三角函数图像变换顺序详解全面

合集下载

三角函数图表式教材解读:第九节:三角函数的图象变换

三角函数图表式教材解读:第九节:三角函数的图象变换

第九节:三角函数的图象变换图像变换有一个很好的口诀,适合所有的函数: 沿正减,沿负加,沿谁变谁; 不管伸,不管缩,变成倒数往前搁。

这个口诀中所有的变换都是对于,x y 而言的。

我们举例来说明这个问题。

我们还要知道,这个口诀适用于二元方程(,)0f x y =。

我们先以圆为例说明这个问题,这是因为圆有中心,比较直观。

设221:1C xy +=,先说平移变换:向右(沿正)平移2个单位,向上(沿正)平移3个单位得:221:()2)13(C x y +-=-,向左(沿负)平移2个单位,向下(沿负)平移3个单位得:221:()2)13(C x y ++=+,向右(沿正)平移2个单位,向下(沿负)平移3个单位得:221:()2)13(C x y ++=-,向左(沿负)平移2个单位,向上(沿正)平移3个单位得:221:()2)13(C x y +-=+,这里,与平时资料中的左加右减完全一致;但是,我们平时所说的上加下减似乎和这里不一致,事实上是一致的: 因为我们所说的上加下减,是指对()y f x =来说的,这里上加是加在了()f x 上,如y=向上平移3个单位是3y =+,也是3y -=再说伸缩变换: 仍以221:1C xy +=为例纵坐标不变,横坐标变为原来的2倍,得2251:()12C x y +=,即225:14x C y +=,横坐标不变,纵坐标变为原来的2倍,得2261:()12C x y +=,即226:14y C x +=,纵坐标不变,横坐标变为原来的12倍,得225:(2)1C x y +=,即225:14x C y +=,横坐标不变,纵坐标变为原来的2倍,得226:(2)1C x y +=,即226:114y C x +=,个单位长度,则平移后图象的对称轴为)。

三角函数的基本变换

三角函数的基本变换

三角函数的基本变换三角函数是数学中的重要内容,在数学、物理、工程等领域都有广泛的应用。

而三角函数的基本变换是理解和应用三角函数的基础。

本文将介绍三角函数的基本变换,包括正弦函数、余弦函数和正切函数的平移、伸缩和反射三种变换。

一、正弦函数的基本变换正弦函数的标准公式为:y = A*sin(Bx + C) + D,其中A、B、C、D 为常数,且A不等于0。

对于正弦函数的基本变换,可以通过调整A、B、C、D的值来实现平移、伸缩和反射。

1. 平移平移是指将函数图像沿x轴或y轴方向移动。

当C为正数时,正弦曲线向左平移;当C为负数时,正弦曲线向右平移。

平移的距离由C的绝对值决定,绝对值越大,平移的距离越远。

2. 伸缩伸缩是指将函数图像在x轴或y轴方向进行拉伸或压缩。

当A的绝对值变大时,正弦曲线在y轴方向上的振幅增大,即拉伸;当A的绝对值变小时,正弦曲线的振幅减小,即压缩。

当B的绝对值变大时,正弦曲线在x轴方向上的周期变短,即拉伸;当B的绝对值变小时,正弦曲线的周期变长,即压缩。

3. 反射反射是指将函数图像关于x轴或y轴进行翻转。

当A为负数时,正弦曲线关于x轴进行翻转;当B为负数时,正弦曲线关于y轴进行翻转。

二、余弦函数的基本变换余弦函数的标准公式为:y = A*cos(Bx + C) + D,其中A、B、C、D为常数,且A不等于0。

余弦函数的基本变换与正弦函数类似,分为平移、伸缩和反射三种变换。

1. 平移余弦函数的平移与正弦函数相同,通过调整C的值来实现。

当C为正数时,余弦曲线向左平移;当C为负数时,余弦曲线向右平移。

2. 伸缩余弦函数的伸缩与正弦函数类似,通过调整A和B的值来实现。

当A的绝对值变大时,余弦曲线在y轴方向上的振幅增大,即拉伸;当A 的绝对值变小时,余弦曲线的振幅减小,即压缩。

当B的绝对值变大时,余弦曲线在x轴方向上的周期变短,即拉伸;当B的绝对值变小时,余弦曲线的周期变长,即压缩。

3. 反射余弦函数的反射与正弦函数类似,通过调整A的值来实现。

三角函数的图像变换

三角函数的图像变换

cosθ = 邻边/斜边,在单位圆中表示为x坐标。
正切函数(tangent)
三角函数的周期性
tanθ = 对边/邻边,表示为正弦与余弦之比。
正弦、余弦函数周期为2π,正切函数周期为 π。
三角函数在各象限表现
第一象限
所有三角函数值均为正。
第三象限
正弦、余弦函数值为负,正切函数值为正。
第二象限
正弦函数值为正,余弦、正切函数值为负。
伸缩变换对正弦函数影响
横向伸缩
改变正弦函数图像的周期长度。缩小周期使得函数图像更加紧密,扩大周期则 使得函数图像更加稀疏。
纵向伸缩
改变正弦函数图像的振幅大小。增大振幅使得函数图像波动范围更大,减小振 幅则使得函数图像波动范围更小。
周期性与相位调整方法
周期性调整
通过改变正弦函数的周期来调整图像的疏密程度。可以通过调整函数中的系数来 实现周期的变化。
相位调整
通过改变正弦函数的相位来调整图像出现的位置。可以通过在函数中添加常数项 来实现相位的调整。同时,利用三角函数的和差化积公式,也可以实现相位的调 整。
03 余弦函数图像变换分析
余弦函数基本图像特征
波形图像
余弦函数图像呈现周期性波动,具有典型的波形 特征。
振幅和周期
余弦函数的振幅和周期是确定其图像形状和尺寸 的关键参数。
拓展:其他类型周期函数图像变换
锯齿波和方波
除了正弦波和余弦波外,还有其 他类型的周期函数如锯齿波和方 波等,它们的图像变换同样具有 实际应用价值。
周期函数的合成与分解
通过三角函数的线性组合可以合 成其他类型的周期函数;反之, 其他类型的周期函数也可以通过 傅里叶级数展开成三角函数的线 性组合。

三角函数图像变换ppt

三角函数图像变换ppt
分析 : ( 1 )由图意知,最大温度差为 30 10 20
( 2 )此图为y A sin( x ) b的图像,求出各个参数即可 .
图中从6时到 时是半个周期的图像 14
2 T 16 , 16 8
又由图意知A 30 10 30 10 10 ,b 20 2 2
与x轴两相邻交点之间的距离为:___________________; 2
π ⑥两相邻最大值之间的距离是:___________________;
最小值与相邻x轴交点之间的距离为:___________________。 4
例1、 已知函数y 2 sin x cosx 2 3 cos2 x 3 ,填空:
①振幅是: 频率是: 初相是: ② 定义域是:
2
1
周期是: 相位是:
π
2x 3
3
x k ( k Z ) 2 ③当x __________ 时 ; 12 _____ ,y max _______
[k
R
值域是: [-2,2]
7 ,k ]( k Z ) 12 12 ④ 递减区间是:_________________ k x (kZ) 12 2 ⑤图像的对称轴方程为:__________________; k ( ,0)(k Z) 图像的对称中心为:__________________; 6 2
( 1) 当函数y取最大值时, 求自变量x的集合; ( 2) 该函数的图像可由 y sin x( x R )的图像经过怎样平移和 伸缩变换得到? 1 3 2 解 : ( 1 )y cos x sin x cos x 1 2 2
1 cos 2x 1 3 sin 2x 1 2 2 4

(完整版)三角函数图像平移变换

(完整版)三角函数图像平移变换

三角函数图像平移变换由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量"起多大变化,而不是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象. 途径二:先周期变换(伸缩变换)再平移变换。

先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin (ωx +ϕ)的图象。

1。

为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A )A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( D )A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位3.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A )向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度4.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是CA sin(2)3y x π=-,x R ∈B sin()26x y π=+,x R ∈C sin(2)3y x π=+,x R ∈D sin(2)32y x π=+,x R ∈5.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像B(A)向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位6.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象AA 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度7。

三角函数图像变换讲解ppt

三角函数图像变换讲解ppt

练习3
1、将函数y cos x的图象上每一个点的 横 坐标不变,

2 缩短到原来的 倍 2 坐标 3 ,可得到函数y cos x的图象.
3
2 2、将函数y sin x图象上每一个点的横 坐标不变, 5 5 纵 坐标 伸长到原来的2 倍 ,可得到函数y sin x的图象.
例3、 要得到函数y cos( 2x
② ③
例5 : 图中曲线是函数y A sin( x )的图像的一部分 , 求这个函数的解析式 。
Y 2
解析: 显然A Байду номын сангаас 2
2 2 T
5 T 2( ) 6 3
A
3
5 6
1
O x0
x0 3 4 12
X
. 3 所求函数的解析式为 : y 2 sin( 2x ) 3 取k 0 , 得

6
)的图象 .
练习2
1、将函数y sin x的图象上每一个点的 纵 坐标不变,
横 坐标
3 伸长到原来的 倍 2
2 ,可得到函数y sin x的图象 3
2 2、将函数y sin( x)图象上每一个点的 纵 坐标不变, 5 2 缩短到原来的 横 坐标 ,可得到函数y sin x的图象. 5
步骤5
得到y A sin( x )在R上的图象
一般函数图象变换
平 移 变 换 基 本 变 换 上下 平移
向上(b>0)或向下(b<0)移︱b︱单位
y=f(x)+b图象
y=f(x+φ) 图象
伸 缩 变 换
左右 平移 y=f(x) 图 象 上下 伸缩

三角函数图像变换顺序详解(全面)

三角函数图像变换顺序详解(全面)

《图象变换的顺序寻根》题根研究一、图象变换的四种类型从函数y = f (x)到函数y = A f ()+m,其间经过4种变换:1.纵向平移——m 变换2.纵向伸缩——A变换3.横向平移——变换4.横向伸缩——变换一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样.以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题.【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到?【解法1】第1步,横向平移:将y = sin x向右平移,得第2步,横向伸缩:将的横坐标缩短倍,得第3步:纵向伸缩:将的纵坐标扩大3倍,得第4步:纵向平移:将向上平移1,得【解法2】第1步,横向伸缩:将y = sin x的横坐标缩短倍,得y = sin 2x第2步,横向平移:将y = sin 2x向右平移,得第3步,纵向平移:将向上平移,得第4步,纵向伸缩:将的纵坐标扩大3倍,得【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大.【质疑】对以上变换,提出如下疑问:(1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变?(2)在横向平移和纵向平移中,为什么它们增减方向相反——如当<0时对应右移(增方向),而m < 0时对应下移(减方向)?(3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反——如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”?【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式(y+) = f (),则x、y在形式上就“地位平等”了.如将例1中的变成它们的变换“方向”就“统一”了.对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的.故先平移(x→)对后伸缩(→)没有影响;但先收缩(x→)对后平移(→)却存在着“平移”相关. 这就是为什么(在例1的解法2中)后平移时,有的原因.【说明】为了使得4种变换量与4个参数(A,,,m)对应,降低“解题风险”,在由sin x变到A sin () (> 0) 的途中,采用如下顺序:(1)横向平移:x→(2)横向伸缩:x+→(3)纵向伸缩:sin () →A sin ()(4)纵向平移:A sin () →A sin () + m这正是例1中解法1的顺序.二、正向变换与逆向变换如果把由sin x 到A sin ()+m的变换称作正向变换,那么反过来,由A sin ()+m到sin x变换则称逆向变换.显然,逆向变换的“顺序”是正向变换的“逆”.因为正向变换的一般顺序是:(1)横向平移,(2)横向伸缩,(3)纵向伸缩,(4)纵向平移.所以逆向变换的一般顺序则是:(1)纵向平移,(2)纵向伸缩,(3)横向伸缩,(4)横向平移.如将函数y= 2sin (2-) +1的图像下移1个单位得y=2sin (2x-),再将纵坐标缩小一半得y=sin(2 x-),再将横坐标扩大2倍得y=sin(x-),最后将图象左移得函数y= sin x.【例2】将y= f (x)·cos x的图象向右平移, 再向上平移1, 所得的函数为y=2sin2 x. 试求f (x)的表达式.【分析】这是图象变换的逆变换问题:已知函数的变换结果,求“原函数”. 我们考虑将“正向变换”的过程倒逆回去而得“逆向变换”的顺序.【解析】将y = 2sin2 x下移1个单位(与正向变换上移1个单位相反),得y = 2sin2 x-1,再将 2sin2x-1左移(与正向变换右移相反)得令f (x)·cos x = 2sin x cos x 得f (x) = 2sin x【说明】由此得原函数为y=f(x)cos x=2sin x cos x=sin2x. 正向变换为sin 2x→2sin2x,其逆变换为2sin2x→sin2x.因为2sin2x=1+sin(2 x-),所以下移1个单位得sin(2 x-),左移得sin2x.三、翻折变换使> 0平移变换x→是“对x而言”,由于x过于简单而易被忽略.强调一下,这里x的系数是+1. 千万不要误以为是由sin(- x)左移而得.其实,x或y的系数变 -1,也对应着两种不同的图象变换:由x→ - x对应着关于y 轴的对称变换,即沿y轴的翻折变换;由f (x) → - f (x)对应着关于x轴的对称变换,即沿x轴的翻折变换.【例3】求函数的单调减区间.【分析】先变换 -3x→3x,即沿y轴的翻折变换.【解析1】,转化为求g(x)=sin(3x-)的增区间令≤≤≤x ≤(f(x)减区间主解)又函数的f(x)周期为,故函数f(x)减区间的通解为≤x ≤【解析2】的减区间为≤≤即是≤x ≤【说明】从图象变换的角度看问题,比较解析1和解析2可知,求f(x)的减区间,实际上分两步进行:(1)先求得f(x)减区间的主解≤x ≤(2)再利用主解进行横向平移(的整数倍)即得f(x)减区间的通解.【思考】本解先将“正数化”,使>0是本解成功的关键. 否则,如果去解不等式组将会使你陷入歧途,不防试试!Welcome !!! 欢迎您的下载,资料仅供参考!。

三角函数的图像变换

三角函数的图像变换

三角函数b x A y ++=)sin(ϕω的图像变换三角函数的图像变换是历年来高考的重点内容,因此我们有必要对这一问题作一下研究。

下面就三角函数的图像变换的基本题型,做以详细讲析:一、 振幅变换由函数)(x f y =的图像变换为)(x Af y =的图像,其主要的方法是将)(x f y =图像上的各点的纵坐标变为原来的A 倍,即)()(A x Af y x f y =−−−−−−→−=倍纵坐标变为原来的。

例1、要得到)32sin(4π-=x y 的图像,只需将)32sin(π-=x y 的图像( )。

A 、 向上平移4个单位;B 、 将)32sin(π-=x y 图像上的各点的纵坐标变为原来的4倍; C 、 将)32sin(π-=x y 图像上的各点的纵坐标变为原来的4-倍; D 、 向下平移4个位单位。

分析:由题意可知,将)32sin(π-=x y 图像上的各点的纵坐标变为原来的4倍,就可以得到)32sin(4π-=x y 的图像。

故选B 。

二、 周期变换由函数)(x f y =的图像变换为)(x f y ω=的图像,其主要的方法是将)(x f y =图像上的各点的横坐标变为原来的ω1倍,即)()(1x f y x f y ωω=−−−−−−→−=倍横坐标变为原来的。

例2、如何由x y sin =的图像得到x y 2sin 2=的图像。

解:由x y sin =的图像上各点的纵坐标伸长到原来的2倍,得到x y sin 2=的图像,再将x y sin 2=的图像各点的横坐标压缩为原来的21倍,得到x y 2sin 2=的图像。

三、 相位变换(左右平移变换)由函数)(x f y =的图像变换为)(ϕ+=x f y 的图像,其主要的方法是将)(x f y =图像上所有点向左或向右平移ϕ个单位。

即)()(0)(ϕϕϕ+=−−−−−−→−=>x f y x f y 个单位向左平移 )()(0)(ϕϕϕ-=−−−−−−→−=>x f y x f y 个单位向右平移 例3、如何由)32sin(31π+=x y 的图像得到x y sin =的图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《图象变换的顺序寻根》
题根研究?
一、图象变换的四种类型
从函数y = f (x)到函数y = A f ()+m,其间经过4种变换:
1.纵向平移——m 变换
2.纵向伸缩——A变换
3.横向平移——变换
4.横向伸缩——变换
一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样.
以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题.
【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到?
【解法1】第1步,横向平移:
将y = sin x向右平移,得
第2步,横向伸缩:
将的横坐标缩短倍,得
第3步:纵向伸缩:
将的纵坐标扩大3倍,得
第4步:纵向平移:
将向上平移1,得
【解法2】第1步,横向伸缩:
将y = sin x的横坐标缩短倍,得y = sin 2x
第2步,横向平移:
将y = sin 2x向右平移,得
第3步,纵向平移:
将向上平移,得
第4步,纵向伸缩:
将的纵坐标扩大3倍,得
【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2
中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大.
【质疑】对以上变换,提出如下疑问:
(1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变?
(2)在横向平移和纵向平移中,为什么它们增减方向相反——
如当<0时对应右移(增方向),而m < 0时对应下移(减方向)?
(3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反——
如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”?
【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式
(y+) = f (),则x、y在形式上就“地位平等”了.
如将例1中的变成
它们的变换“方向”就“统一”了.
对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的.
故先平移(x→)对后伸缩(→)没有影响;
但先收缩(x→)对后平移(→)却存在着“平移”相
关. 这就是为什么(在例1的解法2中)后平移时,有
的原因.
【说明】为了使得4种变换量与4个参数(A,,,m)对应,降低“解题风险”,在由sin x变到A sin () (> 0) 的途中,采用如下顺序:(1)横向平移:x→
(2)横向伸缩:x+→
(3)纵向伸缩:sin () →A sin ()
(4)纵向平移:A sin () →A sin () + m
这正是例1中解法1的顺序.
二、正向变换与逆向变换
如果把由sin x 到A sin ()+m的变换称作正向变换,那么反过来,由A sin ()+m到sin x变换则称逆向变换.显然,逆向变换的“顺序”是正向变换的“逆”.
因为正向变换的一般顺序是:
(1)横向平移,(2)横向伸缩,(3)纵向伸缩,(4)纵向平移.
所以逆向变换的一般顺序则是:
(1)纵向平移,(2)纵向伸缩,(3)横向伸缩,(4)横向平移.
如将函数y= 2sin (2-) +1的图像下移1个单位得y=2sin (2x-),再将
纵坐标缩小一半得y= sin(2 x-),再将横坐标扩大2倍得y= sin(x-),最后将图象左移得函数y= sin x.
【例2】将y = f (x)·cos x的图象向右平移, 再向上平移1, 所得的函数为y=2sin2 x. 试求f (x)的表达式.
【分析】这是图象变换的逆变换问题:已知函数的变换结果,求“原函数”.
我们考虑将“正向变换”的过程倒逆回去而得“逆向变换”的顺序.
【解析】将y = 2sin2 x下移1个单位(与正向变换上移1个单位相反),
得y = 2sin2 x-1,再将 2sin2x-1左移(与正向变换右移相反)

令f (x)·cos x = 2sin x cos x 得f (x) = 2sin x
【说明】由此得原函数为y=f(x)cos x=2sin x cos x=sin2x. 正向变换为sin 2x→2sin2x,其逆变换为2sin2x→sin2x.
因为2sin2x=1+sin(2x-),所以下移1个单位得sin(2x-),左移得sin2x.
三、翻折变换使> 0
平移变换x→是“对x而言”,由于x过于简单而易被忽略.
强调一下,这里x的系数是+1. 千万不要误以为是由sin(- x)左
移而得.
其实,x或y的系数变 -1,也对应着两种不同的图象变换:由x→ - x对应
着关于y轴的对称变换,即沿y轴的翻折变换;由f (x) → - f (x)对应着关于x轴的对称变换,即沿x轴的翻折变换.
【例3】求函数的单调减区间.
【分析】先变换 -3x→3x,即沿y轴的翻折变换.
【解析1】,转化为求g(x)=sin(3x-)的增区间
令≤≤
≤x ≤(f(x)减区间主解)
又函数的f(x)周期为,故函数f(x)减区间的通解为
≤x ≤
【解析2】的减区间为
≤≤
即是≤x ≤
【说明】从图象变换的角度看问题,比较解析1和解析2可知,求f(x)的减区间,实际上分两步进行:
(1)先求得f(x)减区间的主解≤x ≤
(2)再利用主解进行横向平移(的整数倍)即得f(x)减区间的通解.
【思考】本解先将“正数化”,使>0是本解成功的关键. 否则,如果
去解不等式组
将会使你陷入歧途,不防试试!。

相关文档
最新文档