算下列事件的概率:
(1)三次颜色各不相同; (2)三次颜色不全相同; (3)三次取出的球无红色或无黄色。
基础练习
1、下列命题正确的有: (1)两个事件对立是这两个事件互斥的充分不必要条件 (2)事件A,B的概率都大于0,若A+B是必然事件,则 A、B一定是对立事件
(3)若A、B互斥,则 P( A B) 1
(4)若A、B互斥,概率都大于0,则 A B 为必
然事件
(1)、(4)
2、从装有2个红球和2个白球的口袋里任取2个球, 那么互斥不对立的事件是( )C A、至少有1个白球与都是白球 B、至少有一个白球与至少有1个红球 C、恰有1个白球与恰有2个白球 D、至少有1个白球与都是红球
练习:在1000张有奖储蓄的奖券中,设有1个一 等奖,5个二等奖,10个三等奖,从中买1张奖券, 求 (1)分别得一等奖,二等奖,三等奖的概率 (2)中奖的概率
在900张奖券(其奖券号为100~999的三位自然数) 中抽一张奖券,若中奖的号码是仅有两个数字相 同的奖券,求中奖面是多少?
0.27
例2:四个编号为1,2,3,4的小球放入 编号为1,2,3,4的盒子中,每个盒中1 个球,求至少有一个小球的编号和盒子的 编号相同的概率。
3、掷一个骰子,设A为“出现2点”,B为“出现
奇数点”则P(A+B)为_______2
3
例题讲解:
例1:苏大例1
另题:有A、B两个口袋,A中有4个白球和两个 黑球,B中有3个白球和4个黑球,从A、B中各 取两个球交换,求A中仍有4个白球的概率。
交换的球必须是相同的球,共有三种可能: 两个白球;两个黑球;一白一黑。