第13讲 二次函数与圆综合

合集下载

圆和二次函数知识点

圆和二次函数知识点

圆和二次函数知识点《圆》一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆⇒d r<⇒点C在圆;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;A2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 切(图4)⇒ 有一个交点 ⇒ d R r =-; 含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;图4图5(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。

二次函数与圆的综合完整版

二次函数与圆的综合完整版

二次函数与圆的综合Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】二次函数与圆的综合5.(2012?济南)如图1,抛物线y=ax2+bx+3与x轴相交于点A(﹣3,0),B(﹣1,0),与y轴相交于点C,⊙O1为△ABC的外接圆,交抛物线于另一点D.(1)求抛物线的解析式;(2)求cos∠CAB的值和⊙O1的半径;(3)如图2,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点N的坐标.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)如答图1所示,由△AOC为等腰直角三角形,确定∠CAB=45°,从而求出其三角函数值;由圆周角定理,确定△BO1C为等腰直角三角形,从而求出半径的长度;(3)如答图2所示,首先利用圆及抛物线的对称性求出点D坐标,进而求出点M的坐标和线段BM的长度;点B、P、C的坐标已知,求出线段BP、BC、PC的长度;然后利用△BMN∽△BPC相似三角形比例线段关系,求出线段BN和MN的长度;最后利用两点间的距离公式,列出方程组,求出点N的坐标.解答:解:(1)∵抛物线y=ax2+bx+3与x轴相交于点A(﹣3,0),B(﹣1,0),∴,解得a=1,b=4,∴抛物线的解析式为:y=x2+4x+3.(2)由(1)知,抛物线解析式为:y=x2+4x+3,∵令x=0,得y=3,∴C(0,3),∴OC=OA=3,则△AOC为等腰直角三角形,∴∠CAB=45°,∴cos∠CAB=.在Rt△BOC中,由勾股定理得:BC==.如答图1所示,连接O1B、O1C,由圆周角定理得:∠BO1C=2∠BAC=90°,∴△BO1C为等腰直角三角形,∴⊙O1的半径O1B=BC=.(3)抛物线y=x2+4x+3=(x+2)2﹣1,∴顶点P坐标为(﹣2,﹣1),对称轴为x=﹣2.又∵A(﹣3,0),B(﹣1,0),可知点A、B关于对称轴x=﹣2对称.如答图2所示,由圆及抛物线的对称性可知:点D、点C(0,3)关于对称轴对称,∴D(﹣4,3).又∵点M为BD中点,B(﹣1,0),∴M(,),∴BM==;在△BPC中,B(﹣1,0),P(﹣2,﹣1),C(0,3),由两点间的距离公式得:BP=,BC=,PC=.∵△BMN∽△BPC,∴,即,解得:BN=,MN=.设N(x,y),由两点间的距离公式可得:,解之得,,,∴点N的坐标为(,)或(,).点评:本题综合考查了二次函数的图象与性质、待定系数法、圆的性质、相似三角形、勾股定理、两点间的距离公式等重要知识点,涉及的考点较多,试题难度较大.难点在于第(3)问,需要认真分析题意,确定符合条件的点N有两个,并画出草图;然后寻找线段之间的数量关系,最终正确求得点N的坐标.6.(2011?遵义)已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.考点:二次函数综合题.分析:(1)根据A(3,0),B(4,1)两点利用待定系数法求二次函数解析式;(2)从当△PAB是以AB为直角边的直角三角形,且∠PAB=90°与当△PAB是以AB 为直角边的直角三角形,且∠PBA=90°,分别求出符合要求的答案;(3)根据当OE∥AB时,△FEO面积最小,得出OM=ME,求出即可.解答:解:(1)∵抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,∴,解得:,∴y=x2﹣x+3;∴点C的坐标为:(0,3);(2)假设存在,分两种情况:①当△PAB是以AB为直角边的直角三角形,且∠PAB=90°,如图1,过点B作BM⊥x轴于点M,∵A(3,0),B(4,1),∴∠BAM=45°,∴∠DAO=45°,∴AO=DO,∵A点坐标为(3,0),∴D点的坐标为:(0,3),∴直线AD解析式为:y=kx+b,将A,D分别代入得:∴0=3k+b,b=3,∴k=﹣1,∴y=﹣x+3,∴y=x2﹣x+3=﹣x+3,∴x 2﹣3x=0,解得:x=0或3,∴y=3,y=0(不合题意舍去),∴P点坐标为(0,3),∴点P、C、D重合,②当△PAB是以AB为直角边的直角三角形,且∠PBA=90°,如图2,过点B作BF⊥y轴于点F,由(1)得,FB=4,∠FBA=45°,∴∠DBF=45°,∴DF=4,∴D点坐标为:(0,5),B点坐标为:(4,1),∴直线BD解析式为:y=kx+b,将B,D分别代入得:∴1=4k+b,b=5,∴k=﹣1,∴y=﹣x+5,∴y=x2﹣x+3=﹣x+5,∴x2﹣3x﹣4=0,解得:x1=﹣1,x2=4(舍),∴y=6,∴P点坐标为(﹣1,6),∴点P的坐标为:(﹣1,6),(0,3);(3)如图3:作EM⊥AO于M,∵直线AB的解析式为:y=x﹣3,∴tan∠OAC=1,∴∠OAC=45°,∴∠OAC=∠OAF=45°,∴AC⊥AF,∵S△FEO=OE×OF,OE最小时S△FEO最小,∵OE⊥AC时OE最小,∵AC⊥AF∴OE∥AF∴∠EOM=45°,∴MO=EM,∵E在直线CA上,∴E点坐标为(x,﹣x+3),解得:x=,∴E点坐标为(,).点评:此题主要考查了二次函数的综合应用以及待定系数法求函数解析式,二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.7.(2011?襄阳)如图,在平面直角坐标系xoy中,AB在x轴上,AB=10,以AB为直径的⊙O'与y轴正半轴交于点C,连接BC,AC.CD是⊙O'的切线,AD丄CD于点D,tan∠CAD=,抛物线y=ax2+bx+c过A,B,C三点.(1)求证:∠CAD=∠CAB;(2)①求抛物线的解析式;②判断抛物线的顶点E是否在直线CD上,并说明理由;(3)在抛物线上是否存在一点P,使四边形PBCA是直角梯形若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由.考点:二次函数综合题.分析:(1)连接O′C,由CD是⊙O的切线,可得O′C⊥CD,则可证得O′C∥AD,又由O′A=O′C,则可证得∠CAD=∠CAB;(2)①首先证得△CAO∽△BCO,根据相似三角形的对应边成比例,可得OC2=OA?OB,又由tan∠CAO=tan∠CAD=,则可求得CO,AO,BO的长,然后利用待定系数法即可求得二次函数的解析式;②首先证得△FO′C∽△FAD,由相似三角形的对应边成比例,即可得到F的坐标,求得直线DC的解析式,然后将抛物线的顶点坐标代入检验即可求得答案;(3)根据题意分别从PA∥BC与PB∥AC去分析求解即可求得答案,小心不要漏解.解答:(1)证明:连接O′C,∵CD是⊙O的切线,∴O′C⊥CD,∵AD⊥CD,∴O′C∥AD,∴∠O′CA=∠CAD,∵O′A=O′C,∴∠CAB=∠O′CA,∴∠CAD=∠CAB;(2)解:①∵AB是⊙O′的直径,∴∠ACB=90°,∵OC⊥AB,∴∠CAB=∠OCB,∴△CAO∽△BCO,∴,即OC2=OA?OB,∵tan∠CAO=tan∠CAD=,∴AO=2CO,又∵AB=10,∴OC2=2CO(10﹣2CO),∵CO>0,∴CO=4,AO=8,BO=2,∴A(﹣8,0),B(2,0),C(0,4),∵抛物线y=ax2+bx+c过点A,B,C三点,∴c=4,由题意得:,解得:,∴抛物线的解析式为:y=﹣x2﹣x+4;②设直线DC交x轴于点F,∴△AOC≌△ADC,∴AD=AO=8,∵O′C∥AD,∴△FO′C∽△FAD,∴,∴8(BF+5)=5(BF+10),∴BF=,F(,0);设直线DC的解析式为y=kx+m,则,解得:,∴直线DC的解析式为y=﹣x+4,由y=﹣x2﹣x+4=﹣(x+3)2+得顶点E的坐标为(﹣3,),将E(﹣3,)代入直线DC的解析式y=﹣x+4中,右边=﹣×(﹣3)+4==左边,∴抛物线顶点E在直线CD上;(3)存在,P1(﹣10,﹣6),P2(10,﹣36).①∵A(﹣8,0),C(0,4),∴过A、C两点的直线解析式为y=x+4,设过点B且与直线AC平行的直线解析式为:y=x+b,把B(2,0)代入得b=﹣1,∴直线PB的解析式为y=x﹣1,∴,解得,(舍去),∴P1(﹣10,﹣6).②求P2的方法应为过点A作与BC平行的直线,可求出BC解析式,进而求出与之平行的直线的解析式,与求P1同法,可求出x1=﹣8,y1=0(舍去);x2=10,y2=﹣36.∴P2的坐标(10,﹣36).点评:此题考查了待定系数法求函数的解析式,相似三角形的判定与性质,点与函数的关系,直角梯形等知识.此题综合性很强,难度较大,解题的关键是注意数形结合与方程思想的应用.8.(2011?潍坊)如图,y关于x的二次函数y=﹣(x+m)(x﹣3m)图象的顶点为M,图象交x轴于A、B两点,交y轴正半轴于D点.以AB为直径作圆,圆心为C.定点E的坐标为(﹣3,0),连接ED.(m>0)(1)写出A、B、D三点的坐标;(2)当m为何值时M点在直线ED上判定此时直线与圆的位置关系;(3)当m变化时,用m表示△AED的面积S,并在给出的直角坐标系中画出S关于m的函数图象的示意图.考点:二次函数综合题.专题:压轴题;分类讨论.分析:(1)根据x轴,y轴上点的坐标特征代入即可求出A、B、D三点的坐标;(2)待定系数法先求出直线ED的解析式,再根据切线的判定得出直线与圆的位置关系;(3)分当0<m<3时,当m>3时两种情况讨论求得关于m的函数.解答:解:(1)令y=0,则﹣(x+m)(x﹣3m)=0,解得x1=﹣m,x2=3m;令x=0,则y=﹣(0+m)(0﹣3m)=m.故A(﹣m,0),B(3m,0),D(0,m).(2)设直线ED的解析式为y=kx+b,将E(﹣3,0),D(0,m)代入得:解得,k=,b=m.∴直线ED的解析式为y=mx+m.将y=﹣(x+m)(x﹣3m)化为顶点式:y=﹣(x﹣m)2+m.∴顶点M的坐标为(m,m).代入y=mx+m得:m2=m∵m>0,∴m=1.所以,当m=1时,M点在直线DE上.连接CD,C为AB中点,C点坐标为C(m,0).∵OD=,OC=1,∴CD=2,D点在圆上又∵OE=3,DE2=OD2+OE2=12,EC2=16,CD2=4,∴CD2+DE2=EC2.∴∠EDC=90°∴直线ED与⊙C相切.(3)当0<m<3时,S△AED=AE.OD=m(3﹣m)S=﹣m2+m.当m>3时,S△AED=AE.OD=m(m﹣3).即S=m2_ m.S关于m的函数图象的示意图如右:点评:本题是二次函数的综合题型,其中涉及的知识点有x轴,y轴上点的坐标特征,抛物线解析式的确定,抛物线的顶点公式和三角形的面积求法.注意分析题意分情况讨论结果.9.(2011?邵阳)如图所示,在平面直角坐标系Oxy中,已知点A(﹣,0),点C(0,3),点B是x轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C.(1)求∠ACB的度数;(2)已知抛物线y=ax2+bx+3经过A、B两点,求抛物线的解析式;(3)线段BC上是否存在点D,使△BOD为等腰三角形若存在,则求出所有符合条件的点D 的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)根据直径所对的圆周角是直角可以得到∠ACB的度数.(2)利用三角形相似求出点B的坐标,然后把A,B两点的坐标代入抛物线求出抛物线的解析式.(3)分别以OB为底边和腰求出等腰三角形中点D的坐标.解答:解:(1)∵以AB为直径的圆恰好经过点C,∴∠ACB=90°.(2)∵△AOC∽△COB,∴OC2=AO?OB,∵A(﹣,0),点C(0,3),∴,OC=3,又∵CO2=AO?OB,∴,∴OB=4,∴B(4,0)把 A、B、C三点坐标代入得.(3)①OD=DB,如图:D在OB 的中垂线上,过D作DH⊥OB,垂足是H,则H是OB中点.DH=,,∴D,②BD=BO,如图:过D作DG⊥OB,垂足是G,∴==,∵OB=4,CB=5,∴CD=BC﹣BD=BC﹣OB=5﹣4=1,∴=,∴=,=,∴OG=,DG=,∴D(,).点评:本题考查的是二次函数的综合题,(1)根据圆周角的性质求出角的度数.(2)用待定系数法求出抛物线的解析式.(3)根据等腰三角形的性质确定点D的坐标.。

二次函数与圆综合问题

二次函数与圆综合问题

教师姓名贾吉真学生姓名学管师学科数学年级上课时间月日:00--- :00 课题教学目标二次函数与圆的结合教学重难点圆的性质在抛物线中的应用教学过程板块考试要求A级要求B级要求C级要求二次函数1.能根据实际情境了解二次函数的意义;2.会利用描点法画出二次函数的图像;1.能通过对实际问题中的情境分析确定二次函数的表达式;2.能从函数图像上认识函数的性质;3.会确定图像的顶点、对称轴和开口方向;4.会利用二次函数的图像求出二次方程的近似解;1.能用二次函数解决简单的实际问题;2.能解决二次函数与其他知识结合的有关问题;一、二次函数与圆综合【例1】已知:抛物线2:(1)(2)M y x m x m=+-+-与x轴相交于12(0)(0)A xB x,,,两点,且12x x<.(Ⅰ)若12x x<,且m为正整数,求抛物线M的解析式;(Ⅱ)若1211x x<>,,求m的取值范围;(Ⅲ)试判断是否存在m,使经过点A和点B的圆与y轴相切于点(02)C,,若存在,求出2:(1)(2)M y x m x m=+-+-的值;若不存在,试说明理由;(Ⅳ)若直线:l y kx b=+过点(07)F,,与(Ⅰ)中的抛物线M相交于P Q,两点,且使12PFFQ=,求直线l的解析式.例题精讲中考要求二次函数与圆综合【例2】已知抛物线2y ax bx c=++与y轴的交点为C,顶点为M,直线CM的解析式2y x=-+并且线段CM的长为22(1)求抛物线的解析式。

(2)设抛物线与x轴有两个交点A(X1 ,0)、B(X2,0),且点A在B的左侧,求线段AB的长。

(3)若以AB为直径作⊙N,请你判断直线CM与⊙N的位置关系,并说明理由。

【例3】已知:在平面直角坐标系xOy中,一次函数4y kx k=-的图象与x轴交于点A,抛物线2y ax bx c=++经过O,A两点.⑴试用含a的代数式表示b;⑵设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分.若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;⑶设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得43POA OBA=∠∠?若存在,求出点P的坐标;若不存在,说明理由.BDA EPO xy【例4】如图,在平面直角坐标系中,以点(04)C,为圆心,半径为4的圆交y轴正半轴于点A,AB 是C ⊙的切线.动点P 从点A 开始沿AB 方向以每秒1个单位长度的速度运动,点Q 从O 点开始沿x 轴正方向以每秒4个单位长度的速度运动,且动点P 、Q 从点A 和点O 同时出发,设运动时间为t (秒).⑴当1t =时,得到1P 、1Q 两点,求经过A 、1P 、1Q 三点的抛物线解析式及对称轴l ; ⑵当t 为何值时,直线PQ 与C ⊙相切?并写出此时点P 和点Q 的坐标; ⑶在⑵的条件下,抛物线对称轴l 上存在一点N ,使NP NQ +最小,求出点N 的坐标并说明理由.l Q 1P 1y xQOPCBA【例5】 如图,点()40M ,,以点M 为圆心、2为半径的圆与x 轴交于点A B ,.已知抛物216y x bx c =++过点A 和B ,与y 轴交于点C .⑴ 求点C 的坐标,并画出抛物线的大致图象.⑵ 点()8Q m ,在抛物线216y x bx c =++上,点P 为此抛物线对称轴上一个动点,求PQ PB + 最小值.⑶ CE 是过点C 的M ⊙的切线,点E 是切点,求OE 所在直线的解析式.M y xOEDCBA【例6】 在平面直角坐标系xOy 中,已知直线1l 经过点()20A -,和点2033B ⎛⎫ ⎪⎝⎭,,直线2l 的函数表达式为34333y x =-+,1l 与2l 相交于点P .C ⊙是一个动圆,圆心C 在直线1l 上运动,设圆心C 的横坐标是a .过点C 作CM x ⊥轴,垂足是点M . ⑴ 填空:直线1l 的函数表达式是 ,交点P 的坐标是 ,FPB ∠的度数是 ;⑵ 当C ⊙和直线2l 相切时,请证明点P 到直线CM 的距离等于C ⊙的半径R ,并写出322R =- 时a 的值. ⑶ 当C ⊙和直线2l 不相离时,已知C ⊙的半径322R =-,记四边形NMOB 的面积为S (其中点N 是直线CM 与2l 的交点).S 是否存在最大值?若存在,求出这个最大值及此时a 的值;若不存在,请说明理由.yxl 1l 2EA OCP4321-2123【例7】 已知二次函数图象的顶点在原点O ,对称轴为y 轴.一次函数1y kx =+的图象与 二次函数的图象交于A B ,两点(A 在B 的左侧),且A 点坐标为()44-,.平行于x 轴的直线l 过()01-,点. ⑴ 求一次函数与二次函数的解析式; ⑵ 判断以线段tan x CA α=⋅为直径的圆与直线l 的位置关系,并给出证明; ⑶ 把二次函数的图象向右平移2个单位,再向下平移t 个单位()0t >,二次函数的图象与x 轴交于M N ,两点,一次函数图象交y 轴于F 点.当t 为何值时,过F M N ,,三点的圆的面积最小?最小面积是多少?lyx O【例8】 如图1,O 的半径为1,正方形ABCD 顶点B 坐标为()50,,顶点D 在O 上运动. ⑴ 当点D 运动到与点A 、O 在同一条直线上时,试证明直线CD 与O 相切;⑵ 当直线CD 与O 相切时,求OD 所在直线对应的函数关系式; ⑶ 设点D 的横坐标为x ,正方形ABCD 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.图1xyOD A B C15【例9】 如图,已知点A 从()10,出发,以1个单位长度/秒的速度沿x 轴向正方向运动,以O A ,为顶 点作菱形OABC ,使点B C ,在第一象限内,且60AOC ∠=︒;以()03P ,为圆心,PC 为半径作圆.设点A 运动了t 秒,求: ⑴ 点C 的坐标(用含t 的代数式表示); ⑵ 当点A 在运动过程中,所有使P 与菱形OABC 的边所在直线相切的t 的值.PC B OAy x1【例10】 已知:抛物线2y ax bx c =++()0a ≠,顶点()13C -,,与x 轴交于A 、B 两点,()10A -,.⑴ 求这条抛物线的解析式. ⑵ 如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点(P 与A 、B 两点不重合),过点P 作PM AE ⊥于M ,PN DB ⊥于N ,请判断PM PNBE AD +是否为定值?若是,请求出此定值;若不是,请说明理由. ⑶ 在⑵的条件下,若点S 是线段EP 上一点,过点S 作FG EP ⊥,FG 分别与边.AE 、BE 相交于点F 、G (F 与A 、E 不重合,G 与E 、B 不重合),请判断PA EFPB EG=是否成立.若成立,请给出证明;若不成立,请说明理由.CxyB N M ADP O E【例11】 如图,已知点A 的坐标是()10-,,点B 的坐标是()90,,以AB 为直径作O ' ,交y 轴的负半轴于点C ,连接AC 、BC ,过A 、B 、C 三点作抛物线.⑴ 求抛物线的解析式; ⑵ 点E 是AC 延长线上一点,BCE ∠的平分线CD 交O ' 于点D ,连结BD ,求直线BD 的解析式; ⑶ 在⑵的条件下,抛物线上是否存在点P ,使得PDB CBD ∠=∠?如果存在,请求出点P 的坐标;如果不存在,请说明理由.D CEA yxBO O'【例12】 已知:如图,抛物线212333y x x m =-+与x 轴交于A B ,两点,与y 轴交于C 点,90ACB ∠=︒⑴ 求m 的值及抛物线顶点坐标; ⑵ 过A B C ,,的三点的M ⊙交y 轴于另一点D ,连结DM 并延长交M ⊙于点E ,过E 点的M ⊙的切线分别交x 轴、y 轴于点F G ,,求直线FG 的解析式;⑶ 在条件⑵下,设P 为 CBD上的动点(P 不与C D ,重合),连结PA 交y 轴于点H ,问是否存在一个常数k ,始终满足AH AP k ⋅=,如果存在,请写出求解过程;如果不存在,请说明理由.Ey xOGFMDC BA【例13】 已知二次函数212y x bx c =++的图象经过点()36A -,,并与x 轴交于点()10B -,和点C ,顶点为P . ⑴ 求这个二次函数的解析式,并在直角坐标系中画出该二次函数的图象;⑵ 设D 为线段OC 上的一点,满足DPC BAC ∠=∠,求点D 的坐标; ⑶ 在x 轴上是否存在一点M ,使以M 为圆心的圆与AC PC ,所在的直线及y 轴都相切?如果存在,请求出点M 的坐标;若不存在,请说明理由.yxO MS TMP H GFED C B A【例14】 已知⊙O 的半径为1,以O 为原点,建立如图所示的直角坐标系.有一个正方形ABCD ,顶点B 的坐标为()130-,,顶点A 在x 轴上方,顶点D 在⊙O 上运动.⑴ 当点D 运动到与点A 、O 在一条直线上时,CD 与⊙O 相切吗?如果相切,请说明理由,并求出OD 所在直线对应的函数表达式;如果不相切,也请说明理由; ⑵ 设点D 的横坐标为x ,正方形ABCD 的面积为S ,求出S 与x 的函数关系式,并求出S 的最大值和最小值.Oy x-13-111DCB A【例15】 如图,将AOB ∆置于平面直角坐标系中,其中点O 为坐标原点,点A 的坐标为()30,,60ABO ∠=︒. ⑴ 若AOB ∆的外接圆与y 轴交于点D ,求D 点坐标.⑵ 若点C 的坐标为()10-,,试猜想过D C ,的直线与AOB ∆的外接圆的位置关系,并加以说明. ⑶ 二次函数的图象经过点O 和A 且顶点在圆上,求此函数的解析式.DCOABxy【例16】 如图,直角坐标系中,已知两点()00O ,,()20A ,,点B 在第一象限且OAB ∆为正三角形,OAB ∆的外接圆交y 轴的正半轴于点C ,过点C 的圆的切线交x 轴于点D .⑴ 求B C ,两点的坐标;⑵ 求直线CD 的函数解析式; ⑶ 设E F ,分别是线段AB AD ,上的两个动点,且EF 平分四边形ABCD 的周长.试探究:AEF ∆的最大面积?xy CDOAB课后小结上课情况:课后需再巩固的内容:配合需求:家长_________________________________ 学管师_________________________________组长签字。

第13讲 二次函数综合题(11分)

第13讲 二次函数综合题(11分)

设 P(a,-12a2+2a+6),其中 0<a<6,则 D(a,-a+6), ∴PD=-12a2+2a+6-(-a+6)=-12a2+3a. ∵点 P 和点 E 关于抛物线的对称轴对称,抛物线的对称轴为直线 x=2, ∴点 E 的横坐标为 4-a, ∴PE=|4-2a|, ∴-12a2+3a=|4-2a|.
示.
设直线 A B 的解析式为 y=kx+b(k≠0), b=6,
将点 A (0,6),B (6,0)代入,得 6k+b=0, k=-1,
解得 b=6. ∴直线 A B 的解析式为 y=-x+6. 设 P (t,-12t2+2t+6),其中 0<t<6,则 N (t,-t+6),
∴PN=-12t2+2t+6-(-t+6)=-12t2+2t+6+t-6=-12t2+3t, ∴S△PAB=S△PAN+S△PBN =12PN·AG+12PN·BM =12PN·(AG+BM) =12PN·OB
2线段的最值问题:线段长的最值,周长的最值,面积的最值,是线段问题的延 伸,最终都可归结为用点坐标表示出线段长,周长和面积后,将表达式通过配方法转 化为顶点式,从而获得最值,但需要考虑自变量的取值范围,有时在顶点处取得最值, 有时并非在顶点处取得最值.
类型二 面积问题
(2018·资阳)已知:如图,抛物线 y=ax2+bx+c 与坐标轴分别交于点 A (0, 6),B (6,0),C (-2,0),点 P 是线段 A B 上方抛物线上的一个动点.
【自主作答】
解:(1)将 A (3,0),B (-1,0),C (0,-3)代入 y=ax2+bx+c 中,
9a+3b+c=0, 得 a-b+c=0,
c=-3,
a=1, 解得 b=-2,
c=-3.

九年级数学 二次函数 第十三讲 二次函数与圆命题点分析和解题技巧传播

九年级数学  二次函数 第十三讲 二次函数与圆命题点分析和解题技巧传播

2
2
∵xB<xC,∴EB=xB= (4 k) k2 8k , 2
FC=xC= (4 k) k2 8k , 2
y
AB E
∴4• (4 k)
k2 8k (4 k) =
k2 8k ,
2
2
解得 k=9(交点不在 y 轴右边,不符题意,
舍去)或 k=﹣1.∴k=﹣1.
两点,点 P 在抛物线上运动,以 P 为圆心的⊙P 经过
定点 A(0,2),
(1)求 a,b,c 的值;
(2)求证:点 P 在运动过程中,⊙P 始终与 x 轴相交;
(3)设⊙P 与 x 轴相交于 M (x1,0),
N (x2,0)(x1<x2)两点,
y
当△AMN 为等腰三角形
时【,点求评圆心】P本的纵题坐考标查. 了二次函A 数的综合,
当 AM=AN 时,解得 a=0,
当 AM=MN 时, (2 a)2 4 =4,
y
解得: a 2 2 3 ,则 1 a2 4 2 3 ; 4
A
当 AN=MN 时, (a+2)2 4 =4, 解得: a -2 2 3 ,则 1 a2 4 2 3 ;
4 综上所述,P 的纵坐标为 0 或 4 2 3 或 4 2 3 ;
O F 图1
Cx
【点评】本题考查了函数图象交点的
y
性程质及、圆相的似基三本A 角知B形识性.质题、目一特元殊二,次貌方似
思路不难,但若思路不对,计算异常
复杂,题目所O 折射出来C的思x想,考生 应好好理解掌握.
(3)∵∠BOC=90°,∴∠EOB+∠FOC=90°, ∵∠EOB+∠EBO=90°,∴∠EBO=∠FOC, ∵∠BEO=∠OFC=90°,∴△EBO∽△FOC,

中考数学复习讲义课件 中考考点全攻略 第三单元 函数 第13讲 二次函数的图象与性质

中考数学复习讲义课件 中考考点全攻略 第三单元 函数 第13讲 二次函数的图象与性质

提升数学核心素 养
1.(2020·岳阳)对于一个函数,自变量x取c时,函
数值y等于0,则称c为这个函数的零点.若关于x的
二次函数y=-x2-10x+m(m≠0)有两个不相等的
零点x1,x2(x1<x2),关于x的方程x2+10x-m-2
=0有A两个不相等的非零实数根x3,x4(x3<x4),
则下A列.关0<系xx31式<1一定正确B的.xx是13>(1)
(1)解:乙求得的结果不正确,理由如下: 根据题意,知图象经过点(0,0),(1,0), 所以y=x(x-1), 当x=1/2时,y=1/2×(1/2-1)=-1/4≠-1/2, 所以乙求得的结果不正确.
(2)解:函数图象的对称轴为 x=x1+2 x2, 当 x=x1+2 x2时,函数有最小值 M, ∴M=(x1+2 x2-x1)(x1+2 x2-x2)=-(x1-4x2)2. (3)证明:因为 y=(x-x1)(x-x2),
延伸训 练
4.(2020·自贡)函数y=k/x与y=ax2+bx+c的图象
如图所示,则函数Dy=kx-b的大致图象为()
5.如图是函数y=x2-2x-3(0≤x≤4)的图象,直线
l∥x轴且过点(0,m),将该函数在直线l上方的图象
沿直线l向下翻折,在直线l下方的图象保持不变,
得到一个新图象.若新图象对应C的函数的最大值与
所以 m=x1x2,n=(1-x1)(1-x2),
所以 mn=x1x2(1-x1)(1-x2)=(x1-x12)(x2-x22)=
-(x1-12)2+14·-(x2-12)2+14.
因为 0<x1<x2<1,结合函数 y=x(1-x)的图象,可得 0<-(x1-12)2+14≤14,

第13讲:二次函数


I定义 : 如 . 形 的函数叫二次 函数. 2 图象 : . 二次 函数 的图象是 , 它是 轴
对称图形 , 对称轴是 3 二 次 函数 解 析 式 的形 式 有 : .
() 般式 : 1一 —n + +ca ) ( ≠O

( ) 点式 : 2顶 —a z一 )+ k n 0 , 点 为 ( , ( 。 (≠ )顶 ^
轴 交 于 点 B, S mB 6 且 △ 一 . ( ) 点 A 与点 B 的 坐 标 ; 1求
图 2
篓 ⑩

() 2 求此二次雨数 的解析式 ; () 3 如果 点 P在 轴上 , AAB 且 P是 等腰 三 角
形, 求点 P 的坐 标 . (0 8 枣 庄 ) 20 , 是
物线 的解 析 式 不 易 出错 ; 常见 的错误是 利用 函数图象 直接写 出不等式解 集 , 以为 是 1 误 <
< 3 这 是 不 会 看 图 所 致 . 际 , 实


上不等式 的解集 是抛物线 高于
直 线 的部 分 , : 1 x 3 即 < 或 > .
( 一1 +4的 图象 与 轴交 于点 A, ) 与 轴的负 半

鱼 于 点 E 交 BDT/ XC.

比例 函数 y k( >0 的图象 = 忌 )
上, 过点 M 作 ME上 Y轴 , 点 过 ~ 作 NF l 轴 , 足 分 别 为 _ 垂
图 8
、。 \ F \
图 9 2 —
() 1 若点 D 坐标 是 ( , ) 一8 O ,
图9 3 —
第1 3讲
J 厂 …. 一
二 次 函数
() 3对称轴 : () 大( ) : 4最 小 值 Y随 增大而 而 大而

第13讲二次函数图象与性质(课件)-2025年中考数学一轮复习讲练测(全国通用)

2025年中考数学一轮复习讲练测
第13讲
二次函数的图象与性质
目录
C
O
N
T
E
N
T
S
01
02
考情分析
知识建构
03
考点精讲
第一部分
考情分析
考点要求
新课标要求
二次函数的相 ➢ 通过对实际问题的分析,体会二次函
关概念
二次函数的图
象与性质
二次函数与各
项系数的关系
二次函数与方
程、不等式
命题预测
数的意义.
➢ 能画二次函数的图象,通过图象了解
b
时,二次函数取得最小值
2a
4ac−b2
4a
y
当x=x2时,二次函数取得最大值y2
x1
y2
y1
当 x= −
4ac−b2
4a
y
x1≤x≤x2
b
时,二次函数取得最大值
2a
O
x1 O
b
时,二次函数取得最小值
2a
O
x2
x
当x=x1时,二次函数取得最小值y1
考点二 二次函数的图象与性质
备注:自变量的取值为x1≤x≤x2时,且二次项系数a<0的最值情况请自行推导.
a<0
开口向下,顶点是最高点,此时y有最大值.
4ac−b2
【小结】二次函数最小值(或最大值)为0(k或
).
4a

在对称轴的左边y随x的增大而减小,在对称轴的右边y随x
a>0


的增大而增大.
在对称轴的左边y随x的增大而增大,在对称轴的右边y随x
a<0
的增大而减小.

中考数学第一轮系统复习夯实基础第三章函数及其图象第13讲二次函数课件

【解析】二次函数中 a=-14,所以二次函数的开口向下,∵-2ba=2, ∴对称轴为 x=2,当 x=2 时,取得最大值,最大值为-3,所以 B 正 确.
1.将抛物线解析式写成 y=a(x-h)2+k 的形式,则顶点坐标为(h,k), 对称轴为直线 x=h,也可应用对称轴公式 x2.解题时尽可能画出草图.
【解析】如图所示:图象与x轴有两个交点,则b2-4ac>0,故①错 误;根据图象有a>0, b<0, c<0,∴abc>0,故②正确;当x=-1时 ,a-b+c>0,故③错误;二次函数y=ax2+bx+c的顶点坐标纵坐 标为-2,∵关于x的一元二次方程ax2+bx+c-m=0有两个不相等的 实数根,∴m>-2,故④正确.故选B.
二次函数是中考的重点内容: 1.直接考查二次函数的概念、图象和性质等. 2实际情境中构建二次函数模型,利用二次函数的性质来解释、解决实 际问题. 3在动态的几何图形中构建二次函数模型,常与方程、不等式、几何知 识等结合在一起综合考查. 4.体现数形结合思想、转化的思想、方程的思想.
1.(2016·衢州)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x, y)对应值列表如下:
(2)∵将 x=0 代入 y=12x+32得 y=32,将 x=1 代入得 y=2,∴直线 y=12x +32经过点(0,32),(1,2).直线 y=12x+32的图象如图所示,由函数图象可 知:当 x<-1.5 或 x>1 时,一次函数的值小于二次函数的值 (3)先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标为 P(-1, 1).平移后的表达式为 y=(x+1)2+1,即 y=x2+2x+2.点 P 在 y=12x+32的 函数图象上.理由:∵把 x=-1 代入得 y=1,∴点 P 的坐标符合直线的 解析式,∴点 P 在直线 y=12x+32的函数图象上

安徽省庐江县陈埠中学中考数学一轮复习第三章函数及其图象第13讲二次函数的图象和性质课件


解:(1)由题意得,b2=2,
解得 b=4,c=3,∴抛物线的解析式
为.y=x2-4x+3
(2)∵点 A 与点 C 关于 x=2 对称,∴连接 BC 与 x=2 交于 点 P,则点 P 即为所求,根据抛物线的对称性可知,点 C 的坐标为(3,0),y=x2-4x+3 与 y 轴的交点为(0,3),∴ 设直线 BC 的解析式为:y=kx+b,3bk=+3b,=0,解得,k =-1,b=3,∴直线 BC 的解析式为:y=-x+3,则直 线 BC 与 x=2 的交点坐标为:(2,1)∴点 P 的交点坐标为: (2,1)
B.当x>1时,y随x的增大而减小
C.当x<1时,y随x的增大而减小
D.图象的对称轴是直线x=-1
4.在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单
位,再向上平移2个单位,得到的抛物线的解析式为( B )
A.y=(x+2)2+2
B.y=(x-2)2-2
C.y=(x-2)2+2
D.y=(x+2)2-2
考点三:二次函数的解析式的求法
【例1】 (2015·黑龙江)如图,抛物线y=x2-bx+c交x轴于点A(1,0),交y轴 于点B,对称轴是x=2. (1)求抛物线的解析式; (2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若 存在,求出点P的坐标;若不存在,请说明理由.
1-b+c=0,
解:(1)∵y=12x2+x-52=12(x2+2x)-52=12(x2+2x+1 -1)-52=12(x2+2x+1)-12-52=12(x+1)2-3, ∴抛物线的顶点坐标为(-1,-3);
(2)∵抛物线开口向上,对称轴为 x=-1, ∴当 x<-1 时,y 随 x 的增大而减小;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与圆综合【典型例题】例1. 如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=x2+bx+c经过C、B两点,与x轴的另一交点为D.(1)点B的坐标为(,),抛物线的表达式为;(2)如图2,求证:BD∥AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP 的长.例2. 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求抛物线的解析式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A、C、D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积;(3)以AB为直径作⊙M,直线经过点E(﹣1,﹣5),并且与⊙M相切,求该直线的解析式.例3.已知:在平面直角坐标系xOy中,一次函数y=kx﹣4k的图象与x轴交于点A,抛物线y=ax2+bx+c经过O、A两点.(1)试用含a的代数式表示b;(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分.若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD 相切,求⊙D半径的长及抛物线的解析式;(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得∠POA=∠OBA?若存在,求出点P的坐标;若不存在,请说明理由.1. 在直角坐标系xOy中,已知点P是反比例函数(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:①求出点A,B,C的坐标.②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP 面积的?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由.【参考答案】【典型例题】例1.【分析】(1)如答图1,作辅助线,证明△AOC≌△CEB,由此得到点B的坐标;再由点C、B的坐标,利用待定系数法求出抛物线的表达式;(2)如答图2,作辅助线,求出△BCD三边的长度,再利用勾股定理的逆定理判定其为直角三角形,从而问题得证;(3)如答图3,利用勾股定理依次求出CQ、CF、AF的长度,然后利用垂径定理AP=2AF求出AP的长度.【解答】(1)解:如答图1所示,过点B作BE⊥x轴于点E.∵AC⊥BC,∴∠ACO+∠BCE=90°,∵∠ACO+∠OAC=90°,∠BCE+∠CBE=90°,∴∠OAC=∠BCE,∠ACO=∠CBE.∵在△AOC与△CEB中,∴△AOC≌△CEB(ASA).∴CE=OA=4,BE=OC=2,∴OE=OC+CE=6.∴B点坐标为(6,2).∵点C(2,0),B(6,2)在抛物线y=x2+bx+c上,∴,解得b=,c=﹣7.∴抛物线的表达式为:y=x2+x﹣7.(2)证明:在抛物线表达式y=x2+x﹣7中,令y=0,即x2+x﹣7=0,解得x=2或x=7,∴D(7,0).如答图2所示,过点B作BE⊥x轴于点E,则DE=OD﹣OE=1,CD=OD﹣OC=5.在Rt△BDE中,由勾股定理得:BD===;在Rt△BCE中,由勾股定理得:BC===.在△BCD中,BD=,BC=,CD=5,∵BD2+BC2=CD2∴△BCD为直角三角形,∠CBD=90°,∴∠CBD=∠ACB=90°,∴AC∥BD.(3)解:如答图3所示:由(2)知AC=BC=,又AQ=5,则在Rt△ACQ中,由勾股定理得:CQ===.过点C作CF⊥PQ于点F,=AC•CQ=AQ•CF,∵S△ACQ∴CF===2.在Rt△ACF中,由勾股定理得:AF===4.由垂径定理可知,AP=2AF,∴AP=8.【点评】本题是二次函数综合题型,考查了二次函数的图象与性质、待定系数法、全等三角形、勾股定理、勾股定理的逆定理、垂径定理等知识点.本题设计考点清晰,层次合理:第(1)问主要考查全等三角形和待定系数法,第(2)问主要考查勾股定理及其逆定理,第(3)问主要考查垂径定理与勾股定理.例2. 【分析】(1)只需运用待定系数法就可解决问题;(2)过点D作DH⊥AB于H,交直线AC于点G,如图2,可用待定系数法求出直线AC的解析式,设点D的横坐标为m,则点G的横坐标也为m,从而可以用m的代数式表示出DG,然后用割补法得到△ADC的面积是关于m的二次函数,运用二次函数的最值性就可解决问题;(3)设过点E的直线与⊙M相切于点F,与x轴交于点N,连接MF,如图3,根据切线的性质可得MF⊥EN.易得M的坐标、ME、MF、EF的长,易证△MEF ∽△NEM,根据相似三角形的性质可求出MN,从而得到点N的坐标,然后运用待定系数法就可解决问题.【解答】解:(1)如图1,由题可得:,解得:,∴抛物线的解析式为y=﹣x2﹣x+2;(2)过点D作DH⊥AB于H,交直线AC于点G,如图2.设直线AC的解析式为y=kx+t,则有,解得:,∴直线AC的解析式为y=x+2.设点D的横坐标为m,则点G的横坐标也为m,∴DH=﹣m2﹣m+2,GH=m+2,∴DG=﹣m2﹣m+2﹣m﹣2=﹣m2﹣m,=S△ADG+S△CDG∴S△ADC=DG•AH+DG•OH=DG•AO=2DG=﹣m2﹣2m=﹣(m2+4m)=﹣(m2+4m+4﹣4)=﹣[(m+2)2﹣4]=﹣(m+2)2+2.取到最大值2.∴当m=﹣2时,S△ADC此时y D=﹣×(﹣2)2﹣×(﹣2)+2=2,即点D的坐标为(﹣2,2);(3)设过点E的直线与⊙M相切于点F,与x轴交于点N,连接MF,如图3,则有MF⊥EN.∵A(﹣4,0),B(2,0),∴AB=6,MF=MB=MA=3,∴点M的坐标为(﹣4+3,0)即M(﹣1,0).∵E(﹣1,﹣5),∴ME=5,∠EMN=90°.在Rt△MFE中,EF===4.∵∠MEF=∠NEM,∠MFE=∠EMN=90°,∴△MEF∽△NEM,∴=,∴=,∴NM=,∴点N的坐标为(﹣1+,0)即(,0)或(﹣1﹣,0)即(﹣,0).设直线EN的解析式为y=px+q.①当点N的坐标为(,0)时,,解得:,∴直线EN的解析式为y=x﹣.②当点N的坐标为(﹣,0)时,同理可得:直线EN的解析式为y=﹣x﹣.综上所述:所求直线的解析式为y=x﹣或y=﹣x﹣.【点评】本题主要考查了运用待定系数法求二次函数及一次函数的解析式、运用割补法求面积,二次函数的最值性、切线的性质、相似三角形的判定与性质、勾股定理等知识,当直接求一个图形面积比较困难时,通常可考虑采用割补法,另外,过圆外一点作圆的切线有两条,不能遗漏.例3. 【分析】(1)根据图象,易得点A、C的坐标,代入解析式可得a、b的关系式;(2)根据抛物线的对称性,结合题意,分a>0,a<0两种情况讨论,可得答案;(3)根据题意,设出P的坐标,按P的位置不同分两种情况讨论,可得答案.【解答】解:(1)解法一:∵一次函数y=kx﹣4k的图象与x轴交于点A,∴点A的坐标为(4,0).∵抛物线y=ax2+bx+c经过O、A两点,∴c=0,16a+4b=0.∴b=﹣4a(1分).解法二:∵一次函数y=kx﹣4k的图象与x轴交于点A,∴点A的坐标为(4,0).∵抛物线y=ax2+bx+c经过O、A两点,∴抛物线的对称轴为直线x=2.∴x=﹣=2.∴b=﹣4a(1分).(2)由抛物线的对称性可知,DO=DA∴点O在⊙D上,且∠DOA=∠DAO又由(1)知抛物线的解析式为y=ax2﹣4ax∴点D的坐标为(2,﹣4a)①当a>0时,如图设⊙D被x轴分得的劣弧为,它沿x轴翻折后所得劣弧为,显然所在的圆与⊙D关于x轴对称,设它的圆心为D'∴点D'与点D也关于x轴对称∵点O在⊙D'上,且⊙D与OD'相切,∴点O为切点(2分)∴D'O⊥OD∴∠DOA=∠D'OA=45°∴△ADO为等腰直角三角形∴OD=2(3分)∴点D的纵坐标为﹣2∴﹣4a=﹣2,∴a=,b=﹣4a=﹣2.∴抛物线的解析式为y=x2﹣2x.(4分)②当a<0时,同理可得:OD=2抛物线的解析式为y=﹣x2+2x(5分)综上,⊙D半径的长为,抛物线的解析式为y=x2﹣2x或y=﹣x2+2x.(3)答:抛物线在x轴上方的部分上存在点P,使得∠POA=∠OBA设点P的坐标为(x,y),且y>0①当点P在抛物线y=x2﹣2x上时(如图)∵点B是⊙D的优弧上的一点∴∠OBA=∠ADO=45°∴∠POA=∠OBA=60°过点P作PE⊥x轴于点E,∴tan∠POE=∴=tan60°,∴y=.由解得:(舍去)∴点P的坐标为.(7分)②当点P在抛物线y=﹣x2+2x上时(如图)同理可得,y=由解得:(舍去)∴点P的坐标为(4﹣2,﹣6+4).(9分)综上,存在满足条件的点P,点P的坐标为(4+2,6+4)或(4﹣2,﹣6+4).【点评】本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.【课后练习】1.【分析】(1)四边形OKPA是正方形.当⊙P分别与两坐标轴相切时,PA⊥y轴,PK⊥x轴,x轴⊥y轴,且PA=PK,可判断结论;(2)①连接PB,设点P(x,),过点P作PG⊥BC于G,则半径PB=PC,由菱形的性质得PC=BC,可知△PBC为等边三角形,在Rt△PBG中,∠PBG=60°,PB=PA=x,PG=,利用sin∠PBG=,列方程求x即可;②求直线PB的解析式,利用过A点或C点且平行于PB的直线解析式与抛物线解析式联立,列方程组求满足条件的M点坐标即可.【解答】解:(1)四边形OKPA是正方形.证明:∵⊙P分别与两坐标轴相切,∴PA⊥OA,PK⊥OK.∴∠PAO=∠OKP=90°.又∵∠AOK=90°,∴∠PAO=∠OKP=∠AOK=90°.∴四边形OKPA是矩形.又∵AP=KP,∴四边形OKPA是正方形.(2)①连接PB,设点P的横坐标为x,则其纵坐标为.过点P作PG⊥BC于G.∵四边形ABCP为菱形,∴BC=PA=PB=PC(半径).∴△PBC为等边三角形.在Rt△PBG中,∠PBG=60°,PB=PA=x,PG=.sin∠PBG=,即.解之得:x=±2(负值舍去).∴PG=,PA=BC=2.易知四边形OGPA是矩形,PA=OG=2,BG=CG=1,∴OB=OG﹣BG=1,OC=OG+GC=3.∴A(0,),B(1,0),C(3,0).设二次函数解析式为:y=ax2+bx+c.据题意得:解之得:a=,b=,c=.∴二次函数关系式为:.②解法一:设直线BP的解析式为:y=ux+v,据题意得:解之得:u=,v=﹣.∴直线BP的解析式为:y=x﹣,过点A作直线AM∥BP,则可得直线AM的解析式为:.解方程组:得:;.过点C作直线CM∥PB,则可设直线CM的解析式为:.∴0=.∴.∴直线CM的解析式为:.解方程组:得:;.综上可知,满足条件的M的坐标有四个,分别为:(0,),(3,0),(4,),(7,).解法二:∵,∴A(0,),C(3,0)显然满足条件.延长AP交抛物线于点M,由抛物线与圆的轴对称性可知,PM=PA.又∵AM∥BC,∴.∴点M的纵坐标为.又∵点M的横坐标为AM=PA+PM=2+2=4.∴点M(4,)符合要求.点(7,)的求法同解法一.综上可知,满足条件的M的坐标有四个,分别为:(0,),(3,0),(4,),(7,).解法三:延长AP交抛物线于点M,由抛物线与圆的轴对称性可知,PM=PA.又∵AM∥BC,∴.∴点M的纵坐标为.即.解得:x1=0(舍),x2=4.∴点M的坐标为(4,).点(7,)的求法同解法一.综上可知,满足条件的M的坐标有四个,分别为:(0,),(3,0),(4,),(7,).【点评】本题考查了二次函数的综合运用.关键是由菱形、圆的性质,数形结合解题.。

相关文档
最新文档