第5章 模糊线性规划

合集下载

第五讲:模糊线性规划

第五讲:模糊线性规划

换基: 换基: 因为 / 2 < 6 / 1,故 为主元素。 10 2为主元素。
1.5 1 0 0 0 2 1 1 0 10 1 1 0 1 6
1.5 1 0 0 0 2 1 1 0 10 1 1 0 1 6 0 1/ 4 − 3 / 4 0 − 7.5 5 → 1 1/ 2 1/ 2 0 0 1/ 2 − 1/ 2 1 1 检验数中1/4为正数,目标值非最优,需换基。 检验数中 为正数,目标值非最优,需换基。 为正数 换基: 换基: 5 1 为主元素。 因为 /(1/ 2) > 1/(1/ 2), 故 / 2为主元素。
得f0 + d0;
3.求解综合线性规划
ax m λ 1 n 1 − (∑aij x j − bi ) ≥ λ, j = 1,2,⋯, m d j i =1 1 n ( c x − f )≥λ 0 d0 ∑ i i i =1 λ ≥ 0, xi ≥ 0(i = 1,2,⋯, n) ∗ ∗ x λ 得 和 。
合线性规划即得模糊 利用单纯形法求解此综 规划的解。 规划的解。
: 模糊线性规划求解步骤
ax m f = Cx 1.求解普通线性规划 s.t. Ax ≤ b 得f0; x≥0
2.给定 i (i = 1,⋯, m), 求解普通线性规划 d
ax m f = Cx s.t. Ax ≤ b + d x≥0
ax m f = 7x1 + 3x2 ~ 3x1 + 2x2 ≤ 1500 ~ ~ x1 ≤ 400, x2 ≤ 250 x ≥ 0, x ≥ 0 2 1 ~ ~ ~ 3 模糊约束 x1 + 2x2 ≤ 1500, x1 ≤ 400, x2 ≤ 250

模糊规划

模糊规划
第十讲 模糊线性规划
2020/8/14
1
所谓规划问题,也就是最优化问题。长期以来,最 优化思想支配着人类生存和改造世界的活动,才使 人类社会得以不断发展。最优问题,在生活、生产 和社会行为的各个方面都普遍存在,因此优化是人 们普遍的思想。以前解决规划问题的常用的数学方 法,叫线性规划.这是用线性方程来研究规划问题 的方法。经典规划问题的目标函数和约束条件都是 明确的,但是,在实际问题中常常碰到模糊的目标 函数和约束条件,从面提出了模糊的规划问题,即 用模糊集方法来求解模糊最优化问题。
求一组变量(x1,x2,…, xn)使目标函数最大,且满足约 束条件.用矩阵可以表示为
Ax b
max
s Cx
s.t.
x
0
2020/8/14
6
为方便求解,需将不等式化为等式(加入松弛变量) (1)若 ak1 x1 ak2 x2 ... akn xn bk 可加入变量xn+k使得
ak1 x1 ak 2 x2 ... akn xn xnk bk
2. 可行解集中的点x是极点的充分必要条件是x为基 础可行解;
3. 线性规划问题的最优值仅在某极点上达到.
上述性质的证明见有关”线性规划”的书, 根据性 质3,求线性规划问题的最优解,只需从可行解集的 极点(基础可行解)中去找.
2020/8/14
10
经典线性规划-解法-图解法
例 max s=1.5x1+1.0x2 约束条件
(2)若 ak1 x1 ak2 x2 ... akn xn bk 可加入变量xn+k使得 ak1 x1 ak 2 x2 ... akn xn xnk bk
线性规划的标准形式为(松弛变量在目标函数中的系数为0)

系数为直觉梯形模糊数的模糊线性规划

系数为直觉梯形模糊数的模糊线性规划

1 基 本 概 念



0l
, ’
。 ≤ ≤ 6; 1 ’
b≤ ≤ ;
定义 1 [ 1 - 2 ] 设 是 一个 普 通 集 合 , A是论 域 上 的一 个直 觉模 糊集

( )= C — + ( —d 1 )
c—d1
, Байду номын сангаас
c≤ ≤ d1 ;
( I 詈 十 + + 了 + 号 了 + J 詈 ) ,
从而 ( + ) = ( a ) + ( 声 ) , ( + 声 ) ( ) + ( 声 ) , 显然就有 ( A , + 声 ) =V ( A ,
糊数 , 如果 它 满足 :
二旦
无 特别 说 明 , 本 文 的 直 觉梯 形 模 糊 数 均 为 此 类模 糊 数.
定义4 卜 。 , 设 =( [ Ⅱ , b , c , d ] ; , ) , 声

( [ 口 , 6 , c , d , ] ; , ) 为 两 个 直 觉 梯 形 模 糊
记 为

( [ 0 , b , c , d ] ; x I , ) .
[ A : ( ∞ ) , A R ( ∞ ) ] ={ ∈ l A ( x ) ≥ } ,
[ A 一 ( ( c J ) , A 一 ( ) ] ={ ∈ l 1 一 A ( ) ≥ } 分 别称为直觉 模糊集 的极小 截集与极大 截集 定义 3 [ 】 直觉模 糊 数 a为直 觉 梯形 模

∞∈ 。 ,
收 稿 日期 : 2 0 1 3— 0 4—0 7: 修 回 日期 : 2 0 1 3— 0 5— 0 2 作 者 简 介 :秦 泽 健 ( 1 9 8 7一) , 男, 硕士研究生 . E - ma i l : 7 3 5 6 9 2 8 8 5 @q q . c o m

模糊数学 之 模糊线性规划

模糊数学  之 模糊线性规划

中的M为足够大的正 中的 为足够大的正 , Ax = b ≥ 0数, 起“惩罚”作用 惩罚”作用, s.t. 以便排除人工变量. 以便排除人工变量 x ≥ 0. 单纯形解法是引入m个人工变量 大M单纯形解法是引入 个人工变量 n+1 , …, 单纯形解法是引入 个人工变量x xn+m将原问题变为 m
若约束条件带有弹性,即右端常数 若约束条件带有弹性,即右端常数bi可能取 (bi – di , bi + di ) 内的某一个值,这里的d 内的某一个值,这里的 i>0,它是决策人根据实 , 际问题选择的伸缩指标 这样的规划称为模糊线 伸缩指标. 际问题选择的伸缩指标. 这样的规划称为模糊线 性规划. 性规划.
解多目标线性规划问题(P280) (P280): 例2 解多目标线性规划问题(P280):
in m f1 = x1 + 2x2 x3; m f = 2x + 3x + x ; ax 2 1 2 3 x1 + 3x2 + 2x3 ≤10, x + 4x x ≥ 6, s.t. 1 2 3 x1, x2 , x3 ≥ 0.
⑴解普通线性规划问题: 解普通线性规划问题:
in m f1 = x1 + 2x2 x3; x1 + 3x2 + 2x3 ≤10, s.t.x + 4x x ≥ 6, 2 3 1 x1, x2 , x3 ≥ 0.
得最优解为x 得最优解为 1 = 0, x2 = 2, x3 = 2, 最优值 为2,此时 f 2 = 8. ,
⑶再分别将两个目标函数模糊化,变为解普通 再分别将两个目标函数模糊化, 线性规划问题: 线性规划问题:
ax λ, m x1 + 2x2 x3 + 2λ ≤10, 2x1 + 3x2 + x3 12λ ≥ 8, s.t. x1 + 3x2 + 2x3 ≤10, 此时f 此时 1 = 5.43, x1 + 4x2 x3 ≥ 6. f 2 = 14.86.

模糊线性规划实验报告

模糊线性规划实验报告

姓名: 学号:实验二 求解模糊线性规划实验目的:掌握将模糊线性规划转化为一般线性规划的方法,会使用数学软件Matlab 工具箱求解一般线性规划. 实验学时:2学时 实验内容:将已知模糊线性规划问题标准化后,再用Matlab 工具箱求解相应的各个线性归化问题,最后得到模糊最优解。

实验日期:2017年12月02日实验步骤: 1 问题描述:某种药物主要成分为A 1、A 2、A 3,含量分别为585±-1mg 盒∙、5100±-1mg 盒∙、10100±-1mg 盒∙。

这三种成分主要来自五种原材料B 1、B 2、B 3、B 4、B 5,各种原表一2 解决步骤设成本为)(b f ,买入原材料B 1、B 2、B 3、B 4、B 5分别为54321b b b b b 、、、、千克。

为使成本最小,建立如下模糊线性规划模型:⎪⎪⎩⎪⎪⎨⎧≥=++++=++++=++++++++=0,,,,]10,100[200120150120001]5,010[601609015008]5,85[120801206085.8.17.16.15.11.3)(min 5432154321543215432154321b b b b b b b b b b b b b b b b b b b b t s b b b b b b f(1)求解没有伸缩率经典线性规划:⎪⎪⎩⎪⎪⎨⎧≥=++++=++++=++++0,,,,10020012015012000110060160901500885120801206085.54321543215432154321b b b b b b b b b b b b b b b b b b b b t s使用Matlab 实现代码如下:实验结果:图一 没有伸缩率经典线性规划求解结果因此我们可以得知:0000.0b 3021.00.00000000.01.014454321=====、、、、b b b b 从而得到最优解:1.8322)(=b f(2)求解有伸缩率的普通线性规划:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥++++≤++++≥++++≤++++≥++++≤++++0,,,,90200120150120001110200120150120001956016090150081056016090150088012080120608590120801206085.54321543215432154321543215432154321b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b t s使用Matlab 实现代码如下:实验结果:图二 有伸缩率的普通线性规划求解结果因此我们可以得知:0000.0b 3500.00.43330000.00.000054321=====、、、、b b b b 从而得到最优解:1.2883)(=b f(3)0.54391.2883-1.8322==d ,最后求解线性规划:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥≥-++++≤+++++≥-++++≤+++++≥-++++≤+++++≤+++++0,,,,,9010200120150120001110102001201501200019556016090150081055601609015008805120801206085905120801206085 1.83220.54398.17.16.15.11.3.min 5432154321543215432154321543215432154321λλλλλλλλλb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b t s使用Matlab 实现代码如下:实验结果:图三 最后求解线性规划因此我们可以得知:0000.0b 3482.00.00000000.00.756554321=====、、、、b b b b 从而得到最优解:1.3826)(=b f实验心得:通过这次实验,让我学会了如何解决实际问题中的约束条件可能带有弹性、目标函数可能不是单一的、价值系数可能带有模糊性的模糊线性规划。

模糊数学5-模糊线性规划

模糊数学5-模糊线性规划

具体形式
例1. 解模糊线性规划
m a x s x1 4 x 2 6 x 3 x1 x 2 x 3 8 ~ x1 6 x 2 x 3 6 ~ s .t . x 1 -3 x 2 -x 3 4 ~ x 1 ,x 2 , x 3 0

1.4 0.6 0.8 8

1.5 0.8 0.8 10

单位时段可 供使用或必 须使用时数

2100
1000 1300
解:设甲、乙、丙、丁四种产品的产量分别为x1,x2,x3,x4 maxf=12x1+15x2+8x3+10x4
x 1 1 . 2x 2 1 . 4x 3 1 . 5x 4 2100 0 . 5x 1 0 . 6x 2 0 . 6x 3 0 . 8x 4 1000 s.t. 0 . 7x 1 0 . 7x 2 0 . 8x 3 0 . 8x 4 1300 x1 , x 2 , x 3 , x 4 0
玉米
发热量 蛋白含量 4Mcal/kg 90g/kg
大豆饼
2Mcal/kg 300g/kg
配比要求
>2.8Mcal/kg > 220g/kg
价格
2元/kg
1.6元/kg
解:设1公斤混合饲料中玉米为x1,大豆饼为x2,
目标函数为:z=2x1+1.6x2
s.t. 4x1+2x2 2.8
90x1+300x2
最优值为z2=20,此时z1=10 兼顾两个目标函数可知 z 1 [ 2 , 1 0 ], z 2 [ 8 , 2 0 ]
d 于是选取伸缩分别为: 1 10 2 8 , d 2 20 8 12

模糊数学5模糊线性规划PPT课件

模糊数学5模糊线性规划PPT课件

s.t.
0 0
.5x1 .7x1
0.6x2 0.7x2
0.6x3 0.8x3
0.8x4 0.8x4
1000 1300
x1 , x2 , x3 , x4 0
8
二. 模糊线性规划的求解方法
普通线性规划:
模糊线性规划
m in f T x x
Ax b Aeqx=beq
lbxub
m ax f T x x Ax b ~
加工每件产品工时
单位时段可
设备
供使用或必




须使用时数
A
1.0
1.2
1.4
1.5
2100
B
0.5
0.6
0.6
0.8
1000
C
0.7
0.7
0.8
0.8
1300
每件利润 12
15
8
10
解:设甲、乙、丙、丁四种产品的产量分别为x1,x2,x3,x4
maxf=12x1+15x2+8x3+10x4
x1 1.2x2 1.4x3 1.5x4 2100
~~~
相应地改成 ,, 即可
11
转化为求最小值的线性规划模型:
m in s x1+ 4x2 -6x3
x1 x2 x3 8
s
.t
.
-
x x
1 1
+6x -3x2
2 -x3 -x3
6 4
1'
x1 ,x 2 , x 3 0
MATLAB程序如下
f1=[-1,4,-6]; A1=[1,1,1;-1,6,-1];b1=[8;-6]; Aeq1=[1,-3,-1];beq1=[-4];lb1=[0,0,0]; [x1,z1]=linprog(f1,A1,b1,Aeq1,beq1,lb1);

具有三角模糊数的线性规划的一种方法

具有三角模糊数的线性规划的一种方法

具有三角模糊数的线性规划的一种方法这种方法是利用了模糊数学隶属度的概念,我们选取一种计算方法,在该方法下,可以根据精度要求将计算过程细化,即可以分成多个计算区间,这个区间分的越细,我们所用来比较隶属度的样本就越多,从而可以更精确的找出隶属度最大的那个区间,那么在该区间上计算出来的结果就应该是我们想要的结果。

上面所说的隶属度是描述了我们所分区间的到的样本结果是否从属与理想结论的程度,同下面的方法中用距离来刻画是相似的。

记所用三角模糊数形式为0(,,)mpc c c c =设模糊线性规划中带有三角模糊数的目标函数有如下形式:123111()nnnpm i i i i i i f x w c x w c x w c x ====++∑∑∑上式中:w 1+2w +3w =1,0c --------消极量,m c --------可能量,p c -------乐观量,x Q ∈.设001231212(1)p m p mi i i i i i i f wc w c w c wc w c w w c =++=++--根据三角模糊数的性质可以知道001212(1)p m i i i i c wc w c w w c ≤++-- (1)由(1)可以推出 012()/()1p m m i i i i w w c c c c ≤--+ 我们作如下相应记法:102,m p m i i i i i i c c P c c P =-=-那么可以得到:21211i iP w w ≤+P (2)同样 01212(1)pm p i i i i w c w c w w c c ++--≤ (3) 由(3)可以推出2211(1)ii w P w P -≥作如下相应记法:()()22222122111122222212211112(1)(1)(1)max(,,....,)4min(1,1,...,1)5n n n n w P w P w P n P P P w P w P w Pm P P P ---==+++可以得到 1n w m ≤≤ (6)对于1w 是否存在,我们需要做一些限定,我们假定下面的条件成立,即:22222222212122221111111122(1)(1)(1),1,1...,1n n n n w P w P w P w P w P w P P P P P P P ⎛⎫⎛⎫⎛⎫---+++≠∅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(7) 因此若201w ≤≤,那么显然(7)是成立的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊目标线性规划求解方法 ㈠
模糊目标线性规划求解方法 ㈡(1)
模糊目标线性规划求解方法 ㈡(2)
模糊目标线性规划求解方法补充说明 从实际应用的角度考虑,不管是哪一种解法, 如果价值系数在其可能变化的范围内波动时,最 优解不变,则是最好的方法. 或者在其最优解下, 最优值更接近于真实最 优值的方法,是一种较好的方法.
第5章 模糊线性规划
重点:理解线性规划模型的原理 掌握模糊线性规划求解的方法 难点:模糊线性规划求解
5.1 线性规划模型简介
5.1.1 线性规划问题的数学模型
最优生产计划的数学模型
目标函数 约束条件
运输问题
运输问题的数学模型
线性规划问题的数学模型
线性规划问题转换方法
单纯形解法
大M单纯形解法
投资品种 收益率ri 风险损失率qi 交易费率pi ui (元)
S1 S2 S3 S4
28 21 23 25
2.5 1.5 5.5 2.6
1 2 4.5 6.5
103 198 52 40
⑵ 模型建立
⑶ 模型求解
投资方案
最优投资方案的选择
求解多目标线性规划 (1) 例 解多目标线性规划问题(P204)

⑴ 解普通线性规划
求解多目标线性规划 (2) ⑵ 解普通线性规划
求解多目标线性规划 (3)
求解多目标线性规划 (4) ⑶ 再分别将两个目标函数模糊化
求解多目标线性规划 (5) ⑷ 采用对称型模糊判决,即将所有目标函数 与所有约束条件平等看待,然后解普通线性规划
模糊约束转化为普通约束
求解模糊线性规划 (1)
(P203)

⑴ 解普通线性规划
求解模糊线性规划 (2) ⑵ 解普通线性规划
求解模糊线性规划 (3)
求解模糊线性规划 (4) ⑷ 解普通线性规划
5.3.2 多目标线性规划 在相同的条件下,要求多个目标函数都得到最 好的满足,这便是多目标规划.若目标函数和约束 条件都是线性的,则为多目标线性规划. 一般来说,多个目标函数不可能同时达到其最 优值, 因此只能求使各个目标都比较“满意”的 模糊最优解. 下面通过具体例子来说明,如何用模糊方法求 解多目标线性规划问题.
5.1.2 线性规划问题的常用软件求解方法 1 lindo软件
2 lingo软件
lingo软件编程方法 当数据量很大时,可采用下述代码:
5.2 模糊环境下的条件极值
目标函数模糊化
模糊判决
多目标模糊化方法
年轻人中的最高者
年轻人中的最高者求解
大衣购买选择
大衣购买选择求解
大衣购买选择对称型模糊判决求解
第5章 重要概念与公式方法 线性规划模型 模糊化的方法 模糊线性规划求解的方法 多目标线性规划求解的方法 模糊数的隶属函数
风险投资策略 ⑴ 问题的简述 市场上有n种资产(如股票、债券等)Si ( i = 1, 2, …, n) 供投资者选择,某公司有数额为M的一 笔相当大的资金可用作一个时期的投资. 公司财务分析人员对这n种资产进行了评估, 估算出在这一时期内购买 Si 的平均收益率为ri , 并预测出购买 Si 的风险损失率为qi . 考虑到投资越分散,总的风险越小.公司确定 当用这笔资金购买若干种资产时,总体风险可用 所投资的 Si 中最大的一个风险来度量.
大衣购买选择加权型模糊判决求解
5.3 模糊线性规划模型
5.3.1 资源限量带有模糊性
带有弹性的约束条件
把约束条件带有弹性的模糊线性规划记为
注意模糊线性规划与普通线性规划区别
约束条件模糊化
目标函数模糊化
隶属函数的 – 截集
模充说明
目标函数转化为普通约束
⑴ 问题的简述
购买Si要付交易费,费率为pi ,并且当购买额不超过 给定值 ui 时,交易费按购买 ui 计算(不买当然无须付费). 另外, 假定同期银行存款利率是 r0 (r0 = %5),且既无交 易费又无风险. 已知 n = 4 时相关数据如表.试设计一种投资组合方 案,即用给定的资金 M,有选择地购买若干种资产或存 银行生息,使净收益尽可能大,而总体风险尽可能小.
5.3.3
价值系数带有模糊性
模糊数的隶属函数
0, xc 1 , cL c ( x) 1, xc 1 , cR 0,
x< c cL;
c c L≤ x < c ; x = c; c < x ≤ c + c R; x> c + cR.
相关文档
最新文档