华东师大版九年级上册数学25.1 随机事件发生的可能性的预测

合集下载

华师大版-数学-九年级上册-第25章随机事件的概率全章教案

华师大版-数学-九年级上册-第25章随机事件的概率全章教案

第二十五章随机事件的概率25.1.1什么是概率教学目标:<-)知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验一收集数据一分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末后体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阉、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阉、投硬币)追问,为什么要用抓阉、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定''正而朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究3.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计'‘正面朝上”的频数及“正面朝上” 的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上Pm 要求填好25-2.并根据所整理的数据,在25. 1-1图上标注出对应的点,完成统计图.表m正面向上的频率10.55。

华东师大版初中九年级上册数学精品授课课件 第25章 随机事件的概率 随机事件的概率 2.频率与概率

华东师大版初中九年级上册数学精品授课课件 第25章 随机事件的概率 随机事件的概率 2.频率与概率

结论
教材146页表25.2.5和图25.2.6是重 复试验后的统计图和折线图.
从图中可以看出,试验进行到720 次后,频率值稳定在46%左右,我 们可以取其作为这个事件发生概率 的估计值,即P(顶尖触地)≈46%.
随堂演练
1.含有4种花色的36张扑克牌的牌面都朝 下,每次抽出一张记下花色后再原样放 回,洗匀牌后再抽.不断重复上述过程, 记录抽到红心的频率为25%,那么其中 扑克牌花色是红心的大约有______张.
(0.4+0.1+0.2+0.1+0.2)÷5=0.2 12÷0.2=60 60-12=48(个)
课堂小结
通过这节课选取, 2.完成练习册本课时的习题.
教学反思
1.猜想试验、分析讨论、合作探究的学习 方式十分有益于学生对概率意义的理解,明确 频率与概率的联系,也使本节课教学重难点得 以突破.当然,学生随机观念的养成是循序渐进 的、长期的.这节课教师应把握教学难度,注意 关注学生接受情况.
2.还有同学说:每个转盘只有两种 颜色,指针不是停在红色区域就是 停在蓝色区域,成功的概率都是 50%,所以随便选哪个转盘都可以. 你同意吗?
试验
和同学一起做重复试验,将结果填 入教材143页表25.2.4,并在图 25.2.3中用不同颜色的笔画出相应的 两条折线.
分析
观察两个转盘,我们可以发现: 两个转盘蓝色区域所对的圆心角 都为90°,说明它们都是各占整 个转盘的四分之一.
问题
在教材第129页的重复试验中,我 们发现:抛掷两枚硬币,“出现两 个正面”的频率稳定在25%附近.怎 样运用理论分析的方法求出抛掷两 枚硬币时出现两个正面的概率呢?
问题
用力旋转转盘甲和乙的指针,如果 想让指针停在蓝色区域,那么选哪 个转盘成功的概率比较大?

华师大版-数学-九年级上册-25.1 在重复试验中观察不确定现象 教案 (2)

华师大版-数学-九年级上册-25.1 在重复试验中观察不确定现象 教案 (2)

25.1在重复试验中观察不确定现象教学目标:知识与技能目标:1.借助实验,进一步体会随机事件在每次实验中发生与否具有不确定性;2.获得“在相同实验条件下,随着实验次数的增大,随机事件发生的频率会逐渐趋于稳定”的认识;3.体会随机事件中所隐含的确定性内涵.过程与方法目标:1.通过动手实验和课堂交流,进一步培养收集、描述、分析数据的技能;2.经历对不确定事件确定性内涵的认识过程,培养学生透过现象看本质的思维习惯,培养思维的深刻性.情感态度目标:1.经历动手实验和课堂交流的课程,提高数学交流的水平,发展探索合作的精神;2.经历对实际问题的解决过程,感受到数学的有趣和有用,并在解决过程中体会成功的乐趣.教学重点:通过大量实验,体会随着重复实验次数的增大,事件发生的频率将呈现逐渐稳定的趋势,可以由此来预测机会的大小.教学难点:逐步培养学生的随机观念.教学关键点:动手实验和观察数据来发现不确定现象的发生并非完全没有规律可循的,抓住重复实验这一关键问题,让学生就实验的方法和步骤展开讨论与交流.教学过程:一、引入概念在一定的条件下必然发生的事件,叫做必然事件.即发生的可能性为100%在一定条件下不可能发生的事件,叫做不可能事件.即发生的可能性为0%在一定的条件下可能发生也可能不发生的事件,叫做随机事件.二、做一做准备三张大小一样的纸片,上面印有不同的图案,把每张纸片都对折,剪成大小一样的两张.将这六张小纸片有图案的一面朝下,然后混合,让你的同伴随机抽出两张小纸片.你认为抽出的那两张小纸片正好能成功拼成原图的机会大吗?猜一猜,大概平均几次里会有一次成功呢?体会随机事件的可能性三、拓展延伸下面是一位同学在游戏中获得的数据,他已经将这些数据填入统计表,并绘制了折线图.观察折线统计图,实验次数在少时,如50次时,实验的频率变化比较大,表现出“波澜起伏”,但是到了190次以后实验的成功率变动明显减小,表现为“风平浪静”,差不多都稳定在0.50这条水平线附近. 同学们可能会想如果再做400次这样的实验,肯定又会得到另一张成功率的折线图,但是,不用担心,随着实验次数的增加成功率的折线图都会表现出“先波澜壮阔后风平浪静”的特点,而且最后差不多稳定在0. 50的水平线的附近.成功率有这样趋于稳定的特点,所以,我们以后就用平稳时的成功率表示这一随机事件的可能性即机会.当抛掷次数很多以后,出现正面的频率是否比较稳定?1.观察折线统计图,随着抛掷次数的增多,出现正面的频率是否比较稳定,折线稳定在哪个值附近?2.当实验次数超过600次后,出现正面的频率稳定在50%的附近.3.表中给出了一些著名科学家在抛硬币实验中的一部分资料,请先将空白处填写完整,再说说你从这些数据中有什么发现?【答案】从上至下依次填入的是:2048,0.5005,10000,6019,24000,0.4923从这些数据中还可以发现,当实验次数很大时,出现正面的频率逐渐稳定于50%左右.4.实验2:抛掷两枚硬币,看看当抛掷次数很多以后,“出现两个正面”和“出现一正一反”这两个不确定事件的频率是否也会比较稳定.师:在开始实验前,请同学们思考以下问题.在硬币未抛出之前,你能否预测每次抛出的结果?假如你已经抛掷了1000次,你能否预测第1001次抛掷的结果?你能预测出现两个正面的频率和出现一正一反的频率吗?在实验过程有哪些问题需要注意?你能设计一个统计表来记录实验中的数据吗?学生讨论:请同学们分成两个小组,一个同学抛掷硬币,另一个同学记录数据,每人抛10次,将实验结果记录下来.学生实验,教师巡视,对学生进行指导.实验结束后,利用电脑的统计功能,将全班同学的数据进行汇总,将汇总结果填入下表.利用电脑将上表中的数据制成相应的折线图,用两种不同的颜色分别画出相应的两条折线,观察统计图所反应出来的规律.(1)从这幅中同学们观察出了什么规律?(2)这与你们实验前预测的结果是否一致?有没有预测正确的同学?请谈谈你预测这个结果的理由好吗?(3)思考:在上面的实验中,如果把硬币换成瓶盖,那么还会逐渐稳定吗?稳定数值还会是50%,25%吗?课堂小结:在前面的实验中,我们可以发现,虽然每次抛掷的结果是随机,无法预测的,但随着实验次数的增加,隐含的规律逐渐显现,事件出现的频率逐渐稳定到某一个数据值,我们可以用平隐时的频率估计这一事件在每次抛时发生的可能性,即机会.。

华东师大版九年级上册教案:25.1在重复试验中观察不确定现象

华东师大版九年级上册教案:25.1在重复试验中观察不确定现象

课题25.1在重复试验中观察不确定现象授课时间授课班级教学目标知识与技能:1.理解必然事件、不可能事件、随机事件的概念.2.会用频率估计随机事件在每次试验时发生的机会的大小.过程与方法:通过本节的学习,会根据经验判断一个简单事件是属于必然事件、不可能事件还是随机事件.懂得用试验的方法分析随机事件发生的机会的大小.情感态度与价值观:感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.重点难点重点:1.理解随机事件的特点,会判断现实生活中哪些事件是随机事件;2.通过试验的方法来判断随机事件发生机会的大小.难点:判断现实生活中哪些事件是随机事件.自主学习内容预习教材126——132页,找出疑问的地方.教学步骤教学内容教法学法二次备课创设情境导入新课师生合作探究新知播放一段天气预报,引出一句古话“天有不测风云”掷一枚正方体骰子,请考虑以下问题:(1)掷得的点有几种可能的结果?(2)掷得的点数会是1吗?(3)掷得的点数小于7吗?(4)掷得的点数会是0吗?【归纳结论】我们称那些无需通过试验就能够预先确定它们在每次试验中都一定会发生的事件为必激发学生的兴趣,让学生体会数学源于生活,生活中处处有数学.从这句话引申出世界上有很多事情具有偶然性.人们不能事先判断这些事情是否会发生,但是随着对事件发生可能性的深入研究,人们发现许多偶然事件的发生也是有规律可循的.所以天气预报也只是对未来天气的预测,但并不是一定会如此.。

华东师大版九年级数学上册第二十五章《随机事件的概率》教案

华东师大版九年级数学上册第二十五章《随机事件的概率》教案

第25章随机事件的概率25.1 在重复试验中观察不确定现象【知识与技能】1.理解必然事件、不可能事件、随机事件的概念.2.会用频率估计随机事件在每次试验时发生的机会的大小.【过程与方法】通过本节的学习,会根据经验判断一个简单事件是属于必然事件、不可能事件还是随机事件.懂得用试验的方法分析随机事件发生的机会的大小.【情感态度】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.【教学重点】1.理解随机事件的特点,会判断现实生活中哪些事件是随机事件;2.通过试验的方法来判断随机事件发生机会的大小.【教学难点】判断现实生活中哪些事件是随机事件.一、情境导入,初步认识1.播放一段天气预报,引出一句古话“天有不测风云”.从这句话引申出世界上有很多事情具有偶然性.人们不能事先判断这些事情是否会发生,但是随着对事件发生可能性的深入研究,人们发现许多偶然事件的发生也是有规律可循的.所以天气预报也只是对未来天气的预测,但并不是一定会如此.【教学说明】激发学生的兴趣,让学生体会数学源于生活,生活中处处有数学.2.分析说明下列事件能否一定发生.(1)今天不上课.(2)明天要下雨.(3)煮熟的鸭子飞了.(4)投一枚硬币,正面向上.【教学说明】教师提出问题,引起学生的注意和思考,让学生感知事件的发生有多种可能.二、思考探究,获取新知探究1掷一枚正方体骰子,请考虑以下问题:(1)掷得的点有几种可能的结果?(2)掷得的点数会是1吗?(3)掷得的点数小于7吗?(4)掷得的点数会是0吗?【教学说明】教师提出问题,请学生动手操作试验,感知事件发生的多种情况,经过操作试验思考问题,让学生分析阐述自己的观点,初步感知事件发生的情况类别.1.从上述探究中可知,有些事件发生与否是可以事先确定的,有些事件发生与否是不能事先确定的.【教学说明】教师引导学生归纳总结事件发生的三种情况,增强学生对事件发生可能性的认识.【归纳结论】我们称那些无需通过试验就能够预先确定它们在每次试验中都一定会发生的事件为必然事件,称那些在每次试验中都一定不会发生的事件为不可能事件,必然事件和不可能事件统称为确定事件,无法预先确定在一次试验中会不会发生的事件称为随机事件.2.请同学们举生活中的实例说明必然事件、不可能事件、随机事件.【教学说明】学生结合定义列举,并能稍作阐述,教师讲评、归纳、鼓励.3.做一做准备三张大小一样的图片,把每张图片都对折,剪成大小一样的两张.将这六张小图片有图案的一面朝下,然后混合,让你的同伴随机抽出两张小图片.问题:(1)你认为抽出的两张小图片正好能成功拼成原图的机会大吗?(2)猜一猜,大概平均几次里会有一次成功呢?并通过试验验证你的猜想.【教学说明】教师提出问题,引导学生试验,学生通过试验,观察结果,思考并得出结论,体会随机事件发生的可能性大小.探究2问题:随机事件是否发生,没人能够预测,这就叫“随机性”,但是在捉摸不透的背后,是否隐藏着某种规律?阅读教材128~129页图表.思考:(1)通过以上图表,你发现有什么规律?发现当试验次数比较多的时候,“出现正面”的频率在0.5附近波动.(2)如果换成其他试验,是否也能发现类似的规律?试验:与你的同伴合作,做一做抛掷两枚硬币的游戏,全班同学每人各掷20次,一位同学抛的时候,另一位同学协助记录试验结果,汇集其他同学的记录,完成教材表25.1.3和图25.1.2.思考:通过试验你发现1.在试验中,“出现两个正面”的频率稳定在______%附近,“出现一正一反”的频率稳定在______%附近.2.如果将试验中的硬币换成瓶盖.你觉得频率也会逐渐稳定吗?如果是,那么稳定的数值会和(1)中的一致吗?用试验验证你的猜想.【归纳结论】通过前面的试验,我们可以发现,虽然每次试验的结果是随机、无法预测的,但随着试验次数的增加,事件发生的频率会稳定在某一个数值附近,所以我们可以用频率估计随机事件在每次试验时发生的机会的大小.三、运用新知,深化理解1.下列事件中,属必然事件的是()A.男生的身高一定超过女生B.方程4x2=0有实数解C.明天数学考试小明一定得满分D.两个无理数相加一定是无理数2.下列事件中,哪些是随机事件?哪些是必然事件?哪些是不可能事件?说说你的理由.(1)掷一枚骰子,6点朝上.(2)367人中至少有2人出生日期相同.(3)小明想用长度为10cm,20cm,30cm的小木条,首尾相接,做一个三角形.(4)小明买福利彩票,中500万奖金.3.20张卡片分别写着1,2,3,…,20,从中任意抽取一张,号码是2的倍数的机会有多大?你能预测吗?请用重复试验的方法检验你的猜想.【教学说明】上述题目较为简单,可让学生自主完成,教师再选派几名学生作出回答即可.【答案】1.B2.(1)随机事件(2)必然事件(3)不可能事件(4)随机事件3.1/2四、师生互动,课堂小结本堂课你学到了哪些有关随机事件的知识?你有哪些收获和体会?说说看.【教学说明】在学生回顾与反思本堂课的学习过程中,进一步完善认知,师生共同归纳总结.1.布置作业,从教材相应练习和“习题25.1”中选取.2.完成练习册中本课时练习.通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.“掷骰子”、“拼图”、“掷硬币”等活动是学生容易理解或亲身经历的,操作简单省时,又具有很好的经验性,最主要的是活动中含有丰富的随机事件,激发学生的探知欲.25.2 随机事件的概率1.概率及其意义【知识与技能】通过试验,理解事件发生的可能性问题,感受理论概率的意义.【过程与方法】经历试验等活动过程,学会用分析的方法在较为简单的问题情境下预测概率.【情感态度】发展学生合作交流的意识和能力.【教学重点】运用分析的方法在较为简单的问题情境下预测概率.【教学难点】对概率的理解.一、情境导入,初步认识教师活动:拿出一枚硬币抛掷,提问:结果有几种情况?学生活动:拿出一枚硬币抛掷,发现结果只有两种情况——“出现正面”和“出现反面”,而且发生的可能性均等,各占50%的机会.教师引入:一个事件发生的可能性就叫做该事件的概率.学生联想:抛掷一枚硬币出现正面的概率是12,出现反面的概率是12.教师引导:可记作P(出现正面)=12,P(出现反面)=12.二、思考探究,获取新知抛掷一枚普通的六面体骰子,“出现数字为5”的概率为多少?学生回答:16,可记作P(出现数字5)=16.上述例子可以经过分析很快地得出概率,但是实际中,许多问题是要进行重复实验、观察频率值的办法来解决的,请看下面一个例子,见课本P 136表25.2.1.学生活动:对表25.2.1中的问题进行试验.思路点拨:(1)关注的是哪个或哪些结果;(2)注意所有机会均等.(1)、(2)这两种结果个数的比就是所关注的结果发生的概率.【教学说明】引导学生在实验中寻找方法.问题情境1:课本P 137问题1学生活动:分四人小组展开对“问题1”的试验,并从中得到规律:如果掷的次数很多,试验的频率渐趋稳定,平均每6次就有1次掷出“6”.【教学说明】通过试验,让学生逐步计算一个随机事件发生的试验频率,并观察其中的规律性,从而归纳出试验概率趋于理论概率这一规律.例1见课本P 139例1思路点拨:本题是简单的古典概率,理论上很容易求出其概率.P(抽到男同学名字)=12242112=; P(抽到女同学名字)=101121221204=<,得出结论为抽到男同学名字的概率大 【教学说明】让学生感受到古典概率的内涵以及计算方式.拓展延伸:课本P 140“思考”【教学说明】分小组进行讨论,然后再在全班进行发言.例2 见课本P 140例2思路点拨:这是一个理论概率问题,袋中球的总数为8+16=24只,由于红球有8只,因此,P(取出红球)=81243=,黑球16只,P(取出黑球)= 162243=.也可以这样计算黑球:P(取出黑球)=1-P(取出红球)=121-33=. 例3见课本P 140例3思路点拨:这是一道通过比较取出黑球的概率大小进行判断的题目,首先要计算从甲、乙两只口袋中取出黑球的概率,P甲(取出黑球)843015==,P 乙(取出黑球)=80842902915=>,所以选乙袋成功机会大. 三、运用新知,深化理解1.任意投掷均匀的骰子,4朝上的概率是______.2.袋中装有6个红球和7个白球,且除颜色外,这些球都相同,从袋中任意摸出红球的概率是______.3.一副扑克牌(去掉大王和小王),随机抽取一张,抽取红桃的概率是______.4.如图,有一个被等分为8个扇形的转盘,转动转盘,指针落在白色区域的概率是( )A.1B.1/3C.5/8D.3/85.袋子里有1个红球,3个白球,5个黄球,每个球除颜色外都相同,从中任意摸1个球:(1)摸到红球的概率是多少?(2)摸到白球的概率是多少?(3)摸到黄球的概率是多少?(4)哪一个概率最大?【答案】1.1/6 2.6/13 3.1/4 4.C5.(1)1/9 (2)1/3 (3)5/9 (4)摸到黄球的概率最大四、师生互动,课堂小结1.什么叫概率?2.本节中的试验结果所产生的趋势与理论概率之间有什么关系?3.试验次数的大小与所得的“估计值”有什么关系?4.谈谈你对概率的理解和体会.1.布置作业:从教材相应练习和“习题25.2”中选取.2.完成练习册中本课时练习.通过抛掷硬币,用学生喜欢的掷骰子和扑克牌试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索,合作交流运用分析的方法预测概率,使学生掌握本节课的知识.学生在解决问题的过程中,提高了思维能力,增强思维的缜密性,并且培养了学生解决问题的能力和信心.2.频率与概率【知识与技能】1.了解运用列表法和树状图法理论分析随机事件的概率.2.理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.【过程与方法】经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.【情感态度】通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.【教学重点】频率与概率的理解和应用.【教学难点】利用频率估计概率的理解.一、情境导入,初步认识问题:要想知道一个鱼缸里有12条鱼,只要数一数就可以了,但要估计一个鱼塘里有多少条鱼,该怎么办?【教学说明】先前我们学习了用分析的方法求随机事件的概率,那么这里的问题情境中,很容易让学生想到这个事件的结果不能分析出来,而且每种结果出现的可能性也不一定是相同的,从而引发学生的求知:对这类事件的概率该怎样求解呢?引入课题.二、思考探究,获取新知问题1:怎样运用理论分析的方法求抛掷两枚硬币时出现两个正面的概率呢?【分析】列表法树状图法思考:理论分析与重复试验得到的结果是否是一致的?问题2:见课本P142问题3学生用自制的转盘做试验,并完成课本P143表25.2.4和图25.2.3.拓展延伸:课本P143“思考”【教学说明】让学生通过试验的方法来预测随机事件的概率.问:你能用理论分析的方法来预测两个转盘指针停在蓝色区域的概率吗?归纳:P(小转盘指针停在蓝色区域)=1 4P(大转盘指针停在蓝色区域)=1 4思考1:从重复试验结果中你得出了哪些结论?对以上这些问题,既可以通过分析用计算的方法预测概率,也可以通过重复试验用频率来估计概率.思考2:是不是所有的问题都可以这样呢?问题3:将一枚图钉随意向上抛起,求图钉落定后钉尖触地的概率.【分析】由于图钉的形状比较特殊,我们无法用分析的方法预测P(钉尖朝上)与P(钉尖触地)的值,因此只能靠重复试验来帮忙.【教学说明】让学生分成几个小组,每小组10人,每人试验50次,每个小组数据累加起来,并作好每个小组的实验记录.归纳:通过试验发现,当试验进行到720次后,所得的频率值就在46%上下浮动,我们可以取46%作为这个事件发生概率的估计值,即P(钉尖触地)≈46%.三、运用新知,深化理解1.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有______张.2.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有______个黑球.3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计,当n很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是______.(3)试估算口袋中黑、白两种颜色的球各有多少只.【答案】1.9 2.483.(1)0.6 (2)0.6 0.4 (3)8,12【教学说明】可让学生自主完成,分小组展示,教师点评.四、师生互动,课堂小结1.你知道什么时候用频率来估计概率吗?2.你会用频率估计概率来解决实际问题吗?【教学说明】教师先提出上述问题,让学生相互交流,再选派几名同学进行回顾总结,师生再共同完善.1.布置作业:从教材相应练习和“习题25.2”中选取.2.完成练习册中本课时练习.1.猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的、长期的.这节课教师应把握教学难度,注意关注学生接受情况.2.一般地,当试验的可能结果是有限个而且各种结果发生的可能性相等时,可以用P(A)=mn的方式得出概率.当试验的所有可能的结果是无限个,或各种可能结果发生的可能性不相等时,常常是通过统计频率来估计概率的.3.列举所有机会均等的结果【知识与技能】理解并掌握列表法和树状图法求随机事件的概率,并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.【情感态度】通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中的应用价值,培养缜密的思维习惯和良好的学习习惯.【教学重点】会用列表法和树状图法求随机事件的概率.区分什么时候用列表法,什么时候用树状图法求概率.【教学难点】列表法是如何列表,树状图的画法.列表法和树状图的选取方法.一、情境导入,初步认识播放视频《田忌赛马》,提出问题,引入新课.齐王和他的大臣田忌均有上、中、下马各一匹,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.已知田忌的马比齐王的马略逊色,即:田忌的上马不敌齐王的上马,但胜过齐王的中马;田忌的中马不敌齐王的中马,但胜过齐王的下马;田忌的下马不及齐王的下马.田忌屡败后,接受了孙膑的建议,结果两胜一负,赢了比赛.(1)你知道孙膑给的是怎样的建议吗?(2)假如在不知道齐王出马顺序的情况下,田忌能赢的概率是多少呢?【教学说明】情境激趣,在最短时间内激起学生的求知欲和探索欲.二、思考探究,获取新知1.树形图求概率课本149页例4【分析】对于第1次抛掷,可能出现的结果是正面或反面;对于第2、3次抛掷来说也是这样.而且每次硬币出现正面或反面的概率都相等,由此,我们可以画出树状图.【教学说明】教师引导学生画树状图,使学生动手体会如何画树状图,指导学生规范地应用树状图法解决概率问题.由例4总结得:树状图从上到下,列举了所有机会均等的结果,可以帮助我们分析问题,而且可以避免重复和遗漏,既直观又条理分明.思考:有的同学认为:抛掷三枚普通硬币,硬币落地后只可能出现四种结果:(1)全是正面(2)两正一反(3)两反一正(4)全是反面因此这四个事件出现的概率相等,你同意这种说法吗?为什么?答:不同意.因为由树状图可知在8种等可能结果中,全是正面的只有一种,两正一反的有3种,两反一正的有3种,全是反面的只有1种.应用:课本150页问题5【分析】把两个白球分别记为白1和白2,画出树状图,从中可以看出,一共有9种等可能结果,在“摸出两红”、“摸出两白”、“摸出一红一白”这三个事件中,“摸出两红”的概率最小,为1/9,“摸出两白”和“摸出一红一白”的概率相等,都是4/9.【教学说明】教师引导学生画出树状图,注意第一次摸出1个球,放回搅匀这一条件;注意分析“放回”与“不放回”的区别.2.列表法求概率课本151页问题6【分析】这一问题可用树状图法,但不如列表的结果简明.【教学说明】引导学生如何列表,指导学生体会列表法对列举所有可能的结果所起的作用,并比较它与树状图法的优劣.应用:课本152页问题7.分析:如图,画出树状图:试一试:请用列表法分析问题7.思考:两种方法结论是否一致?答:一致.【教学说明】教师引导学生应用树状图法求概率,详细讲解树状图各点的操作方法,学生结合列表法,理解分析,体会树状图的用法,体验树状图的优势.三、运用新知,深化理解1.在一个不透明的盒子里装有用“贝贝(B)”、“晶晶(J)”、“欢欢(H)”、“迎迎(Y)”和“妮妮(N)”五个福娃的图片制成的五张外形完全相同的卡片.小华设计了四种卡片获奖的方案(每个方案都是前后共抽两次,每次从盒子里抽取一张卡片).①第一次抽取后放黑盒子并混合均匀,先抽到“B”,后抽到“J”;②第二次抽取后放黑盒子并混合均匀,抽到“B”和“J”(不分先后);③第一次抽取后不再放回盒子,先抽到“B”,后抽到“J”;④第一次抽取后不再放回盒子,抽到“B”和“J”(不分先后);问:(1)上述四种方案,抽中卡片的概率依次是______,______,______,______.(2)如果让你选择其中的一种方案,你会选择哪种方案?为什么?【教学说明】这是只涉及两个步骤的试验,一般情况下用列表法求解,但第③、④种方案中涉及到“不放回”的问题,我们选择树状图更好,学生交流合作,教师指导分析列表或画树状图.【答案】1.(1)1/25 2/25 1/20 1/10;(2)选择方案④,因为方案④获奖的可能性比其他几种方案获奖的可能性大.四、师生互动,课堂小结1.一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能结果.2.注意第二次放回与不放回的区别.3.一次实验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.1.布置作业:从教材相应练习和“习题25.2”中选取.2.完成练习册中本课时练习.本课通过生活实例引入新课,激发学生的学习兴趣,通过例题分析用树状图法和列表法求概率的具体步骤和方法.并比较它们的优劣,让学生有比较地掌握方法,让学生理解更深刻.本章复习【知识与技能】掌握本章重要知识点,会求事件的概率,能用概率的知识解决实际问题.【过程与方法】通过梳理本章知识,回顾解决生活中的概率问题,培养学生的分析问题和解决问题的能力.【情感态度】在用本章知识解决具体问题的过程中,进一步增强数学的应用意识,感受数学的应用价值,激发学习兴趣.【教学重点】本章知识结构梳理及应用.【教学难点】利用概率知识解决实际问题.一、知识框图,整体把握二、释疑解感,加深理解1.通过实例,体会随机事件与确定事件的意义,并能估计随机事件发生可能性的大小.2.结合具体情境了解概率的意义,会用列举法(列表和树状图法)求一些随机事件发生的概率.P(A)=m/n(n是事件发生的所有的结果,m是满足条件的结果).3.对于事件发生的结果不是有限个,或每种可能的结果发生的可能性不同的事件,我们可以通过大量重复试验时的频率估计事件发生的概率.三、典例精析,复习新知例1一张圆桌旁有四个座位,A先坐在如图的座位上,B、C、D三人随机坐在其他三个座位上,求A和B不相邻的概率.分析:按题意,可列举出各种可能的结果,再依此计算A与B不相邻的概率.解:按顺时针方向依次对B、C、D进行排位,如下:三个座位被B、C、D三人随机坐的可能性共有6种,由图可知:P(A与B不相邻)=2/6=1/3.例2 有两个可以自由转动的均匀转盘A、B,分别被分成4等份、3等份,并且每份内均标有数字,如图所示:王扬和刘菲同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A与B;②两个转盘停止后,将两个指针所指的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止).若和为0,则王扬获胜;若和不为0,则刘菲获胜.问:(1)用树形图法求王扬获胜的概率.(2)你认为这个游戏公平吗?说明理由.解:(1)由题意可画树形图为:这个游戏有12种等可能性的结果,其中和为0的有三种.∴王扬获胜的概率为:3/12=1/4.(2)这个游戏不公平.∵王扬获胜的概率为1/4,刘菲获胜的概率为3/4,∴游戏对双方不公平.例3一个口袋中放有20个球,其中红球6个,白球和黑球各若干个,每个球除了颜色外没有任何区别.(1)小王通过大量反复试验(每次取一个球,放回搅匀后再取第二个)发现,。

九年级数学上册第25章随机事件的概率1概率及其意义上课pptx课件新版华东师大版

九年级数学上册第25章随机事件的概率1概率及其意义上课pptx课件新版华东师大版

教学反思
通过抛掷硬币,用学生喜欢的掷骰子和扑克 牌试验导入新课,吸引学生迅速进入状态,让学 生充分认识概率的意义;由学生自主探索,合作 交流运用分析的方法预测概率,使学生掌握本节 课的知识.学生在解决问题的过程中,提高了思 维能力,增强思维的缜密性,并且培养了学生解 决问题的能力和信心.
25.2 随机事件的概率
1.概率及其意义
华东师大版九年级上册
• 学习目标: 通过试验,理解事件发生的可能性问 题,感受理论概率的意义.
• 学习重点: 运用分析的方法在较为简单的问题情 境下预测概率.
• 学习难点: 对概率的理解.
新课导入Байду номын сангаас
回顾
抛掷一枚硬币,结果有几种情况?
两种情况:正面朝上和反面朝上.
乙袋中放着200个红球、80个黑球和10 个白球.三种球除了颜色以外没有任何区 别.两袋中的球都已经各自搅匀.从袋中任 取1个球,如果你想取出1个黑球,选哪 个袋成功的机会大呢?
课堂小结
1. 概率的概念以及概率意义的理解; 2. 知道事件发生稳定时的频率值是就是事件
发生的概率. 3. 概率值的求法.
分析
全班42位同学被抽到的机会均等, 因此所有机会均等的结果有42个,其中 抽到男同学的机会有22个,抽到女同学 的机会有20个.
例2
一个布袋中放着8个红球和16个黑 球,这两种球除了颜色以外没有任何区 别.布袋中的球已经搅匀.从布袋中任取1 个球,取出黑球与取出红球的概率分别 是多少?
例3 甲袋中放着22个红球和8个黑球,
重复多次试验,结果有什么规律?
正面朝上或反面朝上的频率会稳 定在0.5,即两种情况发生的可能 性相等,各占50%的机会.
试验 完成教材136页表25.2.1

华东师大版九年级上册数学25.1.1随机事件的概率

华东师大版九年级上册数学25.1.1随机事件的概率

A.抛掷一枚硬币四次,有两次正面朝上
B.打开电视频道,正在播放《十二在线》
C.射击运动员射击一次,命中十环
D.方程 x2-2x-1=0 必有实数根
2.下列成语中描述的事件必然发生的是(B )
A.水中捞月
B.瓮中捉鳖
C.守株待兔
D.拔苗助长
3.下列事件中,是不可能事件的是( D )
A.买一张电影票,座位号是奇数
13.如图,一个转盘被均匀分成六份,若随意转动一次,则停止后指针落
在阴影部分的可能性比指针落在非阴影部分的可能性( A )
A.大
B.小
C.相等
D.不能确定
14.袋子中装有 4 个黑球和 2 个白球,这些球的形状、大小、质地完全相
同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然
事件的是( A )
7.下列事件中,哪些事件是必然事件?哪些事件是不可能事件? 哪些事件是随机事件? (1)明天太阳从西方升起; (2)今天天气不好,飞机会晚些到达;
(3)当 a 是实数时,|a|≥0;
(4)某人买彩票,连续两次均中大奖; (5)任意购买一张电影票,座位号恰好是“7 排 8 号”.
解:(2),(4),(5)是随机事件;(1)是不可能事件; (3)是必然事件
18.某小组有 5 名男生,3 名女生,从这 8 名学生中随意派 n 名学生去做 社会调查,分别求下列条件中 n 的值或取值范围. (1)派去的 n 名学生中至少有 1 名女生是必然事件; (2)派去的 n 名学生中至少有 4 名男生是必然事件
解:(1)派出 n 名学生必须比男生至少多 1 名,才必然会至少有 1 名女生,所以 n=6,7,8
10.袋中有红球 4 个,白球若干个,它们只有颜色上的区别.从 袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中

华东师大版九年级数学上册第25章《随机事件的概率》教案设计

华东师大版九年级数学上册第25章《随机事件的概率》教案设计

华东师大版九年级数学上册第25章《随机事件的概率》教案设计25.1 在重复试验中观察不确定现象教学目标1.通过对生活中各种事件的概率的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断.2.知道事件发生的可能性是有大小的.教学重难点【教学重点】必然事件,不可能事件和随机事件的特点.【教学难点】根据必然事件,不可能事件和随机事件的特点对有关事件做出准确的判断.课前准备无教学过程一、情境导入在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔、水中捞月所描述的事件分别属于什么类型事件呢?二、合作探究探究点:事件的分类【类型一】必然事件的识别下列事件是必然事件的是( )A.如果|a|=|b|,那么a=bB.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.圆的半径为3,圆外一点到圆心的距离是5,过这点引圆的切线,则切线长为4D.三角形的内角和是360°解析:由于互为相反数的两个数绝对值也相等,因此绝对值相等的两个数可能不相等,A选项错误;平分的弦若是直径,那么两条直径互相平分,很明显,它们不一定互相垂直,B选项错误;直接利用勾股定理计算可得,C选项正确;三角形内角和等于180°,D选项错误,故选择C.方法总结:一定发生的是必然事件,一定不发生的是不可能事件,可能发生也可能不发生的是随机事件.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个球是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A 是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件,故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件);若是不确定的,则该事件是不确定事件.【类型二】随机事件的识别下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;四边形内角和总是360°,所以事件④是必然事件,属于确定事件.故答案是:①③.【类型三】不可能事件的识别下列事件中不可能发生的是( )A.打开电视机,中央一台正在播放新闻B.我们班的同学将来会有人当选为劳动模范C.在空气中,光的传播速度比声音的传播速度快D.天上掉馅饼解析:“天上掉馅饼”这个事件一定不会发生,所以它是一个不可能事件.故选D.【类型四】判断一个事件的类型下列事件中,哪些是不可能事件?哪些是必然事件?哪些是不确定事件?(1)从一副扑克牌中任意抽出一张牌,花色是红桃;(2)在一年出生的367名学生中,至少有两个人的生日在同一天;(3)好梦成真;(4)任意买一张电影票,座位号是偶数;(5)太阳从西边升起;(6)当室外温度低于-10℃时,将一碗清水放在室外会结冰.解析:(1)一副扑克牌中,有4种花色,也就是说“抽出一张牌,花色是红桃”可能发生,也可能不发生;(2)一年最多366天,367名学生中,每天出生一个只能出生366个,还有一名同学是哪天出生,哪天至少出生2名同学,所以“一年出生的367名学生中,至少有两个人的生日在同一天”一定发生;(3)“好梦成真”只是人的一种愿望,可能会发生,也可能不发生;(4)电影票的座位号有奇数,也有偶数,即“任意买一张电影票,座位号是偶数”可能发生,也可能不发生;(5)太阳都是从东边升起,绝不会从西边升起,即“太阳从西边升起”一定不发生;(6)水在0℃就开始结冰,低于0℃一定会结冰,即当室外温度低于-10℃时“将一碗清水放在室外会结冰”一定发生.解:(5)是不可能的事件;(2)(6)是必然事件;(1)(3)(4)是不确定事件.三、板书设计四、教学反思教学过程中,结合生活实际,对身边事件发生的情况作出判断,分类,巩固所学概念.25.2 随机事件的概率第1课时教学目标1.知道随机事件发生的可能性是有大小的.2.理解、掌握概率的意义及计算.3.会进行简单的概率计算及应用.教学重难点【教学重点】概率的意义及计算.【教学难点】进行简单的概率计算及应用.课前准备无教学过程一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是否公平.二、合作探究探究点一:可能性的大小【类型一】可能性大小的意义的理解气象台预报“本市明天降雨可能性是80%”.对此信息,下列说法正确的是( ) A.本市明天将有80%的地区降雨B .本市明天将有80%的时间降雨C .本市明天肯定下雨D .本市明天降水的可能性比较大解析:一个事件的发生的可能性的范围在0~1,80%应该是比较大,所以“本市明天降雨可能性是80%”是指“本市明天降雨的可能性比较大”.故选D. 方法总结:某事发生的可能性大小是指其发生的概率大小. 【类型二】利用面积关系判断可能性大小在如图所示(A ,B ,C 三个区域)的图形中随机撒一把豆子,豆子落在________区域的可能性最大(填A 或B 或C ).解析:先分别算出A ,B ,C 三部分的面积,面积最大的就是豆子落入可能性最大的.S C =π×22=4π,S B =π(42-22)=12π,S A =π(62-42)=20π,由此可见,A 的面积最大,则豆子落入可能性最大,故填A . 探究点二:概率【类型一】概率的简单计算小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( ) A.120 B.15 C.14 D.13解析:总共有20种情况,抽中数学题有5种可能,所以是520=14,故选择C.方法总结:等可能性事件的概率的计算公式:P (A )=n m,其中m 是总的结果数,n 是该事件成立包含的结果数.【类型二】利用面积求概率一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( )A.13B.12C.34D.23解析:观察这个图可知:阴影区域(3块)的面积占总面积(9块)的13,故其概率为13.故选A.方法总结:当某一事件A 发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A 所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P (A )=事件A 所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目;二者的比值就是其发生的概率.三、板书设计四、教学反思教学过程中,强调简单的概率的计算应确定事件总数及事件A包含的数目.事件A发生的概率P(A)的大小范围是0≤P(A)≤1.25.2 随机事件的概率第2课时教学目标1.进一步理解有限等可能事件概率的意义.2.会用树状图或列表法求出一次试验中涉及多个因素时,不重复不遗漏地求出所有可能的结果,从而正确地计算问题的概率.3.理解试验次数较大时试验频率趋于稳定这一规律,能结合具体情境掌握如何用频率估计概率.教学重难点【教学重点】用树状图或列表法求出一次试验中涉及多个因素时,不重复不遗漏地求出所有可能的结果. 【教学难点】结合具体情境掌握如何用频率估计概率.课前准备无教学过程一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:用树状图或列表法分析随机事件的所有等可能结果【类型一】用树状图求概率一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A.12 B. 14 C.16 D.112解析:用树状图或列表法列举出所有可能情况,然后由概率公式计算求得.画树状图(如图所示):∴两次都摸到白球的概率是212=16,故选C. 【类型二】用列表法求概率(2014·四川甘孜州)从0,1,2这三个数中任取一个数作为点P 的横坐标,再从剩下的两个数中任取一个数作为点P 的纵坐标,则点P 落在抛物线y =-x 2+x +2上的概率为________. 解析:用列表法列举点P 坐标可能出现的所有结果数和点P 落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:0 1 2 0 —— (0,1) (0,2) 1 (1,0) —— (1,2) 2(2,0)(2,1)——共有6种等可能结果,其中点P 落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P 落在抛物线上的概率是36=12,故答案为12.方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.探究点二:用频率估计概率 【类型一】用频率估计概率掷一枚质地均匀的硬币10次,下列说法正确的是( ) A .可能有5次正面朝上 B .必有5次正面朝上C .掷2次必有1次正面朝上D .不可能10次正面朝上解析:掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是错误!,因此,平均每两次中可能有1次正面向上或有1次反面向上.选项B 、C 、D 不一定正确,选项A 正确,故选A . 方法总结:随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小. 【类型二】推算影响频率变化的因素“六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是________个.解析:因为大量重复摸球实验后,摸到红球的频率逐渐稳定在0.2,说明红球大约占总数的0.2,所以球的总数为1000×0.2=200,故答案为:200.方法总结:解题的关键是知道在大量重复摸球实验后,某个事件发生的频率就接近于该事件发生的概率.概率与频率的关系是:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率.【类型三】频率估计概率的实际应用为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.解析:设鱼塘中估计有x条鱼,则5∶200=30∶x,解得:x=1200,故答案为:1200.方法总结:求出带标记的鱼占的百分比,运用了样本估计总体的思想.三、板书设计1.用树状图或列表法分析随机事件的所有等可能结果2.概率与频率的关系:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率.四、教学反思教学过程中,强调频率与概率的联系与区别.会用频率估计概率解决实际问题.25.2 随机事件的概率第3课时教学目标1.会用树状图或列表法在一次试验中涉及多个因素时,不重复不遗漏地列举所有可能的结果,从而正确地计算问题的概率.2.进一步提高运用分类思想解题的能力,掌握有关数学技能.教学重难点【教学重点】用树状图或列表法在一次试验中涉及多个因素时,不重复不遗漏地列举所有可能的结果. 【教学难点】运用分类思想解题.课前准备无教学过程一、情境导入学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则重转一次.在该游戏中乙获胜的概率是多少?二、合作探究探究点:用树状图或列表法求概率 【类型一】摸球问题一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( ) A.14 B.13 C.12 D.34解析:先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:1 2 1 (1,1) (1,2) 2(1,2)(2,2)由列表可知,两次摸出小球的号码之积共有4种等可能的情况,号码之积为偶数共有3种:(1,2),(1,2),(2, 2),∴P =34,故选D.【类型二】转盘问题有两个构造完全相同(除所标数字外)的转盘A 、B ,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果.其中A 大于B 的有5种情况,A 小于B 的有4种情况,再利用概率公式即可求得答案. 解:选择A 转盘.画树状图得:∵共有9种等可能的结果,A 大于B 的有5种情况,A 小于B 的有4种情况, ∴P (A 大于B )=59,P (A 小于B )=49,∴选择A 转盘.方法总结:树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.【类型三】学科间综合题如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )A .0.25B .0.5C .0.75D .0.95解析:先用列表法表示出所有可能的结果,再根据概率计算公式计算.列表表示所有可能的结果如下:灯泡1发光 灯泡1不发光 灯泡2发光 (发光,发光) (不发光,发光) 灯泡2不发光(发光,不发光)(不发光,不发光)根据上表可知共有4种等可能的结果,其中至少有一个灯泡发光的结果有3种,∴P (至少有一个灯泡发光)=34,故选择C.方法总结:求事件A 的概率,首先列举出所有可能的结果,并从中找出事件A 包含的可能结果,再根据概率公式计算. 【类型四】游戏公平性的判断小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树状图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利? 解析:(1)设红笔为A 1,A 2, A 3, 黑笔为B 1,B 2, 根据抽取过程不放回,可列表或作树状图,表示出所有可能结果;(2)根据树状图或列表得出两人所取笔颜色相同的情况,求出小明和小军获胜的概率,比较概率大小判断是否公平,概率越大对谁就有利. 解:(1)根据题意,设红笔为A 1,A 2, A 3, 黑笔为B 1,B 2, 作树状图如下:一共有20种可能.(2)从树状图可以看出,两次抽取笔的颜色相同的有8种情况,则小明获胜的概率大小为820=25,小军获胜的概率大小为35,显然本游戏规则不公平,对小军有利. 方法总结:用树状图法分别求出两个人获胜的概率,进行比较.若相等,则游戏对双方公平;若不相等,则谁胜的概率越大,对谁越有利. 三、板书设计用树状图或列表法求概率:1. 树状图:面对多步完成的事件时,通常选择树状图求概率2. 列表法:对于一次实验需要分两个步骤完成的,一般用列表法. 四、教学反思教学过程中,强调在生活、学习中的很多方面均用到概率的知识,学习概率要从身边的现象开始.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机事件发生的可能性的预测
【学习目标】 1.获得“在相同实验条件下,随着实验次数的增大,随机事 件发生的频率会逐渐趋于稳定”的认识,体会随机事件中所 隐含的确定性内涵; 2.经历对不确定事件确定性内涵的认识过程,培养学生透过 现象看本质的思维习惯,培养思维的深刻性; 3.经历对实际问题的解决过程,感觉到数学的有趣和有用, 并在解决过程中体会成功的乐趣. 【学习重点】 经过大量实验,体会随着重复实验次数的增大,事件发生的 频率将是呈现逐渐稳定的趋势,可以由此来预测机会的大 小. 【学习难点】 逐步培养学生的随机观念.
探究 “抛两枚硬币”游戏
(1)预测一下“出现两个正面”和“出现一正一反” 的频率; (2)抛掷两枚硬币,看看抛掷次数很多以后,“出 现两个正面”和“出现一正一反”这两个不确定事 件的频率是否也会比较稳定? (3)制作折线统计图; (4)你发现了什么规律?和你的预测相符吗? (5)在实验过程中有哪些问题需要注意?
5.一个不透明口袋装有红球6个,黄球9个,绿球3个, 这些球除颜色外没有任何其他区别.从中任意摸出一
1
个球,如果要使摸到绿球的可能性是 4 ,需要在这 个口袋中再放入多少个绿球?
解:2个
出现正面的频数
出现正面的频率
(2)利用表格中的频率绘制折线统计图; (3)出现正面的频数和频率怎么求? (4)你发现了什么规律?
下表是“出现正面”的频数、00
150
200
250
300
350
400
出现正 面的频 26 53 72 94 116 142 169 193

出现正 面的频 52.0% 53.0% 48.0% 47.0% 46.4% 47.3% 48.3% 48.3%
3.长度分别为3,4,5,12,13的五根木棒,从
2
中任意抽取三根,能构成三角形的可能性是__5__;
1
恰好能构成直角三角形的可能性是__5__.
4.现有4张完全相同的卡片,上面分别标有数字-
1,-2,3,4,把卡片背面朝上洗匀,然后从中随
机抽取2张,则这2张卡片上的数字之积为负数的
2
可能性是__3__.
随机事件是否发生,没有人能够预测,这就 叫做“随机事件”,但是会不会在捉摸不定的背 后,隐藏着某种规律呢?
实验:“抛一枚硬币”游戏 这是一个不确定事件,那么不确定事件是否 就无规律可循了呢?
(二)合作探究 范例 (1)以小组为单位投掷硬币作好记录完成下表:
投掷次数
50 100 150 200 250 300 350 400
结论
在试验中,“出现两个正面”的频率稳定在 _2_5__%附近,“出现一正一反”的频率稳定在_5_0__% 附近.
每次实验的结果是随机的,无法预测,但随着实 验次数的增加,隐含的规律逐渐显现,事件发生的频 率会稳定到某一个数值附近.所以可以用频率估计随 机事件在每次实验发生的机会的大小.
展示提升

投掷次 数
450
500
550
600
650
700
750
800
出现正 面的频 218 242 269 294 321 343 369 395

出现正 面的频 48.4% 48.4% 48.9% 49.0% 49.4% 49.0% 49.2% 49.4%

从图表中可以发现,随着实验次数的增加,频率会 逐渐稳定在0.5.
情景导入
1.确定事件包括__必__然__事__件__和_不__可__能__事__件_,它们
发生的可能性分别是__1__和__0__.
2.买一张彩票中特等奖是__随__机__事件.
1
3.投掷一枚骰子,正好是“6”的可能性是__6__.
自学互研
知识模块 用频率估计随机事件发生的可 能性大小 (一)自主探究
1.在一个不透明的盒子里有n个除颜色外其他完全 相同的小球,其中有6个黄球,每次摸球前先将盒子
里的球摇匀,任意摸出一个球记下颜色后再放回盒 子,通过大量的重复实验后发现,摸到黄球的频率
稳定在30%,那么可以推算出n大约是( D )
A.6
B.10
C.18
D.20
2.在一个不透明的口袋中装有仅颜色不同的红、 白两种小球,其中红球3只,白球n只,若从袋中 任意取一个球,摸出白球的可能性是 34,则n=__9_.
相关文档
最新文档