锂电池各个体系性能参数
动力锂离子电池性能评价指标汇总

动力锂离子电池性能评价指标汇总在动力锂电池系统中,各个参数能够表征系统的不同性能,本文罗列锂电池各个参数。
目录1.锂电池单体 (1)2 .常规性能指标 (2)2. 1.电压 (2)3. 2.内阻 (3)4. 3.容量 (4)5. 4.功率 (4)6. 5.比容量、比能量 (5)7. 6.充放电倍率 (5)3 .可靠性性能指标 (6)3.1. 1.循环寿命 (6)3.2. 自放电率 (6)3.3. 放电深度 (7)4 .锂离子电池模块 (7)5 .锂离子电池系统 (8)1.锂电池单体锂离子电池单体由正负、电极、电解液和隔膜组成,是组成电池模块和电池组的基本结构单元。
电池作为一种电化学电源天然的具有电压、内阻、容量、能量、功率等特性参数。
人们主要的出于两个方面的目的,希望对电池的参数进行测量和评价。
一个是为了实现主动控制的目的,比如,电池单体电压不一致,使得系统能量存储能力降低,如果能够主动调节两极的单体电压,则可以起到放大系统容量的效果。
另一个是为了安全考虑,电池的参数有其固定的范围,检测电池参数,实施监控其边界,可以起到表征电池安全状态的作用。
2.常规性能指标2.1.电压单体电压主要的取决于单体正负极材料的类型,一般的钻酸锂、三元正极配合石墨负极可以获得4.2V左右的满充电压,而磷酸铁锂最高只能达到3.6V o这里的电压,准确的说应该是电势取决于材料属性,电势数值上等于静置足够长时间以后的电池开路电压。
而闭合回路中的单体端电压,是我们用外部仪器检测到的电压值,其数值等于电池电势减去电池内阻占压。
而电池内阻并非恒定不变,会受到多种因素的影响而发生变化,这些在下面一节再说。
------------ -1 --------------------------------- -R=f(SOC,‰-)、+ I1()E=f(SOC,T j∙∙∙)U____ :之鹫曜羽继续说电压,单体电压除了由材料决定以外,会跟随荷电量的变化而变化,并且是一一对应的关系,因此,在很多情形下,无法直接简单测量的电池荷电量(SoC)经常被用电池开路电压进行推测。
锂电池各个体系性能参数

钴酸锂1.钴酸锂的概述1992年SONY公司商品化锂电池问世,由于其具有工作电压高、能流密度高、循环压寿命长、自放电低、无污染、安全性能好等独特的优势,现已广泛用作移动电话、便携式计算机、摄像机、照相机等的电源。
并已在航天、航海、人造卫星、小型医疗仪及军用通讯设备中逐步发展成为主流应用的能源电池。
Sony公司推出的第一块锂电池中,正极材料是钴酸锂,负极材料为碳。
其中,决定电池的可充电最大容量及开路电压的主要是正极材料。
因此我国现有的生产正极材料公司,产品几乎全部是钴酸锂。
与钴酸锂同属4伏正极材料的候选体系有镍酸锂和锰酸锂两大系列,这两个系列材料在性能上各有长短,锰酸锂在原料价格上优势明显。
但在容量和循环寿命上存在不足。
钴酸锂的实际使用比容量为130mAh/g,循环次数可达到300至500次以上:而锰酸锂的实际比容量在100mAh /g左右,循环次数为100至200次。
另外,磷酸铁锂电池有安全性高。
稳定性好、环保和价格便宜优势,但是导电性较差,而且振实密度较低。
因此其在小型电池应用上没有优势。
国内钴酸锂市场需求变化呈现典型的中国市场特征,历史较短,但发展较快,多数企业在很短时间进入,但生产企业规模不大,产品主要集中在中低档。
2002年,国内钴酸锂材料市场需求量为2400吨,大多数产品依靠进口,但随着国内主要生产企业的投产,产能和需求量得到了极大的提升,2006年需求量达到6500吨,2008年需求量接近9000吨。
2001年全球主要生产高性能钴酸锂、氧化钴材料的生产企业是比利时Umicore 公司,美国OMG和FMC公司,日本的SEIMEI和日本化学公司等国外企业。
另外台湾地区的台湾锂科科技公司也是重要的生产企业。
而国内的生产企业为北京当升科技、湖南瑞翔、中信国安盟固利、北大先行和西安荣华等。
这些生产企业有些是从科研机构孵化而来,有些是具有上有资源优势的企业。
2.钴酸锂的材料构成LiCoO2在目前商业化的锂离子电池中基本上选用层状结构的锂离子二次电池正极材料(钴酸锂)的液相合成工艺,它采用聚乙烯醇(PVA)或聚乙二醇(PEG)水溶液为溶剂,锂盐、钴盐分别溶解在PVA或PEG水溶液中,混合后的溶液经过加热,浓缩形成凝胶,生成的凝胶体再进行加热分解,然后在高温下煅烧,将烧成的粉体碾磨、过筛即得到钴酸锂粉。
6大锂电池类型及性能参数!

6大锂电池类型及性能参数!锂电池是一种使用锂盐作为正极和负极活性物质的电池,被广泛应用于移动电子设备、电动车辆和储能系统等领域。
根据不同的电极材料和电解质,锂电池可以分为不同类型,在性能参数上也有所差异。
下面将介绍6种主要的锂电池类型及其性能参数。
1. 锂离子电池(Li-ion)锂离子电池是目前最常见的锂电池类型,其正极材料通常为氧化锂钴酸锂(LiCoO2)、磷酸铁锂(LiFePO4)等。
电解液一般是有机溶剂,如碳酸酯类。
锂离子电池具有高能量密度、长循环寿命和低自放电率等优点。
其性能参数包括能量密度、循环寿命、充放电效率等。
2.锂聚合物电池(LiPo)锂聚合物电池是一种使用聚合物电解质的锂电池,具有高能量密度、薄、轻和灵活等特点。
锂聚合物电池常用于手持设备和无人机等领域。
性能参数包括能量密度、循环寿命、安全性等。
3.磷酸铁锂电池(LiFePO4)磷酸铁锂电池是一种以磷酸铁锂作为正极材料的锂电池,具有高安全性、长循环寿命和良好的耐高温性能。
磷酸铁锂电池适用于电动车辆和储能系统等高功率应用场景。
性能参数包括循环寿命、充放电效率、安全性等。
4.钴酸锂电池(LiCoO2)钴酸锂电池是一种使用钴酸锂作为正极材料的锂电池,具有高能量密度和良好的性能稳定性。
钴酸锂电池适用于便携式电子设备和医疗器械等领域。
性能参数包括能量密度、循环寿命、充放电效率等。
5.氧化镍锰钴电池(NMC)氧化镍锰钴电池是一种复合正极材料的锂电池,具有高能量密度和安全性。
氧化镍锰钴电池广泛应用于电动车辆和储能系统等领域。
性能参数包括循环寿命、充放电效率、安全性等。
6.三元锂电池(LTO)三元锂电池以氧化锂钴酸锂为正极材料,以石墨和C-LiFePO4为负极材料,电解质为含有锂盐的有机碳酸酯类液体电解质。
其具有高充放电速率、良好的循环寿命和优秀的安全性能。
适用于高功率应用场景,如电动车辆和储能系统。
性能参数包括充放电效率、循环寿命、安全性等。
六种锂电池特性及参数分析

六种锂电池特性及参数分析锂电池是目前应用最广泛的二次电池之一,具有高能量密度、长寿命、轻巧等优点。
在不同应用领域,六种锂电池具有各自的特性和参数。
以下将对锂离子电池、锂聚合物电池、锂铁电池、锂硫电池、锂钛酸电池和锂空气电池进行特性和参数分析。
1.锂离子电池:锂离子电池是最常用的锂电池类型之一,具有高能量密度、循环寿命长、自放电率低等特点。
其中,正极材料常用的有锰酸锂、钴酸锂、氧化镁等。
锂离子电池的电压通常在3.6V左右,充放电效率高达90%以上,循环寿命可达数百到数千次。
此外,锂离子电池具有较好的安全性能和稳定性。
2.锂聚合物电池:锂聚合物电池是锂离子电池的一种变种,它采用了聚合物电解质代替了液态电解质。
由于聚合物电解质具有高电导率、轻巧、薄型、可塑性强等优点,使得锂聚合物电池在移动设备、电动汽车等领域得到广泛应用。
锂聚合物电池的能量密度较高,尤其是针对小型便携设备,体积轻盈的特点更为突出。
3.锂铁电池:锂铁电池是一种新兴的锂电池技术,其正极材料为磷酸铁锂,相较于锂离子电池,具有更高的循环寿命、更好的安全性能和更高的充放电效率。
锂铁电池的电压一般为 3.2V左右,循环寿命可达数千次,充放电效率接近100%。
目前,锂铁电池主要应用于电动汽车领域。
4.锂硫电池:锂硫电池是一种新兴的高能量密度电池,其正极材料为硫。
锂硫电池具有非常高的理论能量密度,达到了理论上锂离子电池的五倍以上。
然而,锂硫电池在电化学稳定性、循环寿命和安全性等方面仍然存在挑战,因此目前尚处于研究和开发阶段。
5.锂钛酸电池:锂钛酸电池采用锂钛酸及其衍生物为负极材料,具有快速充放电性能、宽温度范围、长循环寿命和较好的安全性能。
锂钛酸电池适用于需要高功率输出和长时间使用的电动工具、混合动力车和储能系统等领域。
6. 锂空气电池:锂空气电池是一种基于氧气作为电化学反应物的电池,其正极材料为空气。
锂空气电池具有极高的能量密度,远远超过了其他类型的锂电池,理论能量密度可达到2000Wh/kg以上。
不同锂电池关键参数对比

不同锂电池关键参数对比锂电池是一种较为成熟的再充电电池技术,广泛应用于移动电子设备、电动汽车等领域。
不同型号、不同厂家的锂电池在关键参数上可能存在差异,下面将对几种常见的锂电池关键参数进行对比分析。
1. 电池容量(Capacity)电池容量是指电池储存电能的能力,通常以安时(Ah)为单位表示。
较高的电池容量意味着电池能够提供更长的运行时间。
常见的锂电池容量从几百毫安时到几千毫安时不等,不同应用领域根据需求可以选择适合的容量电池。
2. 电池电压(Voltage)电池电压是指电池输出的电压,单位为伏特(V)。
常见的锂电池电压有3.6V、3.7V等,电动车等高功率应用中可能会使用更高电压的锂电池。
电池电压决定了电池输出的功率,对应的充放电过程中的电流也会相应变化。
3. 最大充电电流(Maximum Charging Current)最大充电电流是指电池充电过程中最大允许的充电电流,单位为安培(A)。
如果充电电流过大,可能会导致电池损坏或产生过热等安全问题。
不同型号的锂电池根据设计和技术限制,最大充电电流可能会有所不同。
4. 最大放电电流(Maximum Discharging Current)最大放电电流是指电池放电过程中最大允许的放电电流,单位为安培(A)。
较高的最大放电电流可以确保电池在高负载运行时的稳定性。
对于一些应用场景如电动车等,需要具备较高的最大放电电流以满足瞬时高功率输出的需求。
5. 充放电效率(Charge and Discharge Efficiency)充放电效率指在充放电过程中,电池有效转化电能的比例。
充放电效率越高,代表电池能够更好地利用电能,减少电能损耗。
一般情况下,锂电池的充放电效率在90%以上。
6. 循环寿命(Cycle Life)循环寿命是指电池充放电循环次数达到指定容量衰减的次数。
不同型号的锂电池循环寿命可能不同,充放电电流大小、充放电温度、充放电深度等都会影响电池的循环寿命。
锂离子电池常用的性能参数

锂离子电池常用的性能参数(1)额定容量:指电池在出厂时在常温25℃环境下按照标准充放电工序测试,所能放出的最大电量,单位为mAh 或者Ah,一般由厂家自己规定;(2)剩余容量:指电池在一定的环境中使用,经过一阶段的使用结束后,以标准放电工序仍可放出的电量,表明了电池当前阶段的续航能力;(3)电动势:指电池处于平衡状态时正负电极的电位差,其大小由内部电化学反应所决定,与形状、大小等外在因素无关;(4)开路电压:电池在与外界电路断开时的正负极电位差;(5)端电压:电池与外界电路相连,即充电或带负载放电时的正负极电位差,充电时数值上总是高于开路电压,放电时数值上总是低于开路电压;(6)充电保护电压:指电池电压所允许的最大值,超过此电压会损伤电池寿命或者影响电池的安全性,充电时达到此电压即可认为已充满电量,具体数值一般由厂家决定;(7)放电保护电压:指电池电压所允许的最小值,低于此电压会损伤电池寿命或者影响电池的安全性,放电时达到此电压即可认为已放空电量,具体数值一般由厂家规定;(8)充放电倍率:指充放电过程中电流的大小,在数值上定义为: 充放电倍率=充放电电流额/定容量,工程测试中,常用C 来表征其数值的大小,如额定容量为10Ah 的电池以1C电流放电即表示放电电流为10A;(9)荷电状态:指电池剩余容量与额定容量的比值,常用百分比形式表示,表征电池当前状态下可吸收或释放电能的能力;(10)极化电压:指由电极反应导致的电池极化现象使电极电位偏离平衡电位,从而产生的电极电位差;(11)极化内阻:指由电极反应导致的内阻变化,包括电化学极化内阻和浓差极化内阻等,其值大小与电极材料和电化学本质相关; (12)欧姆内阻:指电池各组成部分之间的接触电阻,其值大小与电池的制造工艺、电极结构相关;(13)电池内阻:由极化内阻与欧姆内阻共同组成;(14)循环寿命:在电池满电状态下的容量下降至某一规定值之前,电池可经历的充放电循环次数。
六种锂电池特性及参数分析

六种锂电池特性及参数分析(钴酸锂、锰酸锂、镍钴锰酸锂、镍钴铝酸锂、磷酸铁锂、钛酸锂)我们常常会说到三元锂电池或者铁锂电池,这些都是按照正极活性材料来给锂电池命名的。
本文汇总六种常见锂电池类型以及它们的主要性能参数。
大家都知道,相同技术路线的电芯,其具体参数并不完全相同,本文所显示的是当前参数的一般水平。
六种锂电池具体包括:钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、镍钴锰酸锂(LiNiMnCoO2或NMC)、镍钴铝酸锂(LiNiCoAlO2或称NCA)、磷酸铁锂(LiFePO4)和钛酸锂(Li4Ti5O12)。
钴酸锂(LiCoO2)其高比能量使钴酸锂成为手机,笔记本电脑和数码相机的热门选择。
电池由氧化钴阴极和石墨碳阳极组成。
阴极具有分层结构,在放电期间,锂离子从阳极移动到阴极,充电过程则流动方向相反。
结构形式如图1所示。
图1:钴酸锂结构阴极具有分层结构。
在放电期间,锂离子从阳极移动到阴极; 充电时流量从阴极流向阳极。
钴酸锂的缺点是寿命相对较短,热稳定性低和负载能力有限(比功率)。
像其他钴混合锂离子电池一样,钴酸锂采用石墨阳极,其循环寿命主要受到固体电解质界面(SEI)的限制,主要表现在SEI膜的逐渐增厚,和快速充电或者低温充电过程的阳极镀锂问题。
较新的材料体系增加了镍,锰和/或铝以提高寿命,负载能力和降低成本。
钴酸锂不应以高于容量的电流进行充电和放电。
这意味着具有2,400mAh的18650电池只能以小于等于2,400mA充电和放电。
强制快速充电或施加高于2400mA的负载会导致过热和超负荷的应力。
为获得最佳快速充电,制造商建议充电倍率为0.8C或约2,000mA。
电池保护电路将能量单元的充电和放电速率限制在约1C的安全水平。
六角蜘蛛图(图2)总结了与运行相关的具体能量或容量方面的钴酸锂性能;具体功率或提供大电流的能力;安全;在高低温环境下的性能表现;寿命包括日历寿命和循环寿命;成本特性。
6大锂电池类型及性能参数汇总!

6大锂电池类型及性能参数汇总!我们常常会说到三元锂电池或者铁锂电池,这些都是按照正极活性材料来给锂电池命名的。
常见六种锂电池具体包括:钻酸锂,镒酸锂,锲钻镒酸锂(NCM),银钻铝酸锂(NCA),磷酸铁锂,钛酸锂。
一、钻酸锂(LiCoO2)其高比能量使钻酸锂成为手机,笔记本电脑和数码相机的热门选择。
钻酸锂的缺点是寿命相对较短,热稳定性低和负载能力有限(比功率)。
像其他钻混合锂离子电池一样,钻酸锂采用石墨负极,其循环寿命主要受到固体电解质界面(SEl)的限制,主要表现在S日膜的逐渐增厚,和快速充电或者低温充电过程的负极镀锂问题。
较新的材料体系增加了模,镒和/或铝以提高寿命,负载能力和降低成本。
图1平均钻酸锂电池的蜘蛛图六角蜘蛛图总结了与运行相关的具体能量或容量方面的钻酸锂性能。
钻酸锂在高比能量方面表现出色,但在功率特性、安全性和循环寿命方面只能提供一般的性能表现。
电区标称值为3. 60V;典型工作范围3∙ 0-4. 2V /电池比能150-200Wh ∕kgβ特和电池提供南达240Wh / kg.充电0.7-1C,充电至4.20V (大部分电池);典型充电时■长3小时;IC以上的充电电流会缩短电池寿命。
放电1C;放也截止电区2.50V。
IC以上的放电电潦会蝮短电池寿命。
桃环寿命500-1000,与放电深度,负荷,温生有关然失控150, C (302* F)。
满充枚态容易带来热失控应用手机,手板电脑,笔记本电脑,相机注释非常市的比能量.有限的比功率.话很昂贵。
被用作能量型电池・市场份领稳定。
表2钻酸锂的特性二、镒酸锂(LiMn2O4)尖晶石镒酸锂电池首次发表于1983年的材料研究报告中。
1996 年,MOIi能源公司将镒酸锂为正极材料的锂离子电池商业化。
该架构形成三维尖晶石结构,可改善电极上的离子流动,从而降低内部电阻并改善电流承载能力。
尖晶石的另一个优点是热稳定性高,安全性提高,但循环和日历寿命有限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钴酸锂
1.钴酸锂的概述
1992年SONY公司商品化锂电池问世,由于其具有工作电压高、能流密度高、循环压寿命长、自放电低、无污染、安全性能好等独特的优势,现已广泛用作移动电话、便携式计算机、摄像机、照相机等的电源。
并已在航天、航海、人造卫星、小型医疗仪及军用通讯设备中逐步发展成为主流应用的能源电池。
Sony公司推出的第一块锂电池中,正极材料是钴酸锂,负极材料为碳。
其中,决定电池的可充电最大容量及开路电压的主要是正极材料。
因此我国现有的生产正极材料公司,产品几乎全部是钴酸锂。
与钴酸锂同属4伏正极材料的候选体系有镍酸锂和锰酸锂两大系列,这两个系列材料在性能上各有长短,锰酸锂在原料价格上优势明显。
但在容量和循环寿命上存在不足。
钴酸锂的实际使用比容量为130mAh/g,循环次数可达到300至500次以上:而锰酸锂的实际比容量在100mAh /g左右,循环次数为100至200次。
另外,磷酸铁锂电池有安全性高。
稳定性好、环保和价格便宜优势,但是导电性较差,而且振实密度较低。
因此其在小型电池应用上没有优势。
国内钴酸锂市场需求变化呈现典型的中国市场特征,历史较短,但发展较快,多数企业在很短时间进入,但生产企业规模不大,产品主要集中在中低档。
2002年,国内钴酸锂材料市场需求量为2400吨,大多数产品依靠进口,但随着国内主要生产企业的投产,产能和需求量得到了极大的提升,2006年需求量达到6500吨,2008年需求量接近9000吨。
2001年全球主要生产高性能钴酸锂、氧化钴材料的生产企业是比利时Umicore 公司,美国OMG和FMC公司,日本的SEIMEI和日本化学公司等国外企业。
另外台湾地区的台湾锂科科技公司也是重要的生产企业。
而国内的生产企业为北京当升科技、湖南瑞翔、中信国安盟固利、北大先行和西安荣华等。
这些生产企业有些是从科研机构孵化而来,有些是具有上有资源优势的企业。
2.钴酸锂的材料构成
LiCoO2在目前商业化的锂离子电池中基本上选用层状结构的锂离子二次电池正极材料(钴酸锂)的液相合成工艺,它采用聚乙烯醇(PVA)或聚乙二醇(PEG)水溶液为溶剂,锂盐、钴盐分别溶解在PVA或PEG水溶液中,混合后的溶液经过加热,浓缩形成凝胶,生成的凝胶体再进行加热分解,然后在高温下煅烧,将烧成的粉体碾磨、过筛即得到钴酸锂粉。
与现有技术相比,本发明具有合成温度低,得到的产品纯度高、化学组成均匀等优点。
3.钴酸锂的制备
1活性钴酸锂的制备方法,其特征是包括以下步骤:以原生钴矿石为原料,制取高纯钴盐溶
液;在弱氧化气氛下,将浓度为40~70g/l的高纯钴盐溶液与浓度为60~200g/l的沉淀剂混合反应,反应温度为40~80℃,反应时间5~60分钟,反应后pH值为7.2~9.5,过滤、洗涤、干燥得电池级钴盐;在弱氧化气氛下,以400~830℃煅烧电池级钴盐2~7小时,经粉碎制得微米或纳米级四氧化三钴;将粉碎的微米电池级碳酸锂与微米或纳米级四氧化三钴按1.00~1.04∶1摩尔比称量配比后混合,在弱氧化气氛下,以450~950℃煅烧10~20小时,粉碎、分级制得成品。
按本发明制得的材料,除化学性能、物力性能优越外,还具有优异的电化学性能。
2钴酸锂的制备方法,其特征是包括以下步骤:a.以原生钴矿石为原料,制取高纯钴盐溶液;
b.在弱氧化气氛下,将浓度为40~70g/l的高纯钴盐溶液与浓度为60~200g/l 的沉淀剂混合反应,反应温度为40~80℃,反应时间5~60分钟,反应后PH值为7.2~9.5,过滤、洗涤、干燥得电池级钴盐;
c.在弱氧化气氛下,以400~830℃煅烧电池级钴盐2~7小时,经粉碎制得微米或纳米级四氧化三钴;
d.将粉碎的微米电池级碳酸锂与微米或纳米级四氧化三钴按1.00~1.04∶1 摩尔比称量配比后混合,在弱氧化气氛下,以450~950℃煅烧10~20小时,粉碎、分级制得成品
4.钴酸锂的优劣性
该正极材料的主要优点为:工作电压较高(平均工作电压为3.7V)、充放电电压平稳,适合大电流充放电,比能量高、循环性能好,电导率高,生产工艺简单、容易制备等。
主要缺点为:价格昂贵,抗过充电性较差,循环性能有待进一步提高
三元材料
钴酸锂锂是目前应用最广的电池材料,但钴资源日益匮乏,价格昂贵,且钴酸锂电池在使用过程中存在安全隐患。
镍钴锰酸锂以相对廉价的镍和锰取代了钴酸锂中三分之二以上的钴,成本方面优势非常明显,和其他锂离子电池正极材料锰酸锂、磷酸亚铁锂相比,镍钴锰酸锂材料和钴酸锂在电化学性能和加工性能方面非常接近,使得镍钴锰酸锂材料成为新的电池材料而逐渐取代钴酸锂,成为新一代锂离子电池材料的宠儿。
分子式:LiNixCoyMn1-x-yO2 外观:黑色固体粉末,流动性好,无结块物相:符合纯相 LiNiO2结构
形貌:球形或类球形颗粒
主要用途
锂离子电池正极材料。
如动力电池、工具电池、聚合物电池、圆柱电池、铝壳电池等。
镍钴锰酸锂性能
(1)高能量密度,理论容量达到280 mAh/g,产品实际容量超过150 mAh/g;
(2)循环性能好在常温和高温下均具有优异的循环稳定性;
(3)具有电压高在2.5-4.3/4.4V电压范围内循环稳定可靠;
(4)热稳定性好在4.4V充电状态下的材料热分解稳定;
(5)循环寿命长1C循环寿命500次容量保持80%以上;
(6)晶体结构理想、自放电小、无记忆效应等突出优点。
制备
镍钴锰酸锂的制备方法主要采用高温固相合成法,共沉淀法。
目前主要采用锰化合物、镍化合物及钴酸锂和氢氧化锂作为原料,通过水热反应,得到锂、锰、钴、镍结合良好的前提,再对前提补充配入锂源并研磨得到前躯体,经过煅烧制备得到镍钴锰酸锂。
随着全球资源的日益紧张及环境的压力,电池材料必须走定线循环之路。
邦普循环科技有限公司成功发明了一种以废旧锂离子电池定向循环镍钴锰酸锂的方法。
其主要特点是:将废旧锂离子电池经过拆解、分选、粉碎、筛分等预处理后,再采用高温除粘结剂、氢氧化钠除铝等工艺,采用硫酸和双氧水体系浸出、P204萃取除杂,得纯净的镍、钴、锰溶液,配入适当的硫酸锰、硫酸镍或硫酸钴,调节镍、钴、锰元素的摩尔比;随后采用碳酸铵调节PH值,形成镍钴锰碳酸盐前躯体,接着配入适当碳酸锂,高温烧结合成镍钴锰酸锂。
该方法工艺流程简单,原料价格低,,产品附加值高。
为废旧电池资源化利用产业及镍钴锰酸锂的生产提供了一条全新的途径。
性能参数:
以下数据来自国内以废旧电池为原料定向循环制备镍钴锰酸锂的佛山市邦普循环科技有限公司
(1)振实密度(g/cm3)2.0-2.4;
(2)比表面积(m2/g)0.3-0.8;
(3)粒径大小D50(um)9-12;
(4)首次放电容量(0.2C)﹥148;
(5)Ni(%)19.5-21.5;
(6)Co(%)19.5-21.5;
(7)Mn(%)18.0-20.0;
(8)Ni+Co+Mn(%)58.0-62.0;
(9)首次可逆效率(%)﹥88.
优点:容量比较高的材料,其比容量比钴酸锂高出30%以上,而且和钴酸锂有相同的上下限电压,比较容易规模化利用,价格相对便宜。
安全性也相对较好,价格相对较低,与电解液的相容性好,循环性能优异,是最有可能在小型通讯和小型动力领域同时应用的电池正极材料,甚至有在大型动力领域应用的可能。
缺点:材料的合成相对困难,材料的密度相对较低,材料的电压平台较低,充放电效率较低,和电解液相容性和安全性差等缺陷。