新疆兵团农二师华山中学高中数学椭圆的参数方程练习(无答案)新人教版选修4_4
人教版数学选修4-4《坐标系与参数方程》基础训练及答案

数学选修4-4 坐标系与参数方程.[提高训练C 组]一、选择题1.把方程1xy =化为以t 参数的参数方程是( )A .1212x t y t -⎧=⎪⎨⎪=⎩B .sin 1sin x t y t =⎧⎪⎨=⎪⎩C .cos 1cos x t y t =⎧⎪⎨=⎪⎩D .tan 1tan x t y t =⎧⎪⎨=⎪⎩ 2.曲线25()12x t t y t =-+⎧⎨=-⎩为参数与坐标轴的交点是( ) A .21(0,)(,0)52、 B .11(0,)(,0)52、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9、 3.直线12()2x t t y t =+⎧⎨=+⎩为参数被圆229x y +=截得的弦长为( ) A .125 BC4.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t⎧=⎨=⎩为参数上, 则PF 等于( )A .2B .3C .4D .55.极坐标方程cos 20ρθ=表示的曲线为( )A .极点B .极轴C .一条直线D .两条相交直线6.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )A .cos 2ρθ=B .sin 2ρθ=C .4sin()3πρθ=+D .4sin()3πρθ=-二、填空题1.已知曲线22()2x pt t p y pt⎧=⎨=⎩为参数,为正常数上的两点,M N 对应的参数分别为12,t t 和,120t t +=且,那么MN =_______________。
2.直线2()3x t y ⎧=-⎪⎨=⎪⎩为参数上与点(2,3)A -_______。
3.圆的参数方程为3sin 4cos ()4sin 3cos x y θθθθθ=+⎧⎨=-⎩为参数,则此圆的半径为_______________。
4.极坐标方程分别为cos ρθ=与sin ρθ=的两个圆的圆心距为_____________。
5.直线cos sin x t y t θθ=⎧⎨=⎩与圆42cos 2sin x y αα=+⎧⎨=⎩相切,则θ=_______________。
(好题)高中数学高中数学选修4-4第二章《参数方程》测试卷(含答案解析)

一、选择题1.椭圆22:1169x y C +=上的点P 到直线:34180l x y ++=的距离的最小值为( )ABCD2.在平面直角坐标系xOy 中,曲线C的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l的方程为4x y +=,则曲线C 上的点到直线l 的距离的最小值是( ) A.2BC .1D .23.若直线l :y kx =与曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数)有唯一的公共点,则实数k等于() AB.CD.±4.已知12,F F 椭圆22184x y +=的左右焦点,Q ,P 是椭圆上的动点,则1PQ PF ⋅的最大值为( )A .4B .92C .5D.45.曲线C 的参数方程为2x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l的参数方程为12x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若直线l 与曲线C 交于A ,B 两点,则AB 等于( ) ABCD6.在平面直角坐标系中以原点为极点,以x 轴正方向为极轴建立的极坐标系中,直线:20l y kx ++=与曲线2:cos C ρθ=相交,则k 的取值范围是( )A .k ∈RB .34k ≥-C .34k <-D .k ∈R 但0k ≠7.过()0,2P -,倾斜角为60︒的直线与曲线232y x x =-+交于A B 、两点,则PA PB ⋅= ( )A.6+B .16C .8D.6-8.圆ρ=r 与圆ρ=-2rsin (θ+4π)(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-rC(sin θ+cos θ)=rD(sin θ+cos θ)=-r9.极坐标cos ρθ=和参数方程12x ty t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线10.若动点(,)x y 在曲线2221(0)4x yb b+=>上变化,则22x y +的最大值为( )A .24(04)42(4)b b b b ⎧+<⎪⎨⎪>⎩B .24(02)42(4)b b b b ⎧+<<⎪⎨⎪⎩C .244b +D .2b11.已知两条曲线的参数方程1C :5cos 5sin x y θθ=⎧⎨=⎩(θ为参数)和2C :4cos 453sin 45x t y t =+︒⎧⎨=+︒⎩(t 为参数),则这两条曲线的交点为端点的线段的长度是( )A .5B.C .7D.12.已知圆的极坐标方程为4sin 4P πθ⎛⎫=- ⎪⎝⎭,则其圆心坐标为( ) A .2,4π⎛⎫⎪⎝⎭B .32,4π⎛⎫ ⎪⎝⎭ C .2,4π⎛⎫-⎪⎝⎭D .()2,0二、填空题13.已知点()4,4P -,曲线C :8cos 3sin x y θθ=⎧⎨=⎩(θ为参数),若Q 是曲线C 上的动点,则线段PQ 的中点M 到直线l :322x ty t =+⎧⎨=-+⎩(t 为参数)距离的最小值为______. 14.在平面直角坐标系xoy 中,曲线C 的参数方程是2x t y t =⎧⎨=⎩,(t 为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程是sin()4πρθ-=直线l被曲线C 截得的线段长为_______15.设直线315:{45x tl y t=+=(t 为参数),曲线1cos :{sin x C y θθ==(θ为参数),直线l 与曲线1C 交于,A B 两点,则AB =__________.16.直线170{?270x tsin y tcos =+=+(t 为参数)的倾斜角为_________17.若实数x 、y 满足2214xy +=,则()()121x y ++的取值范围是_________.18.已知(,)P x y 是椭圆22143x y+=上的一个动点,则x y +的最大值是__________.19.变量,x y满足x y ⎧=⎪⎨=⎪⎩t 为参数),则代数式22y x ++的最小值是__________.20.在直角坐标系中,点()2,1-到直线2:x tl y t =-⎧⎨=⎩(t 为参数)的距离是__________.三、解答题21.已知直线l的参数方程为12{22x ty ==+(t 为参数),曲线C 的参数方程为4cos {4sin x y θθ==(θ为参数).(1)将曲线C 的参数方程化为普通方程;(2)若直线l 与曲线C 交于,A B 两点,求线段AB 的长.22.已知曲线C的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l的极坐标方程为cos()4πρθ+=.(1)写出曲线C 的普通方程和直线l 的直角坐标方程; (2)设点P 为曲线C 上的动点,求点P 到直线l 距离的最大值. 23.极坐标系中椭圆C 的方程为2222cos 2sin ρθθ=+,以极点为原点,极轴为x 轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.(Ⅰ)求该椭圆的直角标方程,若椭圆上任一点坐标为(),P x y,求x 的取值范围;(Ⅱ)若椭圆的两条弦AB ,CD 交于点Q ,且直线AB 与CD 的倾斜角互补,求证:QA QB QC QD ⋅=⋅.24.在直角坐标系xoy 中,以原点为极点,x 轴非负半轴为极轴,已知直线的极坐标方程为:cos 2sin 5l ρθρθ+=,曲线22:143x y C +=(1)写出直线l 的直角坐标方程和曲线C 的参数方程;(2)在曲线C 上求一点P ,使它到直线l 的距离最小,并求出最小值. 25.在直角坐标系xOy 中,直线l 经过点()3,0P,倾斜角为6π,曲线C的参数方程为2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,以x 轴的正半轴为极轴建立极坐标系.(1)写出直线l 的极坐标方程和曲线C 的直角坐标方程; (2)设直线l 与曲线C 相交于A ,B 两点,求PA PB +的值.26.已知直线l的参数方程为242x y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=.(Ⅰ)求出直线l 的普通方程以及曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,设()0,4P -,求PA PB +的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设点P 的坐标为()4cos ,3sin θθ,其中[)0,2θ∈π,再利用点到直线的距离公式和三角函数的有界性,即可得答案. 【详解】设点P 的坐标为()4cos ,3sin θθ,其中[)0,2θ∈π,则点P 到直线l的距离12cos 12sin 185d θθ++==1818455πθ⎛⎫++ ⎪-⎝⎭=≥,当sin 14πθ⎛⎫+=- ⎪⎝⎭时,等号成立. 因为[)0,2θ∈π,所以54πθ=.所以当54πθ=时,d取得最小值185-.故选:C.【点睛】本题考查椭圆参数方程的应用、点到直线距离的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意点的参数设法及三角函数的有界性运用.2.B解析:B【分析】设曲线C上任意一点的坐标为),sinθθ,利用点到直线的距离公式结合辅助角公式可得出曲线C上的点到直线l的距离的最小值.【详解】设曲线C上任意一点的坐标为),sinθθ,所以,曲线C上的一点到直线l的距离为d==42sinπθ⎛⎫-+⎪=,当()232k k Zππθπ+=+∈时,d取最小值,且mind== B.【点睛】本题考查椭圆参数方程的应用,考查椭圆上的点到直线距离的最值问题,解题时可将椭圆上的点用参数方程表示,利用三角恒等变换思想求解,考查运算求解能力,属于中等题. 3.D解析:D【分析】根据题意,将曲线C的参数方程消去θ,得到曲线C的普通方程22(2)1x y-+=,可知曲线C为圆,又知圆C与直线相切,利用圆心到直线的距离等于半径,求得k。
新人教选修4-4椭圆的参数方程

一、知识构建
如下图,以原点为圆心,分别以a,b(a>b>0)为半径 作两个圆,点B是大圆半径OA与小圆的交点,过点A作 AN⊥OX,垂足为N,过点B作BM⊥AN,垂足为M,求当半径 OA绕点O旋转时点M的轨迹参数方程. 分析:点M的横坐标与点A的横坐标相同, 点M的纵坐标与点B的纵坐标相同. 而A、B的坐标可以通过 引进参数建立联系.
x a cos y b sin 是椭圆的参
另外, 称为离心角,规定参数
的取值范围是
[0, 2 )
x a cos , 焦点在X 轴 y b sin .
x b cos , 焦点在Y 轴 y a sin .
知识归纳
x y 椭圆的标准方程: 2 2 1 a b x a cos (为参数) 椭圆的参数方程: y b sin
(为参数)
把下列参数方程化为普通方程 x 3cos x 8cos (3) (4) y 10sin (为参数) y 5sin
(3)
x 9
2
y 25
2
1 (4)
x 64
2
y 100
2
1
二、知识应用
x y 1 上求一点M,使M到直线 例1.在椭圆 9 4 x+2y-10=0的距离最小,并求出最小距离
椭圆的参数方程中参数φ的几何意义:
2 2
y
B O
φ
A
M N
x
是半径OA的旋转角;是∠AOX=φ,不是∠MOX=φ.
y
圆的标准方程: x2+y2=r2 x r cos 圆的参数方程: y r sin (为参数) θ的几何意义是: ∠XOP=θ
高中数学选修44坐标系与参数方程练习题含详解1

数学选修 4-4坐标系与参数方程[ 基础训练 A 组]一、选择题1.若直线的参数方程为x 1 2t (t 为参数 ) ,则直线的斜率为( )y 2 3t A .2B .2 3 D .333C .222.以下在曲线x sin 2( 为参数 ) 上的点是()ycossinA .(1,2)B . (3,1)C . (2, 3)D . (1,3)24 23.将参数方程x 2 sin 2为参数 ) 化为一般方程为(y sin2( )A . y x2B . y x 2C . y x 2(2 x 3)D . yx 2(0 y 1)4.化极坐标方程2cos0 为直角坐标方程为()A . x 2y 20或 y 1B . x 1C . x 2 y 20或 x 1D . y 15.点 M 的直角坐标是 (1, 3) ,则点 M 的极坐标为()A . (2,) B . (2,) C . (2,2)D . (2,2 k),( k Z )33336.极坐标方程cos 2sin 2 表示的曲线为()A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线x 3 4t (t 为参数 ) 的斜率为 ______________________。
y 4 5t2.参数方程x e te t) (t 为参数) 的一般方程为 __________________。
y2(e te t3.已知直线 l 1 :x 1 3ty 2 (t 为参数 ) 与直线 l 2 : 2x 4 y 5 订交于点 B ,又点 A(1,2) ,4t则 AB_______________。
x 2 1 t4.直线2(t 为参数 ) 被圆 x 2 y 2 4 截得的弦长为 ______________。
y1 1t25.直线 x cos y sin 0 的极坐标方程为 ____________________ 。
三、解答题1.已知点 P(x, y) 是圆 x 2y 2 2y 上的动点,( 1)求 2xy 的取值范围;( 2)若 xy a 0恒建立,务实数 a 的取值范围。
(必考题)高中数学高中数学选修4-4第二章《参数方程》测试题(答案解析)(3)

一、选择题1.点(,)P x y 是椭圆222312+=x y 上的一个动点,则2x y +的最大值为( )A.B.CD2.已知1F ,2F 分别是椭圆2222:1x y C a b+=(0,0)a b >>的左、右焦点,过1F 的直线l 交椭圆于D 、E 两点,115,DF F E=2DF =2DF x ⊥轴.若点P 是圆22:1O x y +=上的一个动点,则12PF PF ⋅的取值范围是( )A .[3,5]B .[2,5]C .[2,4]D .[3,4]3.已知点(),x y 在圆22()(23)1x y -=++上,则x y +的最大值是( ) A .1B .1-C1D.1-4.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的参数方程为1cos sin x t y t αα=-+⎧⎨=⎩,(t 为参数),曲线C 的方程为4cos 02πρθθ⎛⎫= ⎪⎝⎭,(2,0)C 直线l 与曲线C 相交于A B ,两点,当ABC∆的面积最大时,tan α=( )A.3B.2CD .75.过椭圆C :2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点F 作直线l :交C 于M ,N 两点,MF m =,NF n =,则11m n+的值为() A .23B .43C .83D .不能确定6.已知点()1,2A -,()2,0B ,P 为曲线y =上任意一点,则AP AB ⋅的取值范围为( ) A .[]1,7B .[]1,7-C .1,3⎡+⎣D .1,3⎡-+⎣7.直线l :30x y ++=被圆C :1424x cos y sin θθ=-+⎧⎨=+⎩(θ为参数)截得的弦长为( )A.B.C .D .88.直线4x 1t 5(t 3y 1t5⎧=+⎪⎪⎨⎪=-+⎪⎩为参数)被曲线πρθ4⎛⎫=+ ⎪⎝⎭所截的弦长为( )A .15B .710C .75D .579.曲线的参数方程为2211x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 是参数),则曲线是( ).A .抛物线B .双曲线的一支C .圆D .直线10.参数方程2cos sin x y θθ=⎧⎨=⎩(θ为参数)和极坐标方程6cos ρθ=-所表示的图形分别是( ) A .圆和直线 B .直线和直线 C .椭圆和直线 D .椭圆和圆 11.圆C 的极坐标方程为ρ2cos θ=,则圆心C 极坐标为 ( )A .()2,0B .()1,πC .()1,0D .()2,π12.参数方程22sin {12x y cos θθ=+=-+ (θ为参数)化成普通方程是( )A .240x y -+=B .240x y +-=C .[]240,2,3x y x -+=∈D .[]240,2,3x y x +-=∈二、填空题13.在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0且倾斜角为α的直线l 与O 交于A ,B 两点.则α的取值范围为_________14.在平面直角坐标系中,以原点为极点,x 轴正半轴为极轴,建立极坐标系.已知抛物线C 的极坐标方程为2cos 4s 0()in ρθθρ≥=,直线l的参数方程为1x y t⎧=⎪⎨=+⎪⎩(t 为参数).设直线l 与抛物线C 的两个交点为A 、B ,点F 为抛物线C 的焦点,则||||AF BF 的值为________.15.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知抛物线参数方程为2x 4ty 4t (t =⎧=⎨⎩为参数)焦点为F ,直线l的极坐标方程为π2ρsin θ4⎛⎫-= ⎪⎝⎭F 到直线l 的距离为______.16.若实数x 、y 满足2214xy +=,则()()121x y ++的取值范围是_________.17.曲线4cos 2sin x y θθ=⎧⎨=⎩上的点到直线20x y +=的最大距离为__________.18.在平面直角坐标系xOy 中,已知抛物线244x t y t ⎧=⎨=⎩(t 为参数)的焦点为F ,动点P 在抛物线上,动点Q 在圆3cos sin x y αα=+⎧⎨=⎩(α为参数)上,则PF PQ +的最小值为__________.19.在直角坐标系xOy 中,直线l的参数方程是112x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=-,则圆C 的圆心到直线l 的距离为______.20.已知圆C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 2ρθ=,则直线l 与圆C 的公共点的直角坐标为 .三、解答题21.已知直线l的参数方程为2x ty =+⎧⎪⎨=⎪⎩(t 为参数),()2,0P ,曲线C 的极坐标方程为2cos21ρθ=.(1)求直线l 的普通方程及曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A ,B 两点,设A ,B 中点为Q ,求弦长AB 以及PQ . 22.在直角坐标系xOy 中,已知曲线C的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩,(θ为参数).将曲线C上的点按坐标变换2x x y y ⎧'='=⎪⎨⎪⎩得到曲线C ',以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系设A 点的极坐标为3,22π⎛⎫⎪⎝⎭.(1)求曲C '极坐标方程;(2)若过点A 且倾斜角为60︒的直线l 与曲线C '交于,M N 两点,求||||AM AN ⋅的值. 23.(1)已知圆M的极坐标方程为2cos 604πρθ⎛⎫--+= ⎪⎝⎭,求ρ的最大值.(2)在平面直角坐标系xOy 中,已知直线L的参数方程为1,2x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),直线l 与抛物线24y x =相交于A ,B 两点,求线段AB 的长.24.在平面直角坐标系xOy 中,以O 为极点,x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为2sin 4cos ρθθ=,直线l的参数方程为:2242x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),两曲线相较于M ,N 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若()2,4P --,求PM PN +的值.25.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线:4cos C ρθ=,直线l 的参数方程为:321x ty t=+⎧⎨=-+⎩(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 和直线l 的普通方程; (2)若点(3,1)P -,求11||||PM PN -的值. 26.在平面直角坐标系xoy 中,以O 为极点,x 轴的正半轴为极轴建立的极坐标系中,直线l 的极坐标方程为()4R πθρ=∈,曲线C的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数).(1)写出直线l 及曲线C 的直角坐标方程;(2)过点M 且平行于直线l 的直线与曲线C 交于A ,B 两点,若83MA MB ⋅=,求点M 的轨迹及其直角坐标方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由于椭圆,所以可设点P(x,y)的代入2x y +得:(其中)=,故知2x y +22考点:1.椭圆的性质;2.最值的求法.2.A解析:A 【分析】由题意可得,D E 两点坐标,代入椭圆方程可求出椭圆的焦点,然后设()cos ,sin P θθ, 利用两点间的距离公式以及三角函数的性质可求出12PF PF ⋅的范围. 【详解】由题意可知,(2D c ,72,55E c ⎛-- ⎝⎭, 将,D E 代入椭圆方程得2222222222112492412525c c a b a c b a b ⎧⎧+=⎪=⎪⎪⇒⎨⎨⎪⎪=+=⎩⎪⎩, 所以()12,0F -,()22,0F , 设()cos ,sin P θθ, 则()()2222212cos 2sin cos 2sin 2516cos PF PF θθθθθ⋅=++-+=-,所以12PF PF ⋅的取值范围是[3,5]. 故选:A 【点睛】本题考查了椭圆的性质,考查了转化与化归的思想,同时考查了圆的参数方程以及三角函数的性质,属于中档题.3.C解析:C 【分析】设圆上一点()2,3P cos sin αα+-,则1x y sin cos αα+=+-,利用正弦型函数求最值,即可得出结论 【详解】设22(2)(3)1x y -++=上一点()2,3P cos sin αα+-,则2312sin 1214x y cos sin sin cos πααααα⎛⎫+=++-=+-=+-≤- ⎪⎝⎭,故选:C 【点睛】本题考查圆的参数方程的应用,考查正弦型函数的最值4.D解析:D 【分析】先将直线直线l 与曲线C 转化为普通方程,结合图形分析可得,要使ABC ∆的面积最大,即要ACB ∠为直角,从而求解出tan α. 【详解】解:因为曲线C 的方程为4cos 02πρθθ⎛⎫= ⎪⎝⎭, 两边同时乘以ρ,可得24cos ρρθ=,所以曲线C 的普通方程为22(2)4(02)x y y -+=, 曲线C 是以(2,0)C 为圆心,2为半径的上半个圆. 因为直线l 的参数方程为1cos sin x t y t αα=-+⎧⎨=⎩,(t 为参数),所以直线l 的普通方程为tan tan 0x y αα-+=,因为1sin 2sin 2ABCS CA CB ACB ACB ∆, 所以当ACB ∠为直角时ABC ∆的面积最大,此时C 到直线l 的距离22222AB CA CB d +=== ,因为直线l 与x 轴交于()1,0D -, 所以3CD =,于是7DE = 所以214tan 7α==,故选D . 【点睛】本题考查了曲线的参数方程、极坐标方程与普通方程之间的互化,同时考查了直线与圆的位置关系,数形结合是本题的核心思想.5.B解析:B 【分析】消去参数得到椭圆的普通方程,求得焦点坐标,写出直线l 的参数方程,代入椭圆的普通方程,写出韦达定理,由此求得11m n+的值. 【详解】消去参数得到椭圆的普通方程为22143x y +=,故焦点()1,0F ,设直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(α为参数),代入椭圆方程并化简得()223sin 6cos 90t t αα++⋅-=.故1212226cos 9,03sin 3sin t t t t ααα+=-⋅=-<++(12,t t 异号).故11m n m n mn ++=1212t t t t -===⋅43.故选B. 【点睛】本小题主要考查椭圆的参数方程化为普通方程,考查直线和椭圆的位置关系,考查利用直线参数的几何意义解题,考查化归与转化的数学思想方法,属于中档题.6.A解析:A 【分析】结合已知曲线方程,引入参数方程,然后结合和角正弦公式及正弦函数的性质即可求解. 【详解】解:设(),P x y 则由y =()221043x y y+=≥,令2cos ,x y θθ==,[](0,θπ∈,()1,2AP x y ∴=-+,()1,2AB =,124232cos 34sin 36AP AB x y x y πθθθ⎛⎫∴⋅=-++=++=++=++ ⎪⎝⎭,0θπ≤≤, 7666πππθ∴≤+≤,1sin 126πθ⎛⎫-≤+≤ ⎪⎝⎭, 14sin 376πθ⎛⎫∴≤++≤ ⎪⎝⎭,【点睛】本题主要考查了平面向量数量积的运算及三角函数性质的简单应用,参数方程的应用是求解本题的关键.7.B解析:B 【解析】分析:圆1424x cos y sin θθ=-+⎧⎨=+⎩(θ为参数),利用平方关系消去参数化为普通方程,求出圆心到直线的距离d ,即可得出直线被圆截得的弦长.详解:圆1424x cos y sin θθ=-+⎧⎨=+⎩(θ为参数),消去参数化为:()()22+1216x y +-=,圆心到直线的距离d ==∴直线被圆截得的弦长== B.点睛:本题考查了参数方程化为普通方程、点到直线的距离公式、直线与圆相交弦长公式,考查了推理能力与计算能力,属于基础题.8.C解析:C 【解析】 【详解】分析:先把参数方程和极坐标方程化为普通方程,并求出圆心到直线的距离d ,再利用关系:l =l .详解:直线415(t 315x t y t⎧=+⎪⎪⎨⎪=-+⎪⎩为参数)化为普通方程:直线3410x y ++= . ∵曲线πρθ4⎛⎫=+ ⎪⎝⎭,展开为2cos sin cos sin ρθθρρθρθ=-∴=-,,化为普通方程为22x y x y +=- ,即22111()()222x y -++=, ∴圆心11()22C r -,,圆心C到直线距离110d == , ∴直线被圆所截的弦长75l =. 故选C .点睛:本题考查直线被圆截得弦长的求法,正确运用弦长l 、圆心到直线的距离、半径r 三者的关系:l =是解题的关键.9.A解析:A 【解析】分析:根据平方关系22211()2t t t t -=+-消参数,再根据曲线方程确定曲线形状. 详解:参数方程为221{1x t t y t t=-=+,则222122x t y t=+-=-, 整理得:22y x =+是抛物线. 故选A .点睛:1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换法. 2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响.10.D解析:D 【解析】2x cos y sin θθ=⎧⎨=⎩2214x y ⇒+= 为椭圆; 6cos ρθ=-2226cos 6x y x ρρθ⇒=-⇒+=- 为圆,所以选D. 11.C解析:C 【解析】圆2222cos 0,(1)1,x y ρρθ-=-+=,圆心(1,0),所以圆心的极坐标为(1,0).选C.12.D解析:D 【解析】试题分析:2cos212sin θθ=-,22112sin 2sin y θθ∴=-+-=-,2sin 2y θ∴=-,代入22sin x θ=+可得22yx =-,整理可得240x y +-=.[]2sin 0,1θ∈,[]22sin 2,3θ∴+∈,即[]2,3x ∈.所以此参数方程化为普通方程为[]240,2,3x y x +-=∈.故D 正确. 考点:参数方程与普通方程间的互化.【易错点睛】本题主要考查参数方程与普通方程间的互化,属容易题.在参数方程与普通方程间的互化中一定要注意x 的取值范围,否则极易出错.二、填空题13.【分析】先将圆化为普通方程直线与交于两点转化为圆心到直线的距离小于半径求得的取值即可【详解】因为的参数方程为(为参数)可得是以(00)为圆心半径r=1的圆当时直线l 与圆有2个交点;当设直线l :要使直解析:344ππ⎛⎫ ⎪⎝⎭,【分析】先将圆化为普通方程,直线l 与O 交于A ,B 两点,转化为圆心到直线的距离小于半径,求得α的取值即可. 【详解】因为O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),可得221x y +=是以(0,0)为圆心,半径r=1的圆当2πα=时,直线l 与圆有2个交点; 当2πα≠,设直线l:0y kx kx y =-=要使直线l 与圆有2个交点,即圆心到直线的距离小于半径,1<解得1k <-或1k >所以α的取值范围为3(,)(,)4224ππππ 综上所述,α的取值范围3(,)44ππ【点睛】本题考查了参数方程和直线与圆的位置关系,解题的关键在于转化,易错点是没有考虑直线斜率不存在的情况,属于中档题型.14.【解析】【分析】得出抛物线的直角坐标方程为直线的方程为联立方程组利用根与系数的关系求得利用抛物线的定义即可求解得到答案【详解】由抛物线的极坐标方程为直线的参数方程为(为参数)可得抛物线的直角坐标方程 解析:163【解析】 【分析】得出抛物线C 的直角坐标方程为24x y =,直线l的方程为)1x y =-,联立方程组,利用根与系数的关系,求得12103y y +=,利用抛物线的定义,即可求解,得到答案. 【详解】由抛物线C 的极坐标方程为()2cos 4sin 0ρθθρ≥=,直线l的参数方程为1x y t⎧=⎪⎨=+⎪⎩(t为参数),可得抛物线C 的直角坐标方程为24x y =,直线l的方程为)1x y =-, 设()11,A x y 、()22,B x y ,则由)241x y x y ⎧=⎪⎨=-⎪⎩解得12103y y +=,又直线过抛物线的焦点()0,1F ,所以12101611233AF BF y y +=+++=+=. 【点睛】本题主要考查了参数方程与普通方程,极坐标与直角坐标的互化,以及抛物线的定义应用,其中解答中把根据互化公式,化简得到抛物线和直线的直角坐标方程,再利用抛物线的定义求解是解答的关键,着重考查了推理与运算能力,属于基础题.15.【解析】【分析】求出抛物线直角坐标方程为直线的直角坐标方程为由此能求出点F 到直线l 的距离【详解】抛物线参数方程为为参数焦点为F 抛物线直角坐标方程为直线l 的极坐标方程为直线的直角坐标方程为点F 到直线l【解析】 【分析】求出抛物线直角坐标方程为24y x =,()1,0F ,直线的直角坐标方程为10x y -+=,由此能求出点F 到直线l 的距离. 【详解】抛物线参数方程为2x 4ty 4t (t =⎧=⎨⎩为参数)焦点为F ,∴抛物线直角坐标方程为2y 4x =,()F 1,0,直线l 的极坐标方程为π2ρsin θ4⎛⎫-= ⎪⎝⎭2ρθθ22⎛⎫∴-= ⎪ ⎪⎝⎭∴直线的直角坐标方程为x y 10-+=, ∴点F 到直线l 的距离为:d ==【点睛】本题考查点到直线的距离的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查运算求解能力,是中档题.16.【分析】利用椭圆的参数方程设代入所求代数式换元可得出将代数式转化为关于的二次函数在区间上的值域来处理【详解】设则设则其中由于二次函数当时;当时因此的取值范围是故答案为【点睛】本题考查椭圆参数方程的应解析:3,32⎡-+⎢⎣. 【分析】利用椭圆的参数方程,设2cos x θ=,sin y θ=,代入所求代数式,换元sin cos t θθ=+4πθ⎛⎫⎡=+∈ ⎪⎣⎝⎭,可得出21sin cos 2t θθ-=,将代数式转化为关于t 的二次函数在区间⎡⎣上的值域来处理.【详解】设2cos x θ=,sin y θ=,则()()()()()1212cos 12sin 14sin cos 2sin cos 1x y θθθθθθ++=++=+++,设sin cos 4t πθθθ⎛⎫⎡=+=+∈ ⎪⎣⎝⎭, 则()22sin cos 12sin cos t θθθθ=+=+,21sin cos 2t θθ-∴=,()()2211214212212t x y t t t -++=⨯++=+-,其中t ⎡∈⎣,由于二次函数2213221222y t t t ⎛⎫=+-=+- ⎪⎝⎭,t ⎡∈⎣,当12t =-时,min 32y =-;当t =时,2max 213y =⨯+=+.因此,()()121x y ++的取值范围是3,32⎡-+⎢⎣,故答案为3,32⎡-+⎢⎣. 【点睛】本题考查椭圆参数方程的应用,考查三角函数的值域问题以及二次函数的值域,本题用到了两次换元,同时要注意()2sin cos 12sin cos 1sin 2θθθθθ±=±=±关系式的应用,考查分析问题和解决问题的能力,属于中等题.17.【解析】分析:在曲线上任取一点则点到直线的距离为从而可得结果详解:在曲线上任取一点则点到直线的距离为所以曲线上的点到直线的最大距离为故答案为点睛:求与三角函数有关的最值常用方法有以下几种:①化成的形【解析】分析:在曲线上任取一点()4cos ,2A sin θθ,则点A到直线20x y +=的距离为≤=. 详解:在曲线上任取一点()4cos ,2A sin θθ, 则点A到直线20x y +=的距离为=≤=, 所以,曲线42x cos y sin θθ=⎧⎨=⎩上的点到直线20x y +=.点睛:求与三角函数有关的最值常用方法有以下几种:①化成2sin sin y a x b x c =++的形式利用配方法求最值;②形如sin sin a x by c x d+=+的可化为sin ()x y φ=的形式利用三角函数有界性求最值;③sin cos y a x b x =+型,可化为)y x φ=+求最值 .18.3【解析】根据题意抛物线参数方程为其普通方程为y2=4x 其焦点坐标为(10)准线方程为x=﹣1动点P 在抛物线上设P 到准线的距离为d 则d=|PF|圆的参数方程为(α为参数)其普通方程为(x ﹣3)2+y解析:3 【解析】根据题意,抛物线参数方程为244x ty t⎧=⎨=⎩,其普通方程为y2=4x,其焦点坐标为(1,0),准线方程为x=﹣1,动点P在抛物线上,设P到准线的距离为d,则d=|PF|,圆的参数方程为3x cosy sinαα=+⎧⎨=⎩(α为参数),其普通方程为(x﹣3)2+y2=1,动点Q在圆上,则|PF|+|PQ|=d+|PQ|,分析可得:当P为抛物线的顶点时,|PF|+|PQ|取得最小值,且其最小值为3,故答案为:3.19.【解析】直线l的参数方程为(t为参数)普通方程为x﹣y+1=0圆ρ=﹣4cosθ即ρ2=﹣4ρcosθ即x2+y2+4x=0即(x+2)2+y2=4表示以(﹣20)为圆心半径等于2的圆∴圆C的圆心到解析:12.【解析】直线l的参数方程为31{12xy t=-+=(t为参数),普通方程为x3,圆ρ=﹣4cosθ 即ρ2=﹣4ρcosθ,即 x2+y2+4x=0,即(x+2)2+y2=4,表示以(﹣2,0)为圆心,半径等于2的圆.∴圆C的圆心到直线l2113-++=12,故答案为:12.20.【分析】消去参数得到圆的直角方程再把直线的极坐标方程转化为普通方程联立它们的方程可得公共点的坐标【详解】的普通方程为直线的直角方程为由可得从而故公共点的直角坐标为填【点睛】本题考查圆的参数方程和直线 解析:(1,2)【分析】消去参数α得到圆的直角方程,再把直线的极坐标方程转化为普通方程,联立它们的方程可得公共点的坐标. 【详解】C 的普通方程为()2214x y -+=,直线的直角方程为2y =,由()22142x y y ⎧-+=⎪⎨=⎪⎩可得12x y =⎧⎨=⎩,从而12x y =⎧⎨=⎩,故公共点的直角坐标为(1,2),填(1,2). 【点睛】本题考查圆的参数方程和直线的极坐标方程,属于基础题.三、解答题21.(1)l0y --=,曲线C 的直角坐标方程为221x y -=. (2)AB =2PQ =. 【分析】(1)消去参数t 得直线的普通方程,利用公式cos sin x y ρθρθ=⎧⎨=⎩可得曲线C 的直角坐标方程;(2)把直线l 的标准参数方程代入曲线C 的直角坐标方程,利用参数的几何意义求弦长. 【详解】(1)由2x ty =+⎧⎪⎨=⎪⎩消去参数t得2)y x =-,所以l0y --=,222222cos2(cos sin )(cos )(sin )1ρθρθθρθρθ=-=-=,所以曲线C 的直角坐标方程为221x y -=.(2)直线l的标准参数方程为122x t y ⎧=+⎪⎪⎨⎪=⎪⎩代入221x y -=得2460t t --=,2(4)4(6)400∆=--⨯-=>, 124t t +=,126t t =-,12,t t 异号,所以12AB t t =-===设Q 对应的参数是0t ,则12022t t t +==,所以02PQ t ==.【点睛】本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,考查直线参数方程,掌握直线参数方程中参数的几何意义是解题关键. 22.(1)1ρ=;(2)5||||4AM AN ⋅=. 【分析】(1)把曲线C 的参数方程化为普通方程,然后利用变换得出C '的普通方程,再化为极坐标方程;(2)把A 点极坐标化为直角坐标,写出直线l 的标准参数方程,代入曲线C '的直角坐标方程中,求出12t t 即可. 【详解】(1)曲线C 的普通方程为2212x y +=,由2x x y y⎧'='=⎪⎨⎪⎩,得到x y y ''⎧=⎪⎨=⎪⎩代入曲线C 的普通方程得到()()221x y ''+= C '的极坐极方程为1ρ=(2)点A 的直角坐标为30,2⎛⎫⎪⎝⎭,直线l的参数方程为1232x t y ⎧=⎪⎪⎨⎪=⎪⎩代入22:1C x y +='中,可得2450t ++=5||||4AM AN ⋅=. 【点睛】结论点睛:本题考查极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化, (1)公式cos sin x y ρθρθ==可实现极坐标方程与直角坐标方程的互化;(2)直线的标准参数方程中参数具有几何意义:过000(,)P x y 的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),则0t P P =.从0P 向上的点对应0t >,向下的点对应参数0t <.23.(1)2) 【分析】(1)先化简方程得到圆的直角坐标方程,再求圆上的点到原点距离的最大值得解; (2)将直线参数方程代入抛物线,利用参数的几何意义可求解. 【详解】(1)原方程化为260ρθθ⎫-++=⎪⎪⎝⎭, 即24(cos sin )60ρρθρθ-++=.故圆的直角坐标方程为224460x y x y +--+= 圆心为(2,2)M故max ||OM ρ===(2)将直线L的参数方程1,22x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)代入抛物线方程24y x =,得224122⎛⎫⎛⎫+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得10t =,2t =-所以12AB t t =-= 【点睛】本题考查极坐标与直角坐标的互化,考查圆中距离的最值问题,考查直线参数方程参数的几何意义,属于中档题.24.(Ⅰ)24y x =;20x y --=;(Ⅱ). 【分析】(Ⅰ)根据cos x ρθ=、sin y ρθ=,求得曲线C 的直角坐标方程,用代入法消去直线l 参数方程中的参数t 得到其普通方程;(Ⅱ)把直线l 的参数方程代入曲线C的直角坐标方程,得到2480t -+=,设M ,N 对应的参数分别为1t ,2t ,利用韦达定理以及12PM PN t t +=+,计算即可求得结果. 【详解】(Ⅰ)根据cos x ρθ=、sin y ρθ=, 求得曲线C 的直角坐标方程为24y x =,用代入法消去参数求得直线l 的普通方程20x y --=.(Ⅱ)直线l的参数方程为:2242x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数), 代入24y x =,得到2480t -+=,设M ,N 对应的参数分别为1t ,2t ,则12t t +=1248t t ⋅=,∴12PM PN t t +=+= 【点睛】本题考查简单曲线的极坐标方程与参数方程的应用,属于基础题型. 25.(1)22(2)4x y -+=,250x y --=;(2)5± 【分析】(1)根据极坐标与直角坐标方程间的转换公式可求出曲线C 的普通方程,再利用消元法消去参数可得到直线l 的普通方程;(2)先将直线参数方程化为标准形式,再将之代入曲线C 的普通方程中,最后利用参数的几何意义,结合韦达定理求解即可. 【详解】 (1)4cos ρθ=,24cos ρρθ∴=将222cos x y xρρθ⎧=+⎨=⎩代入上式,可得224x y x +=, 因此曲线C 的普通方程为:22(2)4x y -+=, 又直线l 的参数方程为:321x ty t=+⎧⎨=-+⎩(t 为参数),因此直线l 的普通方程为:250x y --=;(2)由题知直线l 的参数方程为:321x ty t =+⎧⎨=-+⎩(t 为参数),故其参数方程的标准形式为:351x y ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数), 将之代入22(2)4x y -+=中,整理后可得220t +-=, 设,PM PN 对应的参数分别为12,t t ,则121225t t t t +=-=-,2121121212||||||1111||||||||||||||5t t t t PM PN t t t t t t -+∴-=-==±=±. 【点睛】本题考查了极坐标方程化为直角坐标方程,参数方程化为普通方程,考查了直线参数方程的应用,难度不大.26.(1)直线l 的直角坐标方程为y x =,曲线C 的直角坐标方程为2212xy +=.(2)点M 的轨迹是椭圆2226x y +=夹在平行直线y x =±【分析】(1)利用极坐标与直角坐标方程的互化,直接写出直线l 的普通方程,消去参数可得曲线C 的直角坐标方程;(2)设点0(M x ,0)y 以及平行于直线l 的直线参数方程,直线l 与曲线C 联立方程组,通过8||||3MA MB =,即可求点M 轨迹的直角坐标方程.通过两个交点推出轨迹方程的范围. 【详解】 解:(1)直线l 的极坐标方程为()4R πθρ=∈,∴直线l 的倾斜角为4π,且经过原点,故直线的直角坐标方程为y x =,曲线C 的参数方程为(sin x y θθθ⎧=⎪⎨=⎪⎩为参数), ∴曲线C 的直角坐标方程为2212x y +=.(2)设点0(M x ,0)y 及过点M的直线为0102:2x x l y y ⎧=+⎪⎪⎨⎪=+⎪⎩, 由直线1l 与曲线C相交可得:222000032202t x y +++-=,8||||3MA MB =, 2200228332x y +-∴=,即:220026x y +=,∴点M 轨迹的直角坐标方程2226x y +=,表示一椭圆.取y x m =+代入22x得:2234220x mx m ++-=由0∆解得33m故点M 的轨迹是椭圆2226x y +=夹在平行直线y x = 【点睛】本题以直线与椭圆的参数方程为载体,考查直线与椭圆的综合应用,轨迹方程的求法,注意轨迹的范围的求解,是易错点,属于中档题.。
高中数学第2讲参数方程第4课时椭圆的参数方程课后提能训练含解析新人教A版选修4_

第二讲第4课时A.基础巩固1.(2017年珠海校级期中)二次曲线错误!(θ是参数)的离心率是()A.错误!B.错误!C.错误!D.错误!【答案】D【解析】曲线的普通方程为错误!+错误!=1,表示焦点在y轴的椭圆,离心率e=错误!=错误!。
故选D.2.(2017年西昌校级月考)椭圆错误!的焦距为()A.5 B.10C.4 D.8【答案】D【解析】根据题意,椭圆的参数方程为错误!则其普通方程为错误!+错误!=1,其中c=错误!=4,则其焦距2c=8。
故选D.3.椭圆错误!(θ为参数)的中心坐标为()A.(3,8)B.(3,-2)C.(17,8)D.(17,-2)【答案】B【解析】中心在点(m,n)的椭圆方程,如:错误!+错误!=1(a>b>0)的参数方程可表示为错误!(θ为参数),所以椭圆的中心为(3,-2).4.已知动圆:x2+y2-2ax cos θ-2by sin θ=0(a,b是正常数,a≠b,θ是参数),则圆心的轨迹是()A.直线B.圆C.抛物线的一部分D.椭圆【答案】D【解析】动圆的圆心为(a cos θ,b sin θ),其参数方程为错误!化为普通方程为错误!+错误!=1,又a≠b,所以轨迹为椭圆.5.若P(m,n)为椭圆错误!(θ为参数)上的点,则m+n的取值范围是________.【答案】[-2,2]【解析】∵P(m,n)为椭圆错误!(θ为参数)上的点,∴m+n=错误!cos θ+sin θ=2sin错误!,由三角函数知识可得m+n的取值范围为[-2,2].6.曲线错误!(θ为参数)上的点与定点A(-1,-1)的距离的最小值是__________.【答案】5-1【解析】点的坐标可设为(1+cos θ,sin θ),距离为d=错误!=错误!=错误!(其中tan φ=2),d min=错误!=错误!=错误!-1。
7.如下图,由圆x2+y2=9上的点M向x轴作垂线,交x轴于点N,设P是MN的中点,求点P的轨迹方程.【解析】圆的参数方程为错误!(θ为参数),所以设点M坐标为(3cos θ,3sin θ),P(x,y),则N(3cos θ,0).所以错误!(θ为参数),化为普通方程得错误!+错误!=1,表示中心在原点,焦点在x轴上的椭圆.B.能力提升8.已知点P是椭圆错误!(θ为参数)上一点,点O是坐标原点,OP的倾斜角为错误!,则|OP|等于()A.错误!B.2错误!C.错误!D.2错误!【答案】C【解析】OP的斜率为k=tan错误!=错误!,直线方程为y=错误!x。
新疆兵团农二师华山中学高中数学直线的参数方程练习(无答案)新人教版选修4_4
直线的参数方程 【霸王餐】1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程. 2、 直线l 的方程:⎩⎨⎧+=-=25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=t y t x 521511(t 为参数)的斜率和倾斜角分别是( ) A) -2和arctg(-2) B) -21和arctg(-21) C) -2和π-arctg2 D) -21和π-arctg 21 4、 已知直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)上的点A 、B 所对应的参数分别为t 1,t 2,点P分线段B A 所成的比为λ(λ≠-1),则P 所对应的参数是 . 5、直线l 的方程: ⎩⎨⎧+=+=bt y y at x x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣B 22b a +∣t 1-t 2∣ C2221b a t t +- D ∣t 1∣+∣t 2∣ 6、 已知直线l :⎩⎨⎧+-=+= t 351y t x (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离.7、 化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义, 说明∣t ∣的几何意义.8、化直线2l 的参数方程⎩⎨⎧+=+-= t313y t x (t 为参数)为普通方程,并求倾斜角,说明∣t ∣的几何意义.9、已知直线l 过点M 0(1,3),倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211(t 为参数)和方程⎩⎨⎧+=+= t331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.10、写出经过点M 0(-2,3),倾斜角为43π的直线l 的标准参数方程,并且 求出直线l 上与点M 0相距为2的点的坐标.11、直线L 经过点 )5,1(0M 、倾斜角为3π (1)求直线l 的参数方程;(2)求直线l 和直线 032=--y x 的交点到点)5,1(0M 的距离;(3)求直线l 和圆22x y 16+=的两个交点到点)5,1(0M 的距离的和与积.、。
高中数学新人教A版选修4-4课堂测试 椭圆的参数方程
课时跟踪检测 (十) 椭圆的参数方程一、选择题1.椭圆⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数),若θ∈[0,2π],则椭圆上的点(-a,0)对应的θ=( ) A .πB.π2 C .2π D.32π 解析:选A ∵在点(-a,0)中,x =-a ,∴-a =a cos θ,∴cos θ=-1,∴θ=π.2.参数方程⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)和极坐标方程ρ=-6cos θ所表示的图形分别是( )A .圆和直线B .直线和直线C .椭圆和直线D .椭圆和圆解析:选D 对于参数方程⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数), 利用同角三角函数关系消去θ化为普通方程为x 24+y 2=1,表示椭圆. ρ=-6cos θ两边同乘ρ,得ρ2=-6ρcos θ,化为普通方程为x 2+y 2=-6x ,即(x +3)2+y 2=9.表示以(-3,0)为圆心,3为半径的圆.3.椭圆⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数)的左焦点的坐标是( ) A .(-7,0)B .(0,7)C .(-5,0)D .(-4,0)解析:选A 根据题意,椭圆的参数方程⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数)化成普通方程为x 216+y 29=1, 其中a =4,b =3,则c =16-9=7,所以椭圆的左焦点坐标为(-7,0).4.两条曲线的参数方程分别是⎩⎪⎨⎪⎧ x =cos 2θ-1,y =1+sin 2θ(θ为参数)和⎩⎪⎨⎪⎧x =3cos t ,y =2sin t (t 为参数),则其交点个数为( )A .0B .1C .0或1D .2 解析:选B 由⎩⎪⎨⎪⎧x =cos 2θ-1,y =1+sin 2θ,得x +y -1=0(-1≤x ≤0,1≤y ≤2),由⎩⎪⎨⎪⎧x =3cos t ,y =2sin t 得x 29+y 24=1.如图所示,可知两曲线交点有1个.二、填空题5.椭圆⎩⎪⎨⎪⎧x =5cos θ,y =4sin θ(θ为参数)的离心率为________. 解析:由椭圆方程为x 225+y 216=1,可知a =5,b =4, ∴c =a 2-b 2=3,∴e =c a =35. 答案:356.已知P 为曲线C :⎩⎪⎨⎪⎧x =3cos θ,y =4sin θ(θ为参数,0≤θ≤π)上一点,O 为坐标原点,若直线OP 的倾斜角为π4,则点P 的坐标为________. 解析:曲线C 的普通方程为y 216+x 29=1(0≤y ≤4),易知直线OP 的斜率为1,其方程为y =x ,联立⎩⎪⎨⎪⎧ y =x ,y 216+x 29=1,消去y ,得x 2=16×925, 故x =125⎝⎛⎭⎫x =-125舍去,故y =125, 所以点P 的坐标为⎝⎛⎭⎫125,125.答案:⎝⎛⎭⎫125,1257.已知椭圆的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =4sin φ(φ为参数),点M 在椭圆上,对应的参数φ=π3,点O 为原点,则直线OM 的斜率为________. 解析:当φ=π3时,⎩⎨⎧ x =2cos π3=1,y =4sin π3=23,故点M 的坐标为(1,23).所以直线OM 的斜率为2 3.答案:2 3三、解答题8.已知两曲线的参数方程分别为⎩⎨⎧ x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R),求它们的交点坐标.解:将⎩⎨⎧x =5cos θy =sin θ(0≤θ<π)化为普通方程得: x 25+y 2=1(0≤y ≤1,x ≠-5), 将x =54t 2,y =t 代入得,516t 4+t 2-1=0,解得t 2=45, ∴t =255,x =54t 2=54×45=1, ∴两曲线的交点坐标为⎝⎛⎭⎫1,255. 9.已知椭圆的参数方程为⎩⎪⎨⎪⎧ x =3cos θ,y =2sin θ(θ为参数),求椭圆上一点P 到直线⎩⎪⎨⎪⎧ x =2-3t ,y =2+2t(t 为参数)的最短距离. 解:设点P (3cos θ,2sin θ),直线⎩⎪⎨⎪⎧x =2-3t ,y =2+2t 可化为2x +3y -10=0,点P 到直线的距离d =|6cos θ+6sin θ-10|13=⎪⎪⎪⎪62sin ⎝⎛⎭⎫θ+π4-1013.因为sin ⎝⎛⎭⎫θ+π4∈[-1,1],所以d ∈⎣⎢⎡⎦⎥⎤10-6213,10+6213,所以点P 到直线的最短距离d min =10-6213. 10.椭圆x 2a 2+y 2b2=1(a >b >0)与x 轴正半轴交于点A ,若这个椭圆上总存在点P ,使OP ⊥AP (O 为原点),求离心率e 的取值范围.解:设椭圆的参数方程是⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数)(a >b >0),则椭圆上的点P (a cos θ,b sin θ),A (a,0).∵OP ⊥AP ,∴b sin θa cos θ·b sin θa cos θ-a=-1, 即(a 2-b 2)cos 2θ-a 2cos θ+b 2=0.解得cos θ=b 2a 2-b 2或cos θ=1(舍去). ∵a >b ,-1≤cos θ≤1,∴0<b 2a 2-b 2≤1. 把b 2=a 2-c 2代入得0<a 2-c 2c 2≤1. 即0<1e 2-1≤1,解得22≤e <1. 故椭圆的离心率e 的取值范围为⎣⎡⎭⎫22,1.。
[精品]新人教A版选修4-4高中数学跟踪检测(十)椭圆的参数方程和答案
课时跟踪检测(十) 椭圆的参数方程一、选择题1.椭圆⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数),若θ∈[0,2π],则椭圆上的点(-a,0)对应的θ等于( )A .πB.π2 C .2π D.3π2解析:选A ∵点(-a,0)中x =-a , ∴-a =a cos θ,∴cos θ=-1,∴θ=π.2.已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为( ) A. 3B .-33C .2 3D .-2 3 解析:选C 点M 的坐标为(1,23), ∴k OM =2 3.3.直线x 4+y 3=1与椭圆x 216+y 29=1相交于A ,B 两点,该椭圆上点P 使得△PAB 的面积等于4,这样的点P 共有( )A .1个B .2个C .3个D .4个解析:选B 设椭圆上一点P 1的坐标为(4cos θ,3sin θ),θ∈⎝⎛⎭⎪⎫0,π2,如图所示,则S 四边形P 1AOB =S △OAP 1+S△OBP 1=12×4×3sin θ+12×3×4cos θ =6(sin θ+cos θ)=62sin ⎝⎛⎭⎪⎫θ+π4.当θ=π4时,S 四边形P 1AOB 有最大值为6 2.所以S △ABP 1≤62-S △AOB =62-6<4.故在直线AB 的右上方不存在点P 使得△PAB 的面积等于4,又S△AOB=6>4,所以在直线AB 的左下方,存在两个点满足到直线AB 的距离为85,使得S △PAB =4.故椭圆上有两个点使得△PAB 的面积等于4.4.两条曲线的参数方程分别是⎩⎪⎨⎪⎧x =cos 2θ-1,y =1+sin 2θ(θ为参数)和⎩⎪⎨⎪⎧x =3cos t ,y =2sin t(t 为参数),则其交点个数为( )A .0B .1C .0或1D .2解析:选B由⎩⎪⎨⎪⎧x =cos 2θ-1,y =1+sin 2θ,得x +y -1=0(-1≤x ≤0,1≤y ≤2),由⎩⎪⎨⎪⎧x =3cos t ,y =2sin t 得x 29+y 24=1.如图所示,可知两曲线交点有1个.二、填空题5.椭圆⎩⎪⎨⎪⎧x =-4+2cos θ,y =1+5sin θ(θ为参数)的焦距为________.解析:椭圆的普通方程为x +24+y -225=1.∴c 2=21,∴2c =221. 答案:2216.实数x ,y 满足3x 2+4y 2=12,则2x +3y 的最大值是________. 解析:因为实数x ,y 满足3x 2+4y 2=12, 所以设x =2cos α,y =3sin α,则 2x +3y =4cos α+3sin α=5sin(α+φ), 其中sin φ=45,cos φ=35.当sin(α+φ)=1时,2x +3y 有最大值为5. 答案:57.在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数,a >b >0),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆 O的极坐标方程分别为ρsin ⎝⎛⎭⎪⎫θ+π4=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆 O 相切,则椭圆C 的离心率为____________.解析:l 的直角坐标方程为x +y =m ,圆O 的直角坐标方程为x 2+y 2=b 2,由直线l 与圆O 相切,得m =±2b .从而椭圆的一个焦点为(2b,0),即c =2b ,所以a =3b ,则离心率e =c a =63.答案:63三、解答题8.已知两曲线参数方程分别为⎩⎪⎨⎪⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R),求它们的交点坐标.解:将⎩⎪⎨⎪⎧x =5cos θy =sin θ(0≤θ<π)化为普通方程,得x 25+y 2=1(0≤y ≤1,x ≠-5),将x =54t 2,y =t 代入,得516t 4+t 2-1=0, 解得t 2=45,∴t =255(∵y =t ≥0),x =54t 2=54·45=1,∴交点坐标为⎝ ⎛⎭⎪⎪⎫1,255. 9.对于椭圆⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数),如果把横坐标缩短为原来的1a ,再把纵坐标缩短为原来的1b即得到圆心在原点,半径为1的圆的参数方程⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).那么,若把圆看成椭圆的特殊情况,试讨论圆的离心率,并进一步探讨椭圆的离心率与椭圆形状的关系.解:设圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数),如果将该圆看成椭圆,那么在椭圆中对应的数值分别为a =b =r , 所以c =a 2-b 2=0,则离心率e =ca=0.即把圆看成椭圆,其离心率为0,而椭圆的离心率的范围是(0,1),可见椭圆的离心率越小即越接近于0,形状就越接近于圆,离心率越大,椭圆越扁.10.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.解:(1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标,得P (0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎪⎫α+π6+42=2cos ⎝⎛⎭⎪⎫α+π6+2 2.由此得,当cos ⎝ ⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.。
人教版数学选修4-4《坐标系与参数方程》基础训练题及答案
数学选修4-4 坐标系与参数方程[综合训练B 组]一、选择题1.直线l 的参数方程为()x a t t y b t=+⎧⎨=+⎩为参数,l 上的点1P 对应的参数是1t ,则点1P 与(,)P a b 之间的距离是( ) A .1t B .12t C1 D12.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线3.直线112()x tt y ⎧=+⎪⎪⎨⎪=-⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为( )A .(3,3)- B.( C.3)- D.(3,4.圆5cos ρθθ=-的圆心坐标是( )A .4(5,)3π-- B .(5,)3π- C .(5,)3π D .5(5,)3π-5.与参数方程为)x t y ⎧=⎪⎨=⎪⎩为参数等价的普通方程为( )A .214y +=2x B .21(01)4y x +=≤≤2xC .21(02)4y y +=≤≤2x D .21(01,02)4y x y +=≤≤≤≤2x6.直线2()1x t t y t =-+⎧⎨=-⎩为参数被圆22(3)(1)25x y -++=所截得的弦长为()A.1404 C二、填空题1.曲线的参数方程是211()1x t t y t ⎧=-⎪≠⎨⎪=-⎩为参数,t 0,则它的普通方程为__________________。
2.直线3()14x at t y t=+⎧⎨=-+⎩为参数过定点_____________。
3.点P(x,y)是椭圆222312x y +=上的一个动点,则2x y +的最大值为___________。
4.曲线的极坐标方程为1tan cos ρθθ=⋅,则曲线的直角坐标方程为________________。
5.设()y tx t =为参数则圆2240x y y +-=的参数方程为__________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的参数方程
【霸王餐】
一、选择题:
1.已知椭圆⎩⎨⎧==ϕϕsin 2cos 3y x (ϕ为参数),点P 是ϕ=6π时对应的点,则直线OP 的斜率为( ) A .932 B .233 C .33 D .33
2
2.若椭圆的参数方程为⎩⎨⎧==θθsin 4cos 5y x (θ为参数),则该椭圆的焦点坐标是( )
A .(±3,0)
B .(0,±3)
C .(5,0)
D .(0,4) 3.已知椭圆的参数方程为
)0(sin cos >>⎩⎨⎧==q p q y p x αα,则它的离心率为( ) A .p q
B .p q p 22-
C .p q p 22+
D .22q p p 4.椭圆的参数方程为⎩⎨⎧==θθsin 2cos y x (θ为参数),则它的准线方程为( )
A .334±=x
B .334±=y
C .433±=x
D .332±=y )(sin |cos |2R y x ∈⎩⎨⎧==θθθ表示的图形是( ) A B C D
二、填空题:
6.椭圆⎩⎨⎧==θθsin cos b y a x (θ为参数)的内接矩形的最大面积为__________。
7.点P(x ′,y ′)在椭圆⎩⎨⎧==θθsin 3cos 2y x 上运动时,动点M(x ′+y ′,x ′-y ′)运动的轨迹方
程是____________________。
三、解答题:
8.已知椭圆
1
4
9
2
2
=
+
y
x
上一点P,P与两焦点F1、F2的连线互相垂直,求点P的坐标。
9.A为椭圆
1
10
25
2
2
=
+
y
x
上任意一点,B为圆(x-1)2+y2=1上任意一点,求|AB|的最大值与
最小值。
10.已知椭圆
1
2
2
2
2
=
+
b
y
a
x
上任意一点(除短轴端点外)与短轴的两端点B1、B2的连线分别与
x轴交于P、Q两点,O为椭圆中心,求|OP|·|OQ|定值。