行程问题应用题ppt讲解
小学数学六年级上册-《行程问题》说题幻灯片课件

临床上凡见跳动、亢进、明亮等表现的表证、热 证、实证,以及症状表现于外的、向上的、容易发 现的,或病邪性质为阳邪致病,病情变化较快的, 都可归属为阳证。
(二)阴证
临床上凡见抑制、沉静、衰退、晦暗等表现的里证、
虚证、以及症状表现于内的、向下的、不易发现的,
或病邪性质为阴邪 致病、病情变化较慢的都可归
属为阴证。
1、外感病中,发热恶寒同时并见的属表证,但发热不 恶寒或但寒不热属里证;寒热往来的属半表半里证。
2、表证以头身疼痛,鼻塞或喷嚏等为常见症状,内脏 证候不明显;里证以以内脏证候如咳喘、心悸等为 主症。
3、里证舌苔多有变化,表证多见浮脉,里证多见沉脉 或其他多种脉象。
4、起病急、病情轻、病程短多是表证,反之为里证。
反思拓展 行对应转化分析,求出相应的关 系量,由此可顺利解决这类题。
什么是“说题” “说题”的意义
“说题”的内容
范 例 11谢 谢! Nhomakorabea什么是“说题” “说题”的意义
“说题”的内容和形式 范 例 12
中医八纲辨证概说
主讲人:XXX
二○一七年七月二十五日
13
中医辨 证说
对四诊取得的病史、症状、 体征,用中医学理论进行综合分 析,辨清疾病原因、部位、性质 以及邪正盛衰之间的关系,从而 概括和判断为某种性质的证,称 为辨证。
[临床表现]:实证表现较多,一般是新起暴 病多实证,病情急剧者多实证,体质着实 者多实证。
[机理]:一是外感六淫、疫气虫毒等邪气, 正气奋起抗邪,下邪剧争,二是脏腑机能 失调,气化障碍,形成痰饮瘀血等病理产 物,停积体内。
27
[虚证与实证的鉴别表]
症状 病 体 证 程质 虚证 久病 虚弱
六年级数学行程问题四种类型专讲完整版讲解

六年级行程问题专讲第一部分:相遇问题知识概述:行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。
数量关系:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度注:(1)在处理相遇问题时,一定要注意公式的使用时二者开始运动那一刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
典型例题:例1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?习题:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?例2.甲港和乙港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?习题:甲乙两地的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地。
货车以平均每小时50千米的速度从乙地开往甲地。
要使两车在全程的中点相遇,货车必须在上午几点出发?例3.甲骑摩托车,乙骑自行车,同时从相距126千米的A 、B 两城出发相向而行。
3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。
小学五年级奥数教学课件ppt:行程问题

分析 :
二人相遇时,甲比乙多行15×2=30(千米), 说明二人已行30÷6=5(小时),上午8时至中 午12时是4小时,所以甲的速度是: 15÷(5-4)=15(千米)。 因此,东西两村的距离是
15×(5-1)=60(千米) 上午8时至中午12时是4小时。 15×2÷6=5(小时) 15÷(5-4)=15(千米) 15×(5-1)=60(千米)
3,学校运来一批树苗,五(1)班的40个同学都去参 加植树活动,如果每人植3棵,全班同学都能植这批树 苗的一半还多20棵。如果这批树苗全部给五(1)班的 同学去植,平均每人植多少树?
例3、 甲、乙二人上午8时同 时从东村骑车到西村去,甲 每小时比乙快6千米。中午12 时甲到西村后立即返回东村, 在距西村15千米处遇到乙。 求东、西两村相距多少千米?
3,甲、乙二人上午7时同时从A地去B地,甲每小时 比乙快8千米。上午11时甲到达B地后立即返回,在 距B地24千米处与乙相遇。求A、B两地相距多少千米?
例4、甲、乙两车早上8点分别 从A、B两地同时出发相向而行, 到10点时两车相距112.5千米。 两车继续行驶到下午1点,两车 相距还是112.5千米。A、B两地 间的距离是多少千米?
练习一
1,小玲每分钟行100米,小平每分钟行80米, 两人同时从学校和少年宫出发,相向而行,并 在离中点120米处相遇。学校到少年宫有多少米? 2,一辆汽车和一辆摩托车同时从甲、乙两地相 对开出,汽车每小时行40千米,摩托车每小时 行65千米,当摩托车行到两地中点处时,与汽 车还相距75千米。甲、乙两地相距多少千米? 3,甲、乙二人同时从东村到西村,甲每分钟行 120米,乙每分钟行100米,结果甲比乙早5分钟 到达西村。东村到西村的路程是多少米?
间不断往返送信。如果鸽子从同学们出发到相遇共 飞行了30千米,而甲队同学比乙队同学每小时多走 0.4千米,求两队同学的行走速度。
四年级行程问题ppt课件

画图法
通过画图直观地表示物体 的运动轨迹和相对位置, 帮助理解问题并找出解决 方案。
代数法
通过设立代数式表示物体 的速度、时间和距离,通 过代数运算求解。
追及问题的实例
小明和小华在环形跑道上跑步,小明跑一圈需要5分钟,小华 跑一圈需要6分钟。两人从同一点同向出发,多少分钟后两人 再次相遇?
一辆货车和一辆客车在同一条公路上同向行驶,货车的速度 是60千米/小时,客车的速度是75千米/小时。客车在行驶了 2小时后发现货车在前方54千米处,问货车行驶了多少时间 追上了客车?
环形跑道问题的解决方法
总结词
解决环形跑道问题需要先确定每个物体的速度和方向,然后根据问题描述分析物 体的相对运动关系,最后通过计算得出答案。
详细描述
解决环形跑道问题需要先理解物体的相对运动关系,即哪个物体在追赶哪个物体 ,或者哪个物体在等待哪个物体。然后根据相对速度和距离,计算出物体相遇或 追及的时间和地点。
03
CATALOGUE
追及问题
追及问题的定义
01
追及问题是行程问题中的一种, 主要研究两个或多个物体在同一 直线上运动,一个物体追赶另一 个物体的过程。
02
追及问题的关键在于找出两者之 间的速度差和距离差,以及追赶 所需的时间。
追及问题的解决方法
01
02
03
公式法
利用速度、时间和距离之 间的关系,列出方程求解 。
05
CATALOGUE
环形跑道问题
环形跑道问题的定义
总结词
环形跑道问题是指两个或多个物体在同一条环形跑道上按照不同的速度进行运 动,并涉及到追及和相遇的问题。
详细描述
环形跑道问题通常涉及到两个或多个物体在同一环形跑道上运动,每个物体都 有自己的速度。这类问题通常涉及到追及和相遇的情况,需要找出物体何时、 何地能够相遇或者追及。
数学奥数行程问题(共17张ppt)优秀课件

小明每分钟走100米,小红每分钟走80米, 两人同时同地向相反方向走去。5分钟后 小明转向追小红,当小明追上小红时,两 人各走了多少米?
本题求的问题是两人各走了多少米。所用时间有两部分,一是先行 的5分钟,二是小明从转身开始追上小红所用的时间。求出各自行的 时间乘以各自的速度即可。
小明从转身开始追上小红用的时间:
轿车和货车同时从两地对开,3小时后在距中点 12千米处相遇,由此可见轿车3小时比货车多行 12x2=24 (千米)。 轿车比货车多行: 12x2=24 (千米) 轿车比货车每小时多行驶:24 ÷3=8 (千米)
3、 张、李、赵三人都从甲地到乙地,上午6时,张、李 二人一起从甲地出发,张每小时走5千米,李每小时走4千 米。赵上午8时才从甲地出发,傍晚6时赵、张同时到达乙 地,那么赵追上李的时间是几时?
弄
,
1
5
分
钟
后
你
还
没
有
弄
完
我
就
不
耐
烦
像
如
果
我
自
己
弄
五
分
钟
就
弄
完
所
以
最
后
通
常
变
成
我
自
己
弄
。
但
这
样
做
有
一
个
不
好
的
后
果
就
是
当
你
真
的
五
分
钟
弄
完
就
会
■
电
张比赵早出发2小时,张先走了5 x 2=10(千米),上 午8时到傍晚6时共10小时,用10个小时追上10千米, 赵每小时追10+10=1 (千米),因此,赵的速度是每 小时走5+1=6(千米)。李比赵也早出发2小时,先走 了4x2=8 (千米),赵要追上8千米,需要8÷(6-4) =4(小时), 8+4=12 (时),因此,赵追上李的时间是 中午12点。
五年级奥数-一行程问题追击问题(课堂PPT)

2,甲乙丙三人从A到B,甲乙一起从A出发, 甲每小时走6千米,乙每小时走4千米。4小时 后丙骑自行车从A出发,用2小时就追上乙, 再用几小时就能追上甲?
14
3,甲乙丙三人行走的速度分别为60米,80米 ,100米。甲乙两人在B同时同向出发,丙从A 同时同向出发去追甲乙,丙追上甲以后又过了 10分钟才追上乙。求AB两地的路程。
15
例5 、 甲、乙、丙三人步行的
速度分别是每分钟100米、90 米、75米。甲在公路上A处, 乙、丙在公路上B处,三人同
时出发,甲与乙、丙相向而行。 甲和乙相遇3分钟后,甲和丙 又相遇了。求A、B之间的距 离。
16
分析:
甲和乙相遇后,再过3分钟甲又能和丙相遇, 说明甲和乙相遇时,乙比丙多行: (100+75)×3=525米。 而乙每分钟比丙多行: 90-75=15米, 多行525米需要用: 525÷15=35分钟。 35分钟甲和乙相遇,说明A、B两地之间的距 离是: (100+90)×35=6650米。
(3)、甲乙两人以每分钟60米的速度同时同地步行出 发,走15分钟后甲返回原地取东西,而乙继续前进。甲 取东西用去5分钟的时间,然后改骑自行车以每分钟360 米的速度追乙,甲汽
地,要行360千米。开始按计划 以每小时45千米的速度行驶,途 中因汽车故障修车2小时。因为 要按时到达乙地,修好车后必须 每小时多行30千米。汽车是在离 甲地多远处修车的?
11
甲乙丙三人都从A地到B地,早晨六点,甲乙 两人一起从A出发,甲每小时走5千米,乙每 小时走4千米。丙早上八点才从A出发,傍晚 六点,甲和丙同时到达B,问丙什么时候追上 乙的?
12
1,客车,货车,小轿车都从A到B。货车和客 车一起从A出发,货车每小时行50千米,客车 每小时60千米。2小时后小轿车才从A出发。 12小时后小轿车追上了客车,问小轿车在出发 后几小时追上货车?
人教版数学五年级上册综合行程问题课件(共26张PPT)

两地相距多少千米? 乙车行了全程的: 3 =3
3+2 5
两人共行:3 + 4 =41 >1
5 7 35
AB相距:120÷(3 + 4 -1)=700(千米)
57
答:两地相距700千米。
变式1、小新和小芳两车分别从A、B两地同时相向而行,速度比是5:3,小新
行了全程的
3 7
后又行了66千米,正好与小芳相遇。A、B两地相距多少千米?
变式6、小东的船以25千米/时的速度顺流行驶,突然发现前方120千米处 有一顶帽子,请问小东的船经过多长时间才能遇到帽子?
120÷25=4.8(小时) 答:小东的船经过4.8小时才能遇到水壶。
相遇时,速度比=路程比=5:3 相遇时,小新行了全程的:5+53=58 全程:66÷(58 - 37)=336(千米) 答:两地相距336千米。
平均速度 平均速度≠速度的平均值 平均速度=总路程÷总时间 ※设数法:设题目已知的速度的最小公倍数为路程
练习2、新东方小学组织学生去爬山,上山的路程有6千米,小新上山平均每分 钟走30米,下山按原路返回,平均每分钟走60米,他上山和下山的平均速度 是多少? 6千米=6000米 上山时间:6000÷30=200(分) 下山时间:6000÷60=100(分) 总路程:6000×2=12000(米) 平均速度:12000÷(200+100)=40(米/分) 答:上山和下山的平均速度是40米/分。
第1次相遇,两人合走1个全程,小芳走:80米 第2次相遇,两人合走3个全程,小芳走:80×3=240(米) A、B两地的距离:(240+160)÷2=200(米) 答:A、B两地的距离为200米。
变式4、小东和小芳驾车同时从A地开出去往B地,小芳先到达B地后立即返 回,两人第一次在离A地95千米处迎面相遇。相遇后继续前进,小东到达B 地后也立即返回,两人第二次在离B地25千米处迎面相遇。求A、B两地间 的距离是多少千米?
第5讲:行程问题(最新数学课件)

一列长100米的火车经过6700米长的南京长江大桥,每分 钟行400米,需要多少分钟?
400米/分
行驶总路 程是多少?
6700m
6700+100=6800(米)
6800÷400=17(分钟) 答:需要17分钟。
一列火车长160米,全车通过440米的桥需要30秒,这列火车 每秒行多少米?
30秒
?米/分
相差时间:6-5=1(小时)
答:货车必须在上午7点出发。
50km/h
A、B两地相距352千米。甲、乙两汽车从A、B两地对开。甲
车每小时行36千米,乙车每小时行44千米。乙车因事,在甲车
开出32千米后才出发。两车从各自出发起到相遇时,哪辆汽车
走的路程多?多多少千米?
共行驶路程
36km/h
32km
352km
甲乙两辆摩托车同时从东与西两地相向开出,甲每小时行 40千米,乙每小时行32千米,两车在距中点8千米处相遇,东 西两地相距多少千米?
8km
32km/h
40km/h
甲车比乙车多走: 甲车每小时比乙车多走:
相遇时间:
8×2=16(千米) 40-32=8(千米) 16÷8=2(小时)
(40+32)×2=144(千米) 答:东西两地相距144千米。
1.阿派每分钟行100米,欧拉每分钟行80米,两人分别同时 从学校和青少年活动中心出发相向而行,并在离中点120米 处相遇。学校和青少年活动中心相距多少米?
阿派比欧拉多走: 120×2=240(米) 阿派每小时比欧拉多走:100-80=20(米)
相遇时间:240÷20=12(分钟)
(100+80)×12=2160(米) 答:学校和青少年活动中心相距2160米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求(1)两车同时开出,相向而行, 多少小时相遇?
甲
乙
450KM
问题:2
甲乙两站的路程为450千米,一列慢 车从甲站开出,每小时行驶65千米,一 列快车从乙站开出,每小时行驶85千米。
若快车先开30分钟,两车相向而行, 慢车行驶了多少小时两车相遇?
一、相遇问题的基本题型 1、同时出发(两段) 2、不同时出发 (三段 )
解:设甲的速度为x千米/时,则乙的速度 为(x+1)千米/时,根据题意,得
2x+20x+20(x+1)=230 2x+20x+20x+20=230 42x=210 x=5
∴乙的速度为 x+1=5+1=6
答:甲、乙的速度各是5千米/时、6千米/时.
2 . 一只小狗每小时跑5km,它同甲一起出 发,碰到乙时它就返身往甲这边跑,碰到 甲时它就返身往乙这边跑,问小狗在甲、 乙相遇时一共跑了多少千米?
二、相遇问题的等量关系
s甲 s乙 s总 s先 s甲 s乙 s总
检测一
苏步青,数学家.1902 年9月23日出生于浙江平 阳.1931年获日本东京大学理 学博士学位.1931—1952年任 浙江大学数学系教授,系主任, 教务长.复旦大学教授、校长、 名誉校长.1955年选聘为中国 科学院士.
练一练:当代数学家苏步青教授 在法国遇到一个很有名气的数学 家,这位数学家在电车里给苏教 授出了2个题目:
苏步青
问题1:
A、B两地相距230千米,甲队从A地出发 两小时后,乙队从B地出发与甲相向而行, 乙队出发20小时后相遇,已知乙的速度比甲 的速度每小时快1千米,求甲、乙的速度各是 多少?
相等关系:甲走总路程+乙走路程=230
解:设客车的速度是5x米/分, 则货车的速度是3x米/分.
依题意得: 5x – 3x = 280 + 200 x=240 5x = 1200,3x = 720
设两车相向行驶的交叉时间为y分钟.
依题意得: 1200y+720y= 280 + 200
y=0.25
甲、乙两人环绕周长是400米的跑道散步, 如果两人从同一地点背道而行,那么经过2分钟他 们两人就要相遇.如果2人从同一地点同向而行, 那么经过20分钟两人相 遇.如果甲的速度比乙的 速度快,求两人散步的速度?
• 顺流时的速度=静水中的速度+水流的速度 • 逆流时的速度=静水中的速度-水流的速度
解:
2小时50分 17 小时 6
设飞机在无风时的速度为x千米/时. 则它顺风时的速度
为(x+24)千米/时,逆风时的速度为(x-24)千米/时.根据
顺风和逆风飞行的路程相等列方程得
17 (x 24) 3(x 24) 6
解:设甲的速度为每分钟x 米,则乙的速度 为每分钟 400 2x 米.甲20分钟走了20x米,乙
2
20分钟走了 20(400 2x)米.
2
20x 20(400 2x) 400 2
解,得: x=110 答:甲速为每分钟110米,乙速为每分钟90米.
三:顺水逆水问题
问题4: 一架飞机飞行在两个城市之 间,风速为24千米/时. 顺风飞行需要2小 时50分,逆风飞行需要3小时. 求飞机在 无风时的速度及两城之间的飞行路程.
其关系;审
2、设元:选择一个适当的未知数用字母表
示(例如x);设
3、列方程:根据相等关系列出方程;列 4、解方程:求出未知数的值;解
5、检验:检查求得的值是否正确和符合
实际情形。 验
6、答:把所求的答案答出来。 答
问题:1
甲乙两站的路程为450千米,一列慢 车从甲站开出,每小时行驶65千米,一 列快车从乙站狗走的路程=小狗走的速度×小 狗走的时间.
因为小狗往返跑直到甲、乙相遇时才停下 来,故小狗跑的时间就是甲、乙相遇前走的时 间.
所以小狗所跑的路程为: 5×10=50(千米) 答:小狗在甲、乙相遇时,一共跑了50千米.
二:追及问题
问题1:甲乙两人相距4千米,乙在前,甲在 后,两人同时同向出发,2小时后甲追上乙, 乙每小时行6千米,甲的速度是多少千米?
1.计算下列各题
• (1)甲每小时行4公里,行走 了2小时,一共走了多少公里?
• (2)乙每小时行6公里,行走 了8小时,一共走了多少公里?
• 甲的路程=甲的速度×甲的时间
• S甲=v甲.t甲
• 乙的路程=乙的速度×乙的时间
• S乙=v乙.t乙
运用方程解决实际问题的一般过程是什么?
1、审题:分析题意,找出题中的数量及
甲
乙
追上
问题2:某校师生开展行军活动,以每小时6 千米的速度前进,3小时后,学校派通讯员 骑自行车去传达命令。如果通讯员以每小 时15千米的平均速度追赶队伍,需要几小 时才能追上?
。
问题3:两列火车,一列长120米,每 秒钟行20米;另一列长160米,每 秒行15米,两车相向而行,从车头 相遇到车尾离开需要几秒钟?
乙(30千米/小时)
15×1
甲(15千米/小时)
28千米
解:设乙开车x 小时后才能追上甲, 列方程 30x=15(x+1) 解,得 x=1
则甲共走了2小时,共走了2×15=30公里
因为两地相距28公里,所以在两地 之间,乙亮追不上甲.
答:在两地之间,乙追不上甲.
2.一列客车和一列货车在平行的轨道上同 向行驶,客车的长是200米,货车的长是280米, 客车的速度与货车的速度比是5:3,客车赶上货 车的交叉时间是1分钟,求各车的速度;若两车 相向行驶,它们的交叉时间是多少分钟?
• 解答:如图:从车头相遇到车尾离
开,两列火车一共走的路程就是两辆
火车的车身长度之和,即120+ 160=280米,所以从车头相遇到车尾 离开所用时间为x,则可得方程为: (20+15)X=120+160
检测二
1.两地相距28千米,甲以15千米/小时的 速度,乙以30千米/小时的速度,分别骑自行 车和开汽车从同一地前往另一地,甲先出发1 小时,乙几小时后才能追上甲?
去括号,得 17 x 68 3x 72
6 移项及合并,得
1
x
140
6
系数化为1,得 x=840
答:飞机在无风时的速度是840千米/时.
问题5.一艘轮船航行于两地之间, 顺水要用3小时,逆水要用4小时,已 知船在静水中的速度是50千米/小 时,求水流的速度.