2022-2023年数学中考第一轮复习-专题一实数

合集下载

浙教初中中考数学专题复习

浙教初中中考数学专题复习

浙教版初中数学专题复习第一篇数及式专题一实数一、中考要求:1.在经历数系扩张、探求实数性质及其运算规律的过程;从事借助计算器探索数学规律的活动中,发展同学们的抽象概括能力,并在活动中进一步发展独立思考、合作交流的意识和能力.2.结合具体情境,理解估算的意义,掌握估算的方法,发展数感和估算能力.3.了解平方根、立方根、实数及其相关概念;会用根号表示并会求数的平方根、立方根;能进行有关实数的简单四则运算.4.能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值.二、中考热点:本章多考查平方根、立方根、二次根式的有关运算以及实数的有关概念,另外还有一类新情境下的探索性、开放性问题也是本章的热点考题.三、考点扫描1、实数的分类:2、实数和数轴上的点是一一对应的.3、相反数:只有符号不同的两个数互为相反数.若a、b互为相反数,则a+b=0,(a、b≠0)4、绝对值:代数定义:①定义(两种):几何定义: 数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

5、近似数和有效数字;6、科学记数法;7、整指数幂的运算:()()m m mmn nmn m n m b a ab a a a a a ⋅===⋅+,, (a ≠0)负整指数幂的性质:零整指数幂的性质:10=a (a ≠0) 8、实数的开方运算:()a a a a a =≥=22;0)( 9、实数的混合运算顺序1、运算法则(加、减、乘、除、乘方、开方)2、运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3、运算顺序:A.高级运算到低级运算;*10、无理数的错误认识:⑴无限小数就是无理数如1.414141···(41 无限循环);(2)(3)两个无理数的和、差、积、商也还是无理数,如(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个无理数在数轴上都有一个唯一如此.*11、实数的大小比较:(1).数形结合法(2).作差法比较(3).作商法比较(4).倒数法: 如6-与6-75(5).平方法四、考点训练1、(2005、杭州,3分)有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17 是17的平方根,其中正确的有() A.0个 B.1个 C.2个 D.3个那么x取值范围是()2A、x ≤2 B. x <2 C. x ≥2 D. x>2)3、-8A.2 B.0 C.2或一4 D.0或-44、若2m-4及3m-1是同一个数的平方根,则m为()A.-3 B.1 C.-3或1 D.-15、若实数a和 b满足 b=a+5 +-a-5 ,则ab的值等于_______6、在 3 - 2 的相反数是________,绝对值是______.7、81 的平方根是()A.9 B.9 C.±9 D.±38、若实数满足|x|+x=0, 则x是()A.零或负数 B.非负数 C.非零实数D.负数五、例题剖析1、设a= 3 - 2 ,b=2- 3 ,c= 5 -1,则a、b、c的大小关系是()A.a>b>c B、a>c>bC.c>b>a D.b>c>a2、若化简|1-x|2x-5,则x的取值范围是()A.X为任意实数 B.1≤X≤4C.x≥1 D.x<43、阅读下面的文字后,回答问题:小明和小芳解答题目:“先化简下式,再求值:其中a=9时”,得出了不同的答案,小明的解答:原式= a+(1⑴___________是错误的;⑵错误的解答错在未能正确运用二次根式的性质:________4、计算:200120025、我国1990年的人口出生数为人。

有理数与实数中考专题复习-含答案

有理数与实数中考专题复习-含答案

有理数与实数专题复习专题一 有理数与无理数的意义知识回顾1. 实数的分类2.在实际生活中正负数表示_____的量.典例分析例1:(2010四川巴中)下列各数:2π,错误!未找到引用源。

0.23·,cos60°,227,0.30003……,1 )A .2 个B .3 个C .4 个D .5 个解析:无理数是无限不循环的小数,其中的无理数有2π,0.30003……,1故选C. 评注:解决此类问题的关键是准确把握有理数,无理数及实数的概念,不能片面的从形式上判断属于哪一类数,另外对有关实数进行归类时,必须对已给出的某些数进行化简,以最简的结果进行归类.专题训练一1.(2010年南宁)下列所给的数中,是无理数的是( )A .2B . 2C .12D .0.1 2.(2010年湖北襄樊)下列说法错误的是( )A 2± 是无理数 C D .2是分数3.(2010年上海)下列实数中,是无理数的为( )A . 3.14B . 13C . 3D . 9 4.(2010安徽)在-1,0,1,2这四个数中,既不是正数也不是负数的是( )A .1-B .0C .1D .2专题二 实数的有关概念知识回顾1. 数轴:规定了___、____、___的直线叫数轴.数轴上的点与___是一一对应.2.相反数:到原点的距离相等且符号不同的两个数称为相反数,实数a 的相反数是__,零的相反数是__,a 与b 互为相反数,则_____;3.绝对值:在数轴上,表示一个数的点到原点的距离叫这个数的绝对值.⎪⎩⎪⎨⎧<=>=)0___()0(___)0(___||a a a a典例分析例1:(2010.湘潭)下列判断中,你认为正确的是( )A .0的绝对值是0B .31是无理数 C .|—2|的相反数是2 D .1的倒数是1-解析:A评注:解决本题的关键是弄清实数中的有关的概念,关于绝对值除了了解几何意义是表示点到原点的距离,还应理解“正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数”的内涵;关于无理数应从概念上突破:表示无限不循环小数;|—2|=2,2的相反数为-2;对于倒数,掌握它们的乘积为1.专题训练1.(2009年滨州)对于式子(8)--,下列理解:(1)可表示8-的相反数;(2)可表示1- 与8-的乘积;(3)可表示8-的绝对值;(4)运算结果等于8.其中理解错误的个数是( )A .0B .1C .2D .3 2.(2010年内蒙古鄂尔多斯)如果a 与1互为相反数,则a 等于( ).A .2B .2-C .1D .1-3.(2010年山东菏泽)负实数a 的倒数是( ).A .a -B .1aC .1a- D .a 4.(2010年绵阳)-2是2的( ).A .相反数B .倒数C .绝对值D .算术平方根5.(2010年镇江)31的倒数是 ;21-的相反数是 . 6.(2010年四川成都)若,x y 为实数,且20x ++=,则2010()x y +的值为________. 7.(2010吉林)如图,数轴上点A 所表示的数是_________.8(2010河南)若将三个数是 .专题三 实数的大小比较知识回顾比较实数大小的一般方法:① 性质比较法:正数大于___,负数____0,正数_____任何负数;② 数轴比较法:在数轴上的实数,右边的数总是比左边的数___;差值法:③ 设a ,b 是任意实数,如a -b .>0,则a ___b ,如a -b .<0,则a b ,如a -b =0,则a ___b ;④ 商值法:如a ÷b .>1,则a ___b ,如a ÷b .<1,则a ___b ,如a ÷b .=1,则a ___b ,⑤扩大法;⑥倒数比较法,当然还有分子、分母有理化和换元法等。

中考数学专题:实数与代数式

中考数学专题:实数与代数式

专题一 数与式中考要求:实数:借助数轴理解相反数、倒数、绝对值的意义及性质;掌握实数的分类、大小比较及混合运算;会用科学记数法、有效数字、精确度确定一个数的近似值;能用有理数估计一个无理数的大致范围.代数式:了解整式、分式、二次根式、最简二次根式的概念及意义; 会用提公因式法、公式法对整式进行因式分解; 理解平方根、算术平方根、立方根的意义及其性质; 根据整式、分式、二次根式的运算法则进行化简、求值.考查方式:本专题内容在中考中涉及数轴、相反数、绝对值等概念,多以填空题、选择题的形式出现. 科学记数法、近似数和有效数字往往与生产生活及科技领域中的实际问题相联系,具有较强的应用性,是中考的热点. 关于代数式的概念与运算,往往是单独命题,试题以填空题、选择题及计算题的形式出现,试题难度为中、低档. 试题设计有的带有开放探索性,覆盖面广,常常以大容量、小综合的形式考查灵活运用知识的能力.备考策略:1. 夯实基础,理清考点.2. 对课本中的典型和重点题目做变式、延伸.3. 注意一些跨学科的常识,加强学科整合.4. 关注中考的新题型.5. 关注课程标准中新增的目标.6. 探究性试题的复习步骤:(1)纯数字的规律探索.(2)结合平面图形探索规律.(3)结合空间图形探索规律,(4)探索规律方法的总结.第1课时 实数的概念课时核心问题:数系的扩张及实数相关概念的理解应用. 聚焦考点☆温习理解一、实数1. 有理数: ,它包括 、 .2. 无理数: .3. 实数及分类:注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:(1)开方开不尽的数,如(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如π23+等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等. 二、绝对值一个数的绝对值指的是表示.几何意义:一般地,数轴上表示叫做数a 的绝对值,记作|a |.代数意义:(1)正数的绝对值是 ;(2)负数的绝对值是 ;(3)零的绝对值是 .也可以写成:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.说明:(1)|a |≥0,即|a |是一个非负数;(2)|a |概念中蕴含分类讨论思想;(3)“| |”有括号的作用.三、相反数叫做互为相反数. 零的相反数是零.从数轴上看, 互为相反数的两个数所对应的点关于原点对称. 若a 与b 互为相反数,则a +b =0, 反之也成立.四、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立. 倒数等于本身的数是1和1-. 零没有倒数.五、平方根如果一个数的平方等于a(a≥0),那么这个数就叫做a的平方根(或二次方根). 一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根. 正数a的平方根记作“”.正数a的正的平方根叫做a的算术平方根,记作“”.正数和零的算术平方根都只有一个,零的算术平方根是零.1.(0) ||(0)a aaa a⎧==⎨-<⎩≥.2.与2的联系:3.0)<0)aa>=⎩.六、立方根如果一个数的立方等于a, 那么这个数就叫做a的立方根(或a的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:(1)=,说明三次根号内的负号可以移到根号外面;(2)=3.典例解析考点一、实数的分类【例1】下列实数是无理数的是().B. 1C. 0D.1-听课记录:【举一反三】1.下列四个实数中,是无理数的是().A. 0B. 3-D.3112. 下列选项中,属于无理数的是().A. 2B. πC. 32D. 2-3. 下列各数:227,π,cos60︒,0,,其中无理数的个数是().A. 1B. 2C. 3D. 4考点二、绝对值【例2】|2|-等于().A. 2B. 2-C.12D.12-听课记录:【举一反三】2的绝对值是().A. ±2B. 2C. 12D. 2-考点三、相反数【例3】5的相反数是().A. 5B. 5-C. 15D.15-听课记录:【举一反三】1. 2014的相反数是().A. 2014B. 2014-C.12014D.12014-2.15-的相反数是().A. 15B.15-C. 5D. 5-考点四、倒数【例4】12-的倒数是().A. B.C. D. 听课记录:【举一反三】1. 12的倒数是().A. 2B. 2-C. 12D. 12- 2. 14-的倒数是( ). A. -4B. 4C. 14D. 14- 考点五、平方根【例5】得( ).A. 100B. 10C.D. 10± 听课记录:【举一反三】1. 一个数的算术平方根是2,则这个数是 .2. 的平方根是 .3. 若2y =,则()y x y += .4. 若实数x , y 满足|4|0x -=,则以x , y 的值为等腰三角形的周长为 .5. 若1a <1-= .6. 2210b b ++=,则221||a b a +-= .7. 设1a =,a 在两个相邻整数之间,则这两个整数是 .第2课时 实数的计算课时核心问题:实数的灵活运算.聚焦考点☆温习理解一、实数大小的比较1. 数轴:规定了、、的直线叫做数轴. (画数轴时要注意上述三要素缺一不可)解题时要真正掌握数形结合思想,理解实数与数轴上的点是一一对应的,并且能灵活运用.2. 实数大小比较的几种常见方法.(1)数轴比较:数轴上的点所表示的数在右边的总比左边的大;(2)求差比较:设a, b为实数,有a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.(3)求商比较:设a, b为两正实数,有a>1⇔a>b;ba<1⇔a<b;ba=1⇔a=b.b(4)绝对值比较法:设a, b为两负实数,则a a b>⇔<.b(5)平方比较法:设a,b为两负实数,则22a b a b >⇔<.二、科学计数法和近似数1. 有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.2. 科学计数法:把一个数写成10n a ±⨯的形式,其中110a <≤,n 是整数,这种计数法叫做科学计数法.三、实数的运算1. 加法交换律:a b b a +=+.2. 加法结合律:()()a b c a b c ++=++.3. 乘法交换律:ab ba =.4. 乘法结合律:()()ab c a bc =.5. 乘法对加法的分配律:()a b c ab ac +=+.6. 实数的运算顺序:先算乘(开)方,再算乘除,最后算加减,如果有括号,就先算括号里面的. 典例解析考点一、实数的大小比较【例1】下列各数中,最大的数是( ).A. 0B. 2C.2-D.12- 听课记录:【举一反三】1. 下列各数中,最小的数是().A. 0B. 1 3C.13- D.3-2. 在数1,0,1,2--中,最小的数是().A. 1B. 0C. 1-D. 2-考点二、科学计数法与近似值【例2】“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2014年全社会固定资产投资达1762亿元,“1762亿”这个数用科学计数法表示为().A. 1762×108B. 1.762×1010C. 1.762×1011D. 1.762×1012听课记录:【举一反三】1. 据统计,2015年河南省旅游业总收入达到3875.5亿元. 若将“3875.5亿”用科学计数法表示为3.8755×10n,则n等于().A. 10B. 11C. 12D. 132. 将6.18×10-3化为小数是( ).A. 0.000618B. 0.00618C. 0.0618D. 0.6183. 20140000用科学计数法表示(保留3位有效数字)为 .考点三、实数的运算【例3】计算:201(π2014)sin 6023-⎛⎫+-+︒ ⎪⎝⎭.听课记录:【举一反三】1. 计算:2(2)(3)2-+-⨯.2. 2014(1)2sin 45--︒+-3. 计算:1011)23-⎛⎫-+-- ⎪⎝⎭.第3课时整 式 课时核心问题:整式的相关概念及运算.聚焦考点☆温习理解一、单项式1. 代数式.用运算符号把数或表示数的字母连接而成的式子叫做代数式. 单独的一个数或一个字母也是代数式.2. 单项式.只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示. 例如,2143a b -就是错误的,应写成2133a b -. 一个单项式中,所有字母的指数的和叫做这个单项式的次数,如325a b c -是6次单项式.二、多项式1. 多项式.几个单项式的和叫做多项式,其中每个单项式叫做这个多项式的项,多项式中不含字母的项叫做常数项,多项式中次数最高项的次数为多项式的次数.统称为整式.用数值代替代数式中的字母,按照代数式指出的运算计算出的代数式的结果,叫做求代数式的值.注意:(1)求代数式的值,一般先化简再代入.(2)求代数式的值,有时求不出具体字母的值,此时需要利用技巧“整体”代入求值.2. 同类项.所含 ,并且 的项叫做同类项. 几个常数项也是同类项.3. 去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都.(2)括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都.三、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项.1. 幂的运算法则:(1)同底数幂相乘:m n m n⋅=(m, n都是整数,a≠0).a a a+(2)幂的乘方:()m n mn=(m, n都是整数,a≠0).a a(3)积的乘方:=⋅(n是整数,a≠0, b≠0).()n n nab a b(4)同底数幂相除:m n m n÷=(m, n都是整数,a≠0).a a a-2. 整式乘法.(1)单项式与单项式相乘,把作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式. (2)单项式乘多项式:m(a+b)=ma+mb.(3)多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.3. 乘法公式.(1)平方差公式:(a+b)(a-b)=a2-b2.(2)完全平方公式:(a±b)2=a2±2ab+b2.4. 整式的除法:(1)单项式除以单项式:法则:(2)多项式除以单项式:法则:注意:(1)单项式乘单项式的结果仍然是单项式.(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项.(5)公式中的字母可以表示数,也可以表示单项式或多项式.(6)011(0),(0,)p pa a a a p a -=≠=≠为正数. (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 单项式除以多项式是不能这么计算的. 典例解析考点一、整式的加减运算【例1】下列计算正确的是( ).A. 2x -x =xB. 326a a a ⋅=C. (a -b )2=a 2-b 2D. (a +b )(a -b )=a 2+b 2听课记录:【举一反三】已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是(). A.2- B. 0C. 2D. 4考点二、同类项的概念及合并同类项【例2】下列各式中,与2a 是同类项的是( ).A. 3aB. 2abC. 23a -D. a 2b听课记录:【举一反三】下列运算正确的是( ).A. 2323a a a +=B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a =考点三、幂的运算【例3】下列运算正确的是( ).A. 33a a a ⋅=B. 33()ab a b =C. 326()a a =D. 842a a a ÷=听课记录:【举一反三】1. 计算:2()ab 的结果是( ).A. 2abB. a 2bC. a 2b 2D. ab 22. 计算:63m m ⋅的结果是( ).A. m 18B. m 9C. m 3D. m 2考点四、整式的乘除法.【例4】计算:23(2)()a a ⋅-=.A. 312a -B. 36a -C. 12a 3D. 6a 2【例5】计算:2x (3x 2+1),正确的结果是(). A. 5x 3+2x B. 6x 3+1C. 6x 3+2xD. 6x 2+2x听课记录:【举一反三】1. 下列计算正确的是( ).A. 4416x x x ⋅=B. 325()a a =C. 236()ab ab =D. 23a a a +=2. 下列运算正确的是( ). A. 2323a a a += B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a = 考点五、整式的混合运算及求值【例6】先化简,再求值:2(3)()()a a b a b a a b -++--,其中11,2a b ==-. 听课记录:【举一反三】1. 下列计算中,正确的是( ).A. 235a b ab +=B. 326(3)6a a =C. 623a a a ÷=D. 32a a a -+=-2. 下列运算正确的是( ). A. (m +n )2=m 2+n 2B. (x 3)2=x 5C. 5x -2x =3D. (a +b )(a -b )=a 2-b 23. 下列计算正确的是( ).A. (2a 2)4=8a 6B. a 3+a =a 4C. a 2÷a =aD. (a -b )2=a 2-b 24. 化简:2()()()2a b a b a b ab ++-+-.5. 化简:2(1)2(1)a a ++-.6. 已知x (x +3)=1,求代数式2x 2+6x -5的值为 .7. 先化简,再求值:(x +1)(2x -1)-(x -3)2,其中2x =-.。

1.1实数及其运算知识点演练(讲练)-2023届中考数学一轮大单元复习(解析版)

1.1实数及其运算知识点演练(讲练)-2023届中考数学一轮大单元复习(解析版)

专题1.1实数及其运算知识点演练考点1:实数的分类例1.(2022·浙江·温州市南浦实验中学七年级期中)把下列各数的序号填入相应的集合里.,④7,⑤36,⑥3.1313313331⋯(两个“1”之间依次多一个“3”).①0,②―4,③23整数∶______;分数∶______;无理数∶________;1.(2022·陕西宝鸡·八年级期中)下列说法中正确的是( )A.有理数都是有限小数B.无限小数都是无理数C.无理数都是无限小数D.π是分数2【答案】C【分析】根据有理数的定义及无理数的定义即可得到答案.【详解】解:A选项无限循环小数也是有理数,故A不正确;B选项无限循环小数也是有理数,故B不正确;2.(2022·江苏·沭阳县怀文中学七年级期中)下列各数中,是无理数的是()A.13B.1.732C.―πD.2273.(2022·四川·成都嘉祥外国语学校八年级期中)以下四个数:―2,3.14,227,0.101,无理数的个数是( )A.1B.2C.3D.44.(2022·广东河·八年级期中)在5,―0.333⋯,0,0.10010001⋯,38,(―2)0,3.1415,2.10101⋯(相邻两个1之间有1个0)中,无理数有()A.1个B.2个C.3个D.4个5.(2022·吉林·农安县新农乡初级中学八年级期中)下列各数3.1415926,9,1.212212221……(相邻两,2―π,―2020,4中,有理数有___________个.个l之间2的个数逐次加1),176.(2022··七年级期中)把下列各数填入相应的横线内:,0,5.-6,π,―23整数:__________________;负数:__________________;实数:__________________.7.(2022·浙江·余姚市子陵中学教育集团七年级期中)把下列各数的序号分别填入相应的大括号内:①0,②-π,③1.5,④―25,⑤―6,⑥1.1010010001…(每两个“1”之间依次多1个“0”)7负数:{___________…};整数:{___________…};无理数:{___________…}.8.(2022·浙江宁波·七年级期中)把下列各数对应的序号填在相应的括号里.①0;②3;③-2.5;④π2;⑤-57;⑥|―3|;⑦1.202002…… (每两个“2”之间依次多一个“0”).正整数:()负分数:()无理数:()【答案】⑥;③⑤;②④⑦【分析】根据正整数,负分数和无理数的概念,即可求解.【详解】解:|―3|=3,正整数:(⑥)负分数:(③⑤)无理数:(②④⑦)【点睛】本题主要考查实数的分类,掌握无理数是无限不循环小数是解题的关键.9.(2022·福建省大田县教师进修学校八年级期中)把下列各数填入相应的括号内:2 3,3―5,0.·7,―3.14,36,(―2)2,1.010010001⋯(1)无理数:{…};(2)负实数:{…};(3)整数:{…};(4)分数:{…};10.(2022·浙江金华·七年级期中)把下列各数对应的编号填在相应的大括号里:(1)―49,(2)18,(3)57,(4)π2,(5)—3.141,(6)0,(7)7,(8)80%,(9)―|―5|,(10)0.101001...(自左而右每两个1之间依次多一个0).整 数:____________________________________分 数:____________________________________无理数:___________________________________例2.(1)(2022·山东·宁津县育新中学九年级阶段练习)下列选项中,对2的说法错误的是().A.2的相反数是―2B.2的倒数是22C.2的绝对值是2D.2是有理数(2)(2022·河北唐山·八年级期中)3―5的绝对值是___________.个单位长度的圆,将圆上的点A放在原点,并把(3)(2022·河北邢台·八年级期中)如图,有一个半径为12圆沿数轴逆时针方向滚动一周,点A到达点A′的位置,则点A′表示的数______;若点B表示的数是―10,则点B在点A′的______(填“左边”、“右边”).1.(2022·山西实验中学八年级期中)实数―3的相反数是( )A.3B.3C.―3D.―332.(2022·陕西·西安市铁一中学七年级期中)―5的绝对值是( )A.5B.―5C.5D.―53.(2022·安徽省马鞍山市第七中学七年级期中)已知a为实数,则―a+|a|的值为()A.0B.不可能是负数C.可以是负数D.可以是正数也可以是负数【答案】B【分析】通过分类讨论去绝对值,即可判断结果.【详解】当a>0时,―a+|a|=―a+a=0;当a=0时,―a+|a|=―a+a=0;当a<0时,―a+|a|=―a―a=―2a>0.综上所述,―a+|a|的值不可能是负数.故选:B.【点睛】本题主要考查了实数的绝对值,a是实数时,正数、0、负数三种情况都要考虑到,用到了分类讨论的方法.4.(2022·江苏无锡·八年级期中)5―2的相反数是()A.―0.236B.5+2C.2―5D.―2+5【点睛】本题考查了相反数的定义,解决本题的关键是掌握其定义:只有符号不同的两个数互为相反数.5.(2022·河北石家庄·八年级期中)在以下说法中:①无理数和有理数统称为实数;②实数和数轴上的点是一一对应的;③0的算术平方根是0;④无限小数都是无理数.正确的有()A.1个B.2个C.3个D.4个【答案】C【分析】根据实数的相关概念、实数与数轴的对应关系、算术平方根的概念对各小题分析判断即可得解【详解】①无理数和有理数统称为实数,说法正确②实数和数轴上的点是一一对应的,说法正确③0的算术平方根是0,说法正确④无限小数都是无理数,说法错误,因为无限循环小数是有理数故选C【点睛】本题主要考查实数的相关概念、实数与数轴的对应关系、算术平方根的概念,算数平方根的概念是解题的关键6.(2022·湖北黄石·中考真题)1―2的绝对值是()A.1―2B.2―1C.1+2D.±(2―1)7.(2022·浙江·七年级专题练习)数轴上表示1,2的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.2―1B.1―2C.2―2D.2―2【答案】C8.(2022·四川省成都市七中育才学校八年级期中)5―1的相反数是____,绝对值是__________.9.(2022·四川·成都外国语学校八年级期中)已知a、b、c在数轴上的位置如图所示.化简a2―|a+b|+ (c―a)2+|b+c|―3b3=___________.10.(2022·江苏·苏州工业园区金鸡湖学校一模)计算:|―3|+(π+3)0―12.11.(2022·福建省永春第三中学七年级期中)已知实数a,b满足|a|=b, |ab|+ab=0,化简|a|+|―2b| +3a.【答案】2a+2b【分析】根据实数的性质,绝对值的性质,相反数的意义,判断出a,b的符号,进而化简绝对值,再根据整式的加减进行化简即可求解.【详解】解:∵|a|=b, |ab|+ab=0∴b≥0,ab≤0∴a≤0∴|a|+|―2b|+3a=―a+2b+3a=2a+2b.【点睛】本题考查了实数的性质,整式的加减,化简绝对值,判断出a,b的符号是解题的关键.12.(2022·安徽·合肥市第四十五中学橡树湾校区七年级期中)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示―2,设点B所表示的数为m.(1)实数m的值是______;(2)求|m―1|―|1―m|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+4|与d―4互为相反数,求2c+3d的平方根.13.(2022·福建三明·八年级期中)实数与数轴上的点一一对应,无理数也可以在数轴上表示出来,体现了数形结合思想.(1)由数到形:在数轴上用尺规作图作出―5对应的点P(不要写作法,保留作图痕迹).(2)由形到数:如图,在数轴上,点A,B表示的数分别为0,2,作BC⊥AB于点B,截取BC=1;连接AC,以点C为圆心,CB长为半径画弧交AC于点D;以点A为圆心,AD长为半径画弧交AB于点E,则点E表示的实数是________________.作法:作线段AB的垂直平分线MN;以点为半径作弧交数轴负半轴于点P.(2)解:由作法知CD=CB=1,AD考点3:平方根、算术平方根、与立方根例3.(2022·山东·德州市第九中学九年级期中)本学期第六章《实数》中学习了平方根和立方根,下表是平方根和立方根的部分内容:平方根立方根定义一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫做二次方根).一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根).性质一个正数有两个平方根,它们互为相反数:0的平方根是0;负数没有平方根.正数的立方根是正数;0的立方根是0;负数的立方根是负数.【类比探索】(1)探索定义:填写下表x411681x类比平方根和立方根,给四次方根下定义:______.(2)探究性质:①1的四次方根是______;②16的四次方根是______;③0的四次方根是______;④-625 ______(填“有”或“没有”)四次方根.类比平方根和立方根的性质,归纳四次方根的性质:______;1.(2022·四川·绵阳中学英才学校二模)若―3x m y和5x3y n的和是单项式,则(m+n)3的平方根是()A.8B.―8C.±4D.±8【答案】D【分析】根据题意可得―3x m y和5x3y n是同类项,从而得到m=3,n=1,再代入,即可求解.【详解】解:∵―3x m y和5x3y n的和是单项式,∴―3x m y和5x3y n是同类项,∴m=3,n=1,∴(m+n)3=(3+1)3=64,∴(m+n)3的平方根是±8.故选:D.【点睛】本题主要考查了合并同类项,求一个数的平方根,熟练掌握根据题意得到―3x m y和5x3y n是同类项是解题的关键.2.(2022·广东北江实验学校三模)下列说法不正确的是()A.125的平方根是±15B.(-0.1)2的平方根是±0.1C.-9是81的算术平方根D.3-27=-33.(2022·江苏·连云港市新海初级中学三模)9的值为_______.4.(2022·上海嘉定·九年级期中)长为3、4的线段的比例中项长是___________.5.(2022·山西临汾·九年级期中)已知y=x―2+2―x―3,则(x+y)2022(x―y)2023的值为_____.【答案】2+3##3+26.(2022·山东·测试·编辑教研五二模)如图,这是由8个同样大小的立方体组成的魔方,体积为8,若阴影部分为正方形ABCD,则此正方形的边长是______.7.(2022·四川攀枝花·中考真题)3―8―(―1)0=__________.【答案】―3【分析】根据立方根的定义,零指数次幂的定义以及有理数减法法则,进行计算即可.【详解】解:原式=―2―1=―3.故答案为:―3.【点睛】本题考查了立方根的定义,零指数次幂的定义以及有理数减法法则,正确进行计算是解题的关键.8.(2022·广东·东莞市万江第三中学三模)计算下列各题:(1)4的平方根是______;(2)25的算术平方根是______;(3)―8的立方根是______;9.(2022·全国·九年级专题练习)已知c<b<0<a,且|b|<|a|,求(a―b)2+c2―|b+c|―|―b|―3(b―a)3的值.【答案】2a【分析】根据绝对值的意义可得a―b>0,b+c<0,―b>0,b―a<0,然后通过计算可得.【详解】解:∵c<b<0<a,|b|<|a|,10.(2022·全国·九年级专题练习)已知正数a的两个不同平方根分别是2x―2和6―3x,a―4b的算术平方根是4.(1)求这个正数a以及b的值;(2)求b3+3a―17的立方根.【答案】(1)a=36,b=5(2)6【分析】(1)首先利用正数的平方根有两个,它们互为相反数,再利用互为相反数的两个数相加为0,即可得出两个平方根,进而得出正数a的值,然后再利用题意“a―4b的算术平方根是4”,把a的值代入a―4b,即可得出b的值.(2)根据(1)得出a=36,b=5,然后把a=36,b=5代入b3+3a―17,求出值,然后再开立方,即可得出结果.【详解】(1)解:∵正数a的两个不同平方根分别是2x―2和6―3x,∴2x―2+6―3x=0,解得:x=4,∴2x―2=2×4―2=6,6―3x=6―3×4=―6,∵(±6)2=36,∴a=36,又∵a―4b的算术平方根是4,又∵42=16,∴a―4b=16,∴把a=36代入a―4b=16,可得:36―4b=16,解得:b=5.例4.(1)(2022·山东济南·模拟预测)最新统计,中国注册志愿者总数已超30000000人,30000000用科学记数法表示为()A.3×107B.3×106C.30×106D.3×105:30000000=3×107.故选:A.(2)(2022·四川德阳·二模)已知某种细胞的直径约为2.13×10―4cm,请问2.13×10―4这个数原来的数是()A.21300B.2130000C.0.0213D.0.000213解:2.13×10-4=0.000213,故选:D.知识点训练1.(2022·山东·济南市历城区教育教学研究中心一模)2021年5月15日,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆火星,为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为( )A.47×107B.4.7×107C.4.7×108D.0.47×109【答案】C【分析】根据科学记数法的表示方法确定a,n的值即可.【详解】解:470000000=4.7×108,故选:C.【点睛】题目主要考查科学记数法的表示方法,熟练掌握科学记数法的表示方法是解题关键.2.(2022·河南洛阳·二模)今年的“两会”上,李克强总理在谈到今年需要就业的新增劳动力时,指出今年高校毕业生1076万,是历年最高.数据“1076万”用科学记数法表示为( )A.1.076×107B.1.076×108C.10.76×106D.0.1076×108【分析】科学记数法的表示形式为a×10n的形式,其中1⩽|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值⩾10时,n是正整数;当原数的绝对值<1时,n是负整数,由此即可得到答案.【详解】解:1076万=10760000=1.076×107.故选:A.【点睛】本题主要考查了科学记数法,解题的关键是熟练掌握科学记数法的定义.3.(2022·福建·九年级专题练习)某种细胞的直径是5×10―4毫米,这个数用小数表示是()A.0.00005B.0.0005C.―50000D.50000【答案】B【分析】根据科学记数法a×10n得到n=―4,所以小数点向前移动4位来求解.【详解】解:∵5×10―4∴n=―4,∴5×10―4=0.0005.故选:B.【点睛】本题主要考查了把科学记数法还原原数,还原原数时,关键是看n,n<0时,|n|是几,小数点就向前移几位.4.(2022·全国·七年级专题练习)据科学家估计,地球的年龄大约是4.6×109年,4.6×109是一个()A.7位数B.8位数C.9位数D.10位数【答案】D【分析】把科学记数转化为原数即可求得答案.【详解】解:4.6×109=4600000000,故选D.【点睛】本题考查了把科学记数法转化为原数,解题的关键是熟练掌握科学记数法的表示形式.5.(2022·全国·七年级专题练习)一个整数x用科学记数法表示为1.381×1028,则x的位数为()A.27B.28C.29D.30【答案】C【分析】将科学记数法表示的数的指数加上1得到原来的数的整数位,由此解答即可.【详解】x的整数数位少1位为28,则x的位数为29.【点睛】本题考查了把科学记数法表示的数整数位与指数的关系.6.(2022·河南·九年级专题练习)数据0.0000037用科学记数法表示成3.7×10―n,则3.7×10n表示的原数为().A.3700000B.370000C.37000000D.―3700000【答案】A【分析】根据用科学记数法表示绝对值小于1的数的方法,可确定n的值.即得出3.7×10n表示的数为3.7×106,再将其转化为数字即可.【详解】∵数据0.0000037用科学记数法表示成3.7×10―n,∴n=6,∴3.7×10n即为3.7×106,∴3.7×10n表示的原数为3700000.故选A.【点睛】本题主要考查数科学记数法之间的转换.掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同是解题关键.7.(2022·四川广安·九年级专题练习)近似数3.48×103精确到()A.百分位B.个位C.十位D.百位【答案】C【分析】先把科学记数法表示的数还原,再看首数的最后一位数字所在的位数,即为精确到的位数.【详解】近似数3.48×103=3480,8在十位上,故精确到十位故选C【点睛】本题考查了求近似数,将科学记数法还原是解题的关键.8.(2022·山东师范大学第二附属中学模拟预测)数据0.0000314用科学记数法表示为( )A.3.14×10―5B.31.44×10―4C.3.14×10―6D.0.314×10―6【答案】A【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10―n,其中n为正整数,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000314=3.14×10―5故选:A.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10―n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.(2022·河北邯郸·七年级期末)0.000985用科学记数法表示为9.85×10―n,则9.85×10n还原为原数为()A.9850000B.985000C.98500D.9850【答案】C【分析】用科学记数法表示的数还原成原数时,n> 0时,n是几,小数点就向右移几位.【详解】∵0.000985= 9.85×10-4∴n=4,∴9.85×104= 98500.故选: C.【点睛】本题考查写出用科学记数法表示的原数,将科学记数法a× 10n”表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数科学记数法a×10n表示的数,还原成通常表示的数,就是把a的小数点向右移动n位所得到的数;把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.(2022·吉林长春·一模)“天文单位”是天文学中用来计量距离的一种单位.1天文单位用科学记数法表示为1.496×108千米,这个数也可以写成______亿千米.【答案】1.496【分析】根据1亿=108,对这个数进行换算即可作答.【详解】解:∵1亿=108,∴1.496×108千米=1.496亿千米,故答案为:1.496.【点睛】本题考查了科学记数法−−−原数,解题的关键是掌握科学记数法表示的数与原数的关系.考点5:实数的大小比较例5.(1)(2022·四川乐山·九年级专题练习)在实数|―3.14|,-3,―3,―π中,最小的数是()A.|―3.14|B.-3C.―3D.―π【答案】D【分析】根据实数的比较大小的规则比较即可.(2)(2022·山东济南·中考真题)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.ab>0B.a+b>0C.|a|<|b|D.a+1<b+1【答案】D【分析】利用数轴与实数的关系,及正负数在数轴上的表示求解.【详解】解:根据图形可以得到:―3<a<―2<0,0<b<1,∴ab<0,故A项错误,a+b<0,故B项错误,|a|>|b|,故C项错误,a+1<b+1,故D项错误.故选:D.知识点训练1.(2022·山东·测试·编辑教研五二模)下列实数中,最大的数是()A.―4B.―5C.0D.3【答案】D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负数绝对值大的反而小,据此判断即可.【详解】解:∵―5<―4<0<3,∴最大的数是3,故选:D.【点睛】此题考查实数的大小比较的方法,熟练掌握:负实数<0<正实数,两个负数绝对值大的反而小,是解答此题的关键.2.(2022·湖南·长沙市南雅中学一模)下列实数中,最大的数是()A.0B.2C.πD.―33.(2022·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)在四个数―2,―0.6,1,3中,绝对值2最小的数是( )D.3A.―2B.―0.6C.124.(2022·江西·寻乌县教育局教学研究室二模)1,―2,0,3中最小的数是()A.1B.―2C.0D.35.(2022·四川·峨眉山市教育局二模)在2,-1,0,π这四个实数中,最小的一个实数是()2A.2B.-1C.0D.π26.(2022·河南·郑州市树人外国语中学九年级期末)下列四个实数中,绝对值最小的数是()A.﹣4B.―3C.2D.37.(2022·四川乐山·九年级专题练习)比较23和32的大小,下面结论正确的是( )A.23<32B.23=32C.23>32D.无法比较8.(2022·河北承德·九年级期中)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2} =1,因此,min{―2,―3}=__________;min(x2+2x+3),0=__________;若min(x―1)2,x2=1,则x=_____________.【答案】―3 0 2或―1##―1或29.(2022·河北·大名县束馆镇束馆中学三模)定义新运算:对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b中的较大值,如:max{﹣2,﹣4}=﹣2.(1)max{26,5}=_____;(2)若max{﹣12,(一1)2}=2x,则x=_____.2―x考点6与实数的相关的计算例6.(2022·山东烟台·九年级期中)计算(1)sin230°+2sin60°+tan45°―tan60°+cos230°(2)8―2sin45°+2cos60°+|1―2|+1.1.(2022·重庆市开州区德阳初级中学模拟预测)计算:|―3|+2―1=______.2.(2022·山东济南·模拟预测)计算:12―(2022―π)0―2×cos30°+(―12)―1.3.(2022·山东济南·模拟预测)计算:1―|3―1|+3tan30°+(2022―π)0.4.(2022·吉林长春·一模)计算:12―3tan30°+(2022―π)0―1.5.(2022·四川·峨眉山市教育局二模)计算:38+|3―23|―tan60°+(3)2+(π―2022)06.(2022·江苏·盐城市初级中学三模)计算:364+|sin45°―tan45°|+1.7.(2022·广西·南宁市第四十七中学九年级期中)计算:―(―1)2022+10÷2×12―1―3tan30°。

考点01 实数-备战2023届中考数学一轮复习考点梳理(原卷版)

考点01 实数-备战2023届中考数学一轮复习考点梳理(原卷版)

考点01 实数实数这一考点在中考数学中属于较为简单的一类考点,数学中考中,有关实数的部分,通常以选择题、计算题题型考察,所考考点一般有:实数的相关概念,如相反数、绝对值、数轴、倒数、科学计算法等;实数的比较大小;实数的运算则多与二次根式、三角函数、负指数幂、绝对值等结合,以解答题形式考察;少数以填空题的形式出题。

对于实数的复习,需要学生熟练掌握实数相关概念及其性质的应用、实数运算法则和顺序等考点。

考向一、实数的相关概念;考向二、实数的分类;考向三、实数的比较大小;考向四、实数的运算;考向一:实数的相关概念1.2.,故绝对值是它本身的数是3.若,则没有倒数;如果一个数的平方等于a,那么这算术平方根为1.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为( )A .0.11×108B .1.1×107C .11×106D .1.1×1062.(2022•黄石)的绝对值是( )A .1﹣B .﹣1C .1+D .±(﹣1)3.(2022•攀枝花)2的平方根是( )A .2B .±2C .D.4.(2022•淄博)若实数a的相反数是﹣1,则a+1等于( )A .2B .﹣2C .0D .5.(2022•资阳)如图,M 、N 、P 、Q 是数轴上的点,那么在数轴上对应的点可能是( )A .点MB .点NC .点PD .点Q考向二:实数的分类☆ 按定义分类:☆ 按正负分类:【易错警示】实数范围内,所有的分数都是指的有理数;但不是说所有带分数线的数都是分数,如:;π、等;②开方开不尽的数的方根,如等;°、tan60°;0.1010010001……(每两个1.(2022•铜仁市)在实数,,,中,有理数是( )A.B.C.D.2.(2022秋•漳州期中)下列实数是无理数的是( )A.B.C.D.3.(2022•巴中)下列各数是负数的是( )A.(﹣1)2B.|﹣3|C.﹣(﹣5)D.4.(2022•福建)如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是( )A .B .C .D .π考向三:实数的大小比较若要比较任意两个实数a 、b 的大小,可以先比较他们的平方,由平方倒≈≈≈1.(2022•安顺)下列实数中,比﹣5小的数是( )A .﹣6B .﹣C .0D .2.(2022•北京)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a <﹣2B .b <1C .a >bD .﹣a >b3.(2022•泰州)下列判断正确的是( )A.0<<1B.1<<2C.2<<3D.3<<44.(2022•台州)无理数的大小在( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间5.(2022•绵阳)正整数a、b分别满足<a<、<b<,则b a=( )A.4B.8C.9D.16考向四:实数的运算一、实数的运算种类:包括加、减、乘、除、乘方、开方,其中,减法转化为加法运算;除法、乘方都转化为乘法运算;二、零指数幂和负整数指数幂公式:;;特别地:;三、实数的运算顺序:先算乘方、开方,再算乘除,最后算加减;如果有括号,就先算括号内的;同级运算,按照从左到右的顺序进行,能用运算律的可用运算律简化计算。

专题一有理数与实数-中考数学真题分项汇编 (江苏专用)(原卷版)

专题一有理数与实数-中考数学真题分项汇编 (江苏专用)(原卷版)

2022年中考数学真题分项汇编(江苏专用)专题01有理数与实数一.选择题(共12小题)1.(2022•镇江)“珍爱地球,人与自然和谐共生”是今年世界地球日的主题,旨在倡导公众保护自然资源.全市现有自然湿地28700公顷,人工湿地13100公顷,这两类湿地共有()A.4.18×105公顷B.4.18×104公顷C.4.18×103公顷D.41.8×102公顷2.(2022•南通)若气温零上2℃记作+2℃,则气温零下3℃记作()A.﹣3℃B.﹣1℃C.+1℃D.+5℃3.(2022•南通)沪渝蓉高铁是国家中长期铁路网规划“八纵八横”之沿江高铁通道的主通道,其中南通段总投资约39000000000元,将39000000000用科学记数法表示为()A.3.9×1011B.0.39×1011C.3.9×1010D.39×1094.(2022•盐城)2022的倒数是()A.﹣2022B.12022C.2022D.−120225.(2022•盐城)盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为()A.0.16×107B.1.6×107C.1.6×106D.16×1056.(2022•常州)2022的相反数是()A.2022B.﹣2022C.12022D.−120227.(2022•苏州)2022年1月17日,国务院新闻办公室公布:截至2021年末全国人口总数为141260万,比上年末增加48万人,中国人口的增长逐渐缓慢.141260用科学记数法可表示为()A.0.14126×106B.1.4126×106C.1.4126×105D.14.126×1048.(2022•苏州)下列实数中,比3大的数是()A.5B.1C.0D.﹣29.(2022•连云港)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×10510.(2022•镇江)如图,数轴上的点A和点B分别在原点的左侧和右侧,点A、B对应的实数分别是a、b,下列结论一定成立的是()A.a+b<0B.b﹣a<0C.2a>2b D.a+2<b+2 11.(2022•泰州)下列判断正确的是()A.0<√3<1B.1<√3<2C.2<√3<3D.3<√3<4 12.(2022•扬州)实数﹣2的相反数是()A.2B.−12C.﹣2D.12二.填空题(共15小题)13.(2022•徐州)我国2021年粮食产量约为13700亿斤,创历史新高,其中13700亿斤用科学记数法表示为亿斤.14.(2022•镇江)“五月天山雪,无花只有寒”,反映出地形对气温的影响.大致海拔每升高100米,气温约下降0.6℃.有一座海拔为2350米的山,在这座山上海拔为350米的地方测得气温是6℃,则此时山顶的气温约为℃.15.(2022•常州)2022年5月22日,中国科学院生物多样性委员会发布《中国生物物种名录》2022版,共收录物种及种下单元约138000个.数据138000用科学记数法表示为.16.(2022•泰州)若x=﹣3,则|x|的值为.17.(2022•泰州)2022年5月15日4时40分,我国自主研发的极目一号Ⅲ型科学考察浮空艇升高至海拔9032m,将9032用科学记数法表示为.18.(2022•无锡)高速公路便捷了物流和出行,构建了我们更好的生活.交通运输部的数据显示,截止去年底,我国高速公路通车里程161000公里,稳居世界第一.161000这个数据用科学记数法可表示为.19.(2022•宿迁)2022年5月,国家林业和草原局湿地管理司在第二季度侧行发布会上表示,到“十四五”末,我国力争将湿地保护率提高到55%,其中修复红树林146200亩,请将146200用科学记数法表示是.20.(2022•扬州)扬州某日的最高气温为6℃,最低气温为﹣2℃,则该日的日温差是℃.21.(2022•扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量E与震级n 的关系为E=k×101.5n(其中k为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的倍.22.(2022•镇江)计算:3+(﹣2)= .23.(2022•常州)如图,数轴上的点A 、B 分别表示实数a 、b ,则1a 1b(填“>”、“=”或“<”).24.(2022•宿迁)满足√11≥k 的最大整数k 是 .25.(2014•泰州)计算:√4= .26.(2022•连云港)写出一个在1到3之间的无理数: .27.(2022•常州)化简:√83= .三.解答题(共3小题)28.(2022•盐城)|﹣3|+tan45°﹣(√2−1)0.29.(2022•宿迁)计算:(12)﹣1+√12−4sin60°.30.(2022•连云港)计算(﹣10)×(−12)−√16+20220.。

湖南省2023年中考备考数学一轮复习 实数 练习题

湖南省2023年中考备考数学一轮复习 实数 练习题

湖南省2023年中考备考数学一轮复习 实数 练习题一、单选题1.(2022·湖南长沙·模拟预测)下列说法错误的是() A .1的平方根是1± B .-1是1的平方根 C .1是1的平方根D .-1的平方根是12.(2022·湖南常德·统考中考真题)在3317π,2022这五个数中无理数的个数为( ) A .2B .3C .4D .53.(2022·湖南娄底·模拟预测)下列实数中是无理数的是( ) A .1-B .12C D .04.(2022·湖南邵阳·统考一模)在实数13-,3,4中,为负整数的是( )A .13- B .C .-3 D .45.(2022·湖南永州·统考中考真题)如图,数轴上点E 对应的实数是( )A .2-B .1-C .1D .26.(2022·湖南邵阳·1在数轴上的对应点可能是( )A .A 点B .B 点C .C 点D .D 点7.(2022·湖南株洲·统考中考真题)在0、13、-1 )A .0B .13C .-1 D8.(2022·湖南益阳·1,2,13中,比0小的数是( )A B .1 C .2D .139.(2022·湖南郴州·统考一模)实数a 、b 、c 、d 在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是( )A .aB .bC .cD .d10.(2022·湖南湘西·统考中考真题)在实数﹣5,0,3,13中,最大的实数是( )A .3B .0C .﹣5D .1311.(2022·湖南株洲·统考一模)在实数-30,-1中,最小的数是( ) A .-3B .0C .-1D12.(2022·湖南株洲·+1的值在( ) A .1到2之间B .2到3之间C .3到4之间D .4到5之间13.(2022·湖南邵阳·统考一模)实数a ,b 在数轴上的对应点的位置如图所示,则下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0ab <14.(2022·湖南永州·统考二模)如{}1,2,M x =,我们叫集合M ,其中1,2,x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在),互异性(如1x ≠,2x ≠),无序性(即改变元素的顺序,集合不变).若集合{},1,2N x =,我们说M N .已知集合{}2,0,A x =,集合1,,y B x xx ⎧⎫=⎨⎬⎩⎭,若A B =,则x y -的值是( )A .2B .12C .2-D .1-二、填空题15.(2022·湖南长沙·统考一模)面积为2的正方形的边长是__________.16.(2022·湖南株洲·_______. 17.(2022·湖南邵阳·统考模拟预测)64的立方根是_______. 18.(2022·湖南湘潭·统考中考真题)四个数-1,0,12_________.19.(2022·湖南永州·统考一模)在2-,45,0.2020020002……,2π中无理数的个数是_______个.20.(2022·湖南永州·统考模拟预测)在﹣2227π中,无理数有 _____个.21.(2022·湖南永州·10小的无理数:______.22.(2022·湖南常德·统考一模)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.23.(2022·湖南怀化·统考一模)观察下列各式:11111122=+-=;11111236=+-=;11111.3412+-=______.24.(2022·湖南永州·统考一模)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯; …根据以上规律,计算123420222022x x x x x +++++-=_______.三、解答题25.计算:020211)|3|(1)+--.26.已知10x -. (1)求x 与y 的值; (2)求x +y 的算术平方根.27.已知21a +的平方根是3±,522a b +-的算术平方根是4,求34a b -的平方根.28.计算:(()120211313π-⎛⎫--+-+ ⎪⎝⎭29.计算:()12021113.145π-⎛⎫---- ⎪⎝⎭.30.已知5a ﹣1的算术平方根是3,3a +b ﹣1的立方根为2. (1)求a 与b 的值;(2)求2a +4b 的平方根.参考答案:1.D【分析】根据平方根的定义即可判断. 【详解】A. 1的平方根是1±,正确; B. -1是1的平方根,正确; C. 1是1的平方根,正确; D. -1没有平方根,故错误; 选D.【点睛】此题主要考查平方根的定义,解题的关键是熟知非负数才有平方根. 2.A【分析】根据无理数的概念,无限不循环小数是无理数即可判断.【详解】解:在3317π,2022π,共2个. 故选:A .【点睛】本题主要考查无理数的概念,掌握无理数的概念是解题的关键. 3.C【分析】根据无理数的定义解答即可.【详解】A .-1是整数,属于有理数,故本选项不合题意; B .12是分数,属于有理数,故本选项不合题意;CD .0是整数,属于有理数,故本选项不符合题意. 故选:C .【点睛】本题考查了无理数的定义,掌握无理数的定义是解题的关键. 4.C【分析】根据负整数定义解答.【详解】解:在实数13-,3,4中,为负整数的是-3,故选:C .【点睛】此题考查了有理数的分类,正确掌握有理数的各种形式及负整数的定义是解题的关键. 5.A【分析】根据数轴上点E 所在位置,判断出点E 所对应的值即可;【详解】解:根据数轴上点E 所在位置可知,点E 在-1到-3之间,符合题意的只有-2;故选:A .【点睛】本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键. 6.B【分析】根据22212<<得011<,即可得.【详解】解:①22212<<, ①12< ①011<<, 故选:B .【点睛】本题考查了无理数的估算,解题的关键是掌握无理数的大小比较. 7.C【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.1013>>>-, ①在0、13、-1这四个数中,最小的数是-1.故选C .【点睛】此题主要考查了实数大小比较的方法.解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小. 8.A【分析】利用零大于一切负数来比较即可.0,故A 正确. 故选:A .【点睛】本题考查了实数的大小比较,解答此题关键要明确:正实数>零>负实数,两个负实数绝对值大的反而小. 9.C【分析】根据数轴上某个数与原点的距离的大小确定结论. 【详解】解:由图可知:c 到原点O 的距离最短, 所以在这四个数中,绝对值最小的数是c ; 故选:C .【点睛】本题考查了绝对值的定义、实数大小比较问题,熟练掌握绝对值最小的数就是到原点距离最小的10.A【分析】利用实数大小比较的法则将各数按从小到大排列后即可得出结论.【详解】解:将各数按从小到大排列为:﹣5,0,13,3,①最大的实数是3,故选:A.【点睛】本题主要考查了实数大小的比较,利用实数大小比较的法则将各数按从小到大排列是解题的关键.11.A【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:①-3<-1<0①在实数3-0,1-中,最小的数是3-.故选:A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.C的范围.【详解】解:①479<<①23<<①314<<故选C.的范围.13.D【分析】由数轴知a<-1<0<b<1,即可判断各式的符号.【详解】解:由数轴知a<-1<0<b<1,①a<b,a b>,a+b<0,ab<0,故选:D.【点睛】此题考查了利用数轴上点的位置判断式子的正负,正确掌握数轴性质及有理数加法法则、乘法法则、绝对值的性质是解题的关键.【分析】根据集合的定义和集合相等的条件即可判断.【详解】解:①A=B,x≠0,1x≠0,①yx=0,1x=2,|x|=x或yx=0,1x=x,|x|=2(无解),①y=0,x=12,①x−y=12−0=12,故选:B.【点睛】本题以集合为背景考查了代数式求值,关键是根据集合的定义和性质求出x,y的值.15【分析】设正方形的边长为x,根据题意得22x=,求解即可.【详解】解:设正方形的边长为x,由题意得22x=,,【点睛】此题考查平方根的实际应用,正确求一个数的平方根是解题的关键.16.4【分析】根据算术平方根的定义解答即可..故答案为4【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根;正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.17.4【分析】根据立方根的定义即可求解.【详解】解:①43=64,①64的立方根是4,故答案为:4.【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.18【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数. 【详解】解:-1,0,12是有理数;【点睛】此题考查了无理数的识别,无限不循环小数叫无理数,解题的关键是知道初中范围内常见的无理数有三类:①π类,如2π,π3等;①①虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等. 19.3【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环/数是有理数,而无限不循环小数是无理数,由此即可判定.0.2020020002……,2三个, 故答案为:3【点睛】此题主要考查了无理数的定义,其中初中阶段学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的无限不循环小数. 20.3【分析】根据无理数的定义解答即可.【详解】解:-2是整数,不是无理数,是无理数;227是无理数,π是无理数;则无理数数有3个. 故答案为3.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π、2π等;开方开不尽的数;以及像0.1010010001..等有这样规律的数都属于无理数.21【分析】根据实数的大小比较即可求出答案. 【详解】解:①5<7<100,①10.【点睛】本题考查实数比较大小,解题的关键是熟练运用实数比较大小的法则,本题属于基础题型.22.2m m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++的和,即可计算1001011011992222++++的和.【详解】由题意规律可得:2399100222222++++=-.①1002=m ①23991000222222=2m m +++++==, ①22991001012222222+++++=-,①10123991002222222=++++++12=2m m m m =+=. 102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=.……①1999922m =. 故10010110110199992222222m m m ++++=+++.令012992222S ++++=① 12310022222S ++++=②①-①,得10021S -= ①10010110110199992222222m m m ++++=+++=()100221m m m -=-故答案为:2m m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键. 23.1156【分析】1111n n +-+ , 符合规律,根据规律可得结果,然后进行加减运算即可. 【详解】解:根据题意,第n 个等式为1111n n +-+11178+-=57115656= 故答案为: 1156.【点睛】本题考查了与实数加减相关的规律探究问题,找到规律是解题的关键.24.20222023【分析】根据已知等式,归纳总结得到拆项规律,根据规律展开,最后合并,即可求出答案.【详解】解:①1311212x ==+⨯2711623x ==+⨯313111234x ===+⨯ ①①12320222022x x x x +++⋯+-11111111202212233420222023=++++++⋯++-⨯⨯⨯⨯ 11111112022120222233420222023=+-+-+-+⋯+--11202320222023. 故答案为:20222023. 【点睛】本题考查了数字的规律,解此题的关键是能根据已知条件得出规律. 25.0.【分析】第一项根据零指数幂计算,第二项根据绝对值的意义计算,第三项进行立方根运算,第四项进行有理数的乘方运算,最后进行加减运算即可. 【详解】解:原式=1+3-3+(-1) =0.【点睛】本题考查了实数的运算,包括零指数幂、绝对值的意义,求一个数的立方根,有理数的乘方运算.正确化简各数是解题的关键. 26.(1)1x =,3y =;(2)2【分析】(1)根据绝对值和平方根的非负性求出x 与y 的值; (2)先计算x y +的值,即可得出x y +的算术平方根.【详解】(1)由题可得:10250x x y -=⎧⎨-+=⎩,解得:13x y =⎧⎨=⎩, ①1x =,3y =;(2)134x y +=+=,①4的算术平方根为2,①x y +的算术平方根为2.【点睛】本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键. 27.4±【分析】根据平方根和算术平方根的定义即可求出21a +和522a b +-的值,进而求出a 和b 的值,将a 和b 的值代入34a b -即可求解.【详解】解:①21a +的平方根是3±,522a b +-的算术平方根是4,①21a +=9,522a b +-=16,①a =4,b =-1把a =4,b =-1代入34a b -得:3×4-4×(-1)=16,①34a b -的平方根为:4=±.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.28.0【分析】先化简零指数幂,绝对值,有理数的乘方,负整数指数幂,然后再计算即可得.【详解】解:(()1020211313π-⎛⎫--+-+ ⎪⎝⎭, 1313=--+,0=.【点睛】本题考查实数的混合运算,负整数指数幂,零指数幂,化简绝对值,掌握各运算的运算顺序和计算法则是解题关键.29.3.【分析】直接利用乘方,零指数幂的性质,负整数指数幂的性质二和次根式的性质分别化简得出答案.【详解】解:()10202111 3.145π-⎛⎫---- ⎪⎝⎭ ()1215=--+--=3【点睛】本题主要考查了实数运算,熟悉相关性质,能正确化简各数是解题关键.30.(1)a=2,b=3(2)±4【分析】(1)根据算术平方根与立方根定义得出5a﹣1=32,3a+b﹣1=23,解之求得a、b的值;(2)由a、b的值求得2a+4b的值,继而可得其平方根.【详解】(1)由题意,得5a﹣1=32,3a+b﹣1=23,解得a=2,b=3.(2)①2a+4b=2×2+4×3=16,①2a+4b的平方根.【点睛】本题考查了平方根,立方根,算术平方根的定义,列式求出a、b的值是解题的关键.。

2023中考数学一轮复习专题1

2023中考数学一轮复习专题1

专题1.9 数与式计算100题(基础篇)(真题专练)1.(2021·江苏淮安·中考真题)先化简,再求值:(11a -+1)÷21a a -,其中a =﹣4. 2.(2021·广西桂林·中考真题)计算:|﹣3|+(﹣2)2.3.(2021·江苏连云港·262--.4.(2021·辽宁本溪·中考真题)先化简,再求值:2623193a a a a -⎛⎫÷+ ⎪-+⎝⎭,其中2sin303a =︒+.5.(2021·黑龙江齐齐哈尔·中考真题)(1)计算:()201 3.144cos 4512π-⎛⎫-+-+︒- ⎪⎝⎭(2)因式分解:3312xy xy -+.6.(2021·吉林长春·中考真题)先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =. 7.(2021·湖南永州·中考真题)先化简,再求值:()()212(2)x x x +++-,其中1x =.8.(2021·湖南张家界·中考真题)计算:2021(1)22cos60-+-︒9.(2021·广东深圳·中考真题)先化简再求值:2169123x x x x ++⎛⎫+÷ ⎪++⎝⎭,其中1x =-. 10.(2021·湖南长沙·中考真题)先化简,再求值:()()()()233322x x x x x -++-+-,其中12x =-.11.(2021·湖南株洲·中考真题)计算:12602--︒-.12.(2021·浙江台州·中考真题)计算:|-2| 13.(2021·浙江·中考真题)计算:()()()211x x x x +++-.14.(2020·山东济南·中考真题)计算:0112sin 3022π-⎛⎫⎛⎫-︒ ⎪ ⎪⎝⎭⎝⎭.15.(2020·黑龙江大庆·中考真题)计算:1015(1)3π-⎛⎫---+ ⎪⎝⎭16.(2020·贵州毕节·中考真题)计算:11|2|(3)2cos303π-⎛⎫-+++︒- ⎪⎝⎭17.(2020·云南·中考真题)先化简,再求值:22244242x x x xx x -+-÷-+,其中12x =.18.(2020·广东深圳·中考真题)计算:101()2cos30|(4)3π--︒+--.19.(2020·广东广州·中考真题)已知反比例函数ky x=的图象分别位于第二、第四象限,化简:21644k k k ---20.(2020·湖南邵阳·中考真题)计算:120201(1)|12sin602-︒⎛⎫-+-- ⎪⎝+⎭. 21.(2020·江苏淮安·中考真题)计算:(1)0|3|(1)π-+-(2)1112x x x +⎛⎫÷+ ⎪⎝⎭22.(2020·湖北·中考真题)计算:101|2|20202-⎛⎫--+ ⎪⎝⎭.23.(2020·湖北宜昌·中考真题)在“-”“×”两个符号中选一个自己想要的符号,填入212212⎛⎫+⨯ ⎪⎝⎭中的□,并计算.24.(2020·湖南张家界·中考真题)计算:21|12sin 45(3.14)2π-︒⎛⎫-+-- ⎪⎝⎭.25.(2020·四川泸州·中考真题)化简:2211x x x x +-⎛⎫+÷ ⎪⎝⎭.26.(2020·江苏连云港·中考真题)化简2233121a a aa a a ++÷--+.27.(2019·青海·中考真题)计算:)11112453cos -⎛⎫+--︒ ⎪⎝⎭28.(2019·广西河池·中考真题)计算:21332-⎛⎫+- ⎪⎝⎭.29.(2019·辽宁大连·中考真题)计算:22241112a a a a-÷+---30.(2019·辽宁大连·中考真题)计算:22)31.(2019·湖北省直辖县级单位·中考真题)(1)计算:20(2)|3|(6)----; (2)解分式方程:22511x x =--. 32.(2019·广西河池·中考真题)分解因式:2((1)5)2x x -+-.33.(2019·湖南株洲·中考真题)计算:02cos30π+-︒.34.(2019·四川遂宁·中考真题)计算:201920(1)(2)(3.14)4cos30|2π-︒-+-+--+ 35.(2019·浙江湖州·中考真题)计算:()31282-+⨯.36.(2019·四川乐山·中考真题)计算:()10120192sin 302π-︒⎛⎫--+ ⎪⎝⎭.37.(2019·四川乐山·中考真题)如图,点A 、B 在数轴上,它们对应的数分别为2-,1xx +,且点A 、B 到原点的距离相等.求x 的值.38.(2019·四川乐山·中考真题)化简:2222111x x x x x x -+-÷-+. 39.(2019·浙江杭州·中考真题)化简:242142x xx圆圆的解答如下:2224214224422x x x x xx xx圆圆的解答正确吗?如果不正确,写出正确的解答.40.(2019·北京·中考真题)计算:()01142604sin π-----+(). 41.(2019·辽宁鞍山·中考真题)先化简,再求值:(233x x x +-﹣2169x x x--+)÷9x x-,其中x =42.(2019·辽宁葫芦岛·中考真题)先化简,再求值:2221a aa a +-+÷(211a a --),其中a =(13)﹣1﹣(﹣2)0.43.(2019·辽宁和平·中考真题)计算:2012cos301(2019)2π-⎛⎫-+︒-- ⎪⎝⎭44.(2019·福建·中考真题)先化简,再求值:(x-1)÷(x -21x x-),其中x +1 45.(2019·湖北鄂州·中考真题)先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x xx x ⎛⎫---÷ ⎪-+--⎝⎭.46.(2019·辽宁阜新·中考真题)(1)(12)-1+4sin30°. (2)先化简,再求值:22m 9m 6m 9-++÷(1-2m 3+),其中m=2.47.(2019·贵州安顺·中考真题)计算:()1201920192cos 608(0.125)--+⨯-︒+.48.(2019·辽宁营口·中考真题)先化简,再求值:2821333a a a a a ++⎛⎫+-÷ ⎪++⎝⎭,其中a 为不等式组121232a a -<⎧⎪⎨+>⎪⎩的整数解. 49.(2019·辽宁盘锦·中考真题)先化简,再求值:(m +12m +)÷(m ﹣2+32m +),其中m =3tan30°+(π﹣3)0.50.(2019·湖南娄底·中考真题)计算:1011)2sin |602+-︒⎛⎫-- ⎪⎝⎭51.(2019·江苏常州·中考真题)计算:(1)1212π-⎛⎫+-⎪⎝⎭;(2)()()()111x x x x -+--. 52.(2019·广西贺州·中考真题)计算:()()201901 3.142sin30π-+-.53.(2019·吉林·中考真题)先化简,再求值:()()212a a a -++,其中a =54.(2019·湖南湘潭·中考真题)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:立方和公式:()()3322x y x y x xy y +=+-+ ; 立方差公式:()3322()x y x y x xy y -=-++ ;根据材料和已学知识,先化简,再求值:22332428x x x x x x ++---,其中3x =.55.(2019·湖南永州·中考真题)先化简,再求值:221·11a a aa a a a ---+-,其中a =2.56.(2019·湖南永州·中考真题)计算:(﹣1)2019sin60°﹣(﹣3). 57.(2019·广西广西·中考真题)计算:22()()19(6)2-+--+-÷.58.(2019·湖南株洲·中考真题)先化简,再求值:221(1)a a a a a -+--,其中12a =.59.(2019·湖北武汉·中考真题)计算:()32242x x x -⋅60.(2019·黑龙江·中考真题)先化简再求值:22224()2442x x x x x x x x +---÷--+-其中4tan452cos30x =︒+︒.61.(2019·黑龙江·中考真题)已知:ab =1,b =2a -1,求代数式12a b-的值.62.(2019·黑龙江·中考真题)计算:0(2019)160sin π-+︒.63.(2019·山东枣庄·中考真题)先化简,再求值:221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为整数且满足不等式组11,{52 2.x x ->-≥-64.(2019·甘肃兰州·中考真题)计算:02|2|1)(2)tan 45--+--︒ 65.(2019·甘肃兰州·中考真题)化简:(1 2 )+2(+1)(1)a a a a --66.(2019·山东东营·中考真题)(1)计算:()101 3.142019π-⎛⎫+- ⎪⎝⎭2sin 4512+- (2)化简求值:22222a b a ab b a b a ab a ⎛⎫++-÷ ⎪--⎝⎭,当1a =-时,请你选择一个适当的数作为b 的值,代入求值.67.(2019·甘肃陇南·中考真题)计算:20()|243()225cos π---︒+-68.(2019·浙江台州·()11--.69.(2019·四川遂宁·中考真题)先化简,再求值:2222222a ab b a ab a b a a b -+-÷--+,其中a ,b 满足2(2)0a -+=.70.(2019·江苏宿迁·中考真题)先化简,再求值:212111a a a ⎛⎫+÷ ⎪--⎝⎭,其中2a =-.71.(2019·江苏宿迁·中考真题)计算:()101112π-⎛⎫--+ ⎪⎝⎭72.(2019·江苏苏州·中考真题)计算:()222π+---.73.(2019·江苏苏州·中考真题)先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中3x =.74.(2019·山东济宁·中考真题)计算:016sin 60|2018|2︒⎛⎫+ ⎪⎝⎭75.(2019·江苏南京·中考真题)计算22()()x y x xy y +-+.76.(2019·浙江温州·中考真题)计算:(1)06(1(3)---;(2)224133x x x x x +-++. 77.(2019·重庆·中考真题)计算:(1)2()(2)x y y x y +-+ ; (2)294922a a a a a --⎛⎫+÷⎪--⎝⎭78.(2021·甘肃兰州·中考真题)先化简,再求值:22611931m m m m m --÷--+-,其中4m =. 79.(2021·青海西宁·中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭. 80.(2021·山东济南·中考真题)计算:101(1)32tan 454π-⎛⎫+-+-- ⎪⎝⎭︒. 81.(2021·山东日照·中考真题)(1)若单项式14m n x y -与单项式33812m nx y --是一多项式中的同类项,求m 、n 的值;(2)先化简,再求值:211111x x x x ⎛⎫+÷ ⎪+--⎝⎭,其中1x =.82.(2021·四川绵阳·中考真题)(1)计算:02cos 452021︒ (2)先化简,再求值:2222x xy x y x y x y ---+-,其中 1.12x =,0.68y =. 83.(2021·广西河池·中考真题)先化简,再求值:2(1)(1)x x x +-+,其中2021x =.84.(2021·四川德阳·中考真题)计算:(﹣1)31|﹣(12)﹣2+2cos45°85.(2021·山东滨州·中考真题)计算:221244422x x x x x x x x -+-⎛⎫-÷⎪-+--⎝⎭. 86.(2021·西藏·中考真题)先化简,再求值:2212a a a ++-•221a a --﹣(11a -+1),其中a =10.87.(2021·湖南湘潭·中考真题)先化简,再求值:22169(1)24x x x x +++÷+-,其中3x =.88.(2021·贵州遵义·中考真题)先化简2242x x x -÷-(244x x x x+--),再求值,其中x =2.89.(2021·湖南湘潭·中考真题)计算:011|2|(2)()4tan 453π----+-︒90.(2021·黑龙江牡丹江·中考真题)先化简,再求值:(22211x x x -+--1)1x x ÷+,其中x =sin30°. 91.(2021·广西梧州·中考真题)计算:(﹣1)2+(﹣8)÷4(﹣2021)0.92.(2021·江苏南通·中考真题)(1)化简求值:2(21)(6)(2)x x x -++-,其中x = (2)解方程2303x x-=-. 93.(2021·辽宁丹东·中考真题)先化简,再求代数式的值:22241242a a a a a-+++---,其中02sin 302(1)a π=︒+-.94.(2021·贵州毕节·中考真题)先化简,再求值:2222a b ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中2a =,1b =. 95.(2021·江苏泰州·中考真题)(1)分解因式:x 3﹣9x ; (2)解方程:22x x -+1=52x-. 96.(2021·江苏徐州·中考真题)计算:(1)101220212-⎛⎫-- ⎪⎝⎭(2)22111a a a a ++⎛⎫+÷⎪⎝⎭ 97.(2021·吉林·中考真题)先化简,再求值:()()()221x x x x +---,其中12x =. 98.(2021·山东淄博·中考真题)先化简,再求值:222a ab b a ba b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中1,1a b =.99.(2021·内蒙古呼伦贝尔·中考真题)计算:222sin 601---︒+100.(2021·辽宁大连·中考真题)计算:223333693a a a a a a a ++⋅--++-.参考答案1.a +1,﹣3【分析】根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 解:(11a -+1)÷21a a - =11(1)(1)1a a a a a+-+-⋅-=11a a a+⋅=a +1,当a =﹣4时,原式=﹣4+1=﹣3.【点拨】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行化简,代入数值后准确进行计算. 2.7【分析】根据有理数的绝对值以及乘方的意义化简各数后即可得到答案. 解:|﹣3|+(﹣2)2 =3+4 =7【点拨】此题主要考查了有理数的运算,正确化简各数是解答此题的关键. 3.4.,-6=6,计算出结果. 解:原式2644=+-= 故答案为:4.【点拨】本题主要考查了实数的混合运算,关键是开三次方与绝对值的计算. 4.23a -,2 【分析】先把分式化简后,再求出a 的值代入求出分式的值即可. 解:2623193a a a a -⎛⎫÷+ ⎪-+⎝⎭26323=933a a a a a a +-⎛⎫÷+ ⎪-++⎝⎭63=3)(3)3a a a a a +⨯+-( 2=3a - 2sin303a =︒+ 1232=⨯+4=当4a =时,原式=2=243-.【点拨】本题考查了分式的化简值,特殊角的三角函数值,熟练分解因式是解题的关键. 5.(1)6(2)3(2)(2)xy y y -+-【分析】(1)先计算乘方、特殊三角函数值、绝对值的运算,再利用四则运算法则计算即可; (2)先提取公因式,再利用平方差公式分解因式即可.解:(1)解:原式4141)=++411=++6=(2)解:原式23(4)xy y =-- 3(2)(2)xy y y =-+-【点拨】本题考查的是实数的运算、因式分解,熟练运用乘方公式、特殊三角函数值、绝对值、正确提取公因式等是解题的关键. 6.4,5a【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题. 解:221aa a a224a a a =-+-4a =-当4a =时,原式44-=【点拨】本题考查了整式的混合运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 7.25x +,7.【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将1x =代入求值即可得.解:原式22214x x x =+++-,25x =+,将1x =代入得:原式2157=⨯+=.【点拨】本题考查了整式的化简求值,熟记完全平方公式和平方差公式是解题关键. 8【分析】先运用乘方、绝对值、特殊角的三角函数值以及平方根的性质化简,然后计算即可.解:2021(1)22cos60-+-︒11222=-+-⨯+=【点拨】本题主要考查了乘方、绝对值、特殊角的三角函数值、平方根的性质等知识点,灵活运用相关知识成为解答本题的关键. 9.12x +;1 【分析】先把分式化简后,再把x 的值代入求出分式的值即可. 解:原式212331122(3)232x x x x x x x x x +++⎛⎫=+⋅=⋅= ⎪++++++⎝⎭ 当1x =-时,原式1112==-+. 【点拨】本题考查了分式的化简求值,熟练分解因式是解题的关键. 10.2x -,1.【分析】先计算完全平方公式、平方差公式、单项式乘以多项式,再计算整式的加减,然后将x 的值代入即可得.解:原式22246299x x x x x =-+-++-, 2x =-,将12x =-代入得:原式12212x ⎛⎫=⨯-= ⎪⎝⎭=--.【点拨】本题考查了整式的化简求值,熟练掌握整式的运算法则是解题关键. 11.3【分析】熟记特殊三角数值、掌握绝对值的代数意义和负整数指数幂的求法,遵循运算法则计算即可.解:原式131223222=+-=+-= 【点拨】本题考察实数的运算,属于基础题,难度不大.熟练掌握运算法则是解题的关键.12.【分析】先算绝对值,化简二次根式,再算加减法,即可求解.解:原式=2+【点拨】本题主要考查二次根式的运算,熟练掌握二次根式的性质以及合并同类二次根式法则,是解题的关键.13.21x +【分析】利用单项式乘多项式、平方差公式直接求解即可.解:原式2221x x x =++-21x =+.【点拨】本题考查整式的乘法,掌握单项式乘多项式法则和平方差公式是解题的关键. 14.4【分析】分别计算零指数幂,锐角三角函数,算术平方根,负整数指数幂的运算,再合并即可得到答案. 解:原式112222=-⨯++ =1﹣1+2+2=4.【点拨】本题考查的是实数的混合运算,考查了零指数幂,锐角三角函数,算术平方根,负整数指数幂的运算,掌握以上知识是解题的关键.15.7.【分析】先计算绝对值运算、零指数幂、负整数指数幂,再计算有理数的加减法即可得. 解:原式513=-+43=+7=.【点拨】本题考查了绝对值运算、零指数幂、负整数指数幂等知识点, 熟记各运算法则是解题关键.16.【分析】根据绝对值、零指数幂、三角函数、负指数幂、二次根式的运算法则计算即可.解:101|2|(3)2cos303π-⎛⎫-+++︒- ⎪⎝⎭2123=++--=【点拨】本题考查绝对值、零指数幂、三角函数、负指数幂、二次根式的混合运算,关键在于牢记运算法则.17.2.【分析】先把分子、分母能分解因式的分解因式,再把除法转化为乘法,约分后再代入求值即可. 解:22244242x x x x x x -+-÷-+ ()()()()222222x x x x x x -+=•+-- 1x = 当1,2x = 上式11 2.2=÷= 【点拨】本题考查的是分式的除法运算,掌握把除法转化为乘法是解题的关键. 18.2【分析】分别计算负整数指数幂,锐角三角函数,绝对值,零次幂,再合并即可.解:101()2cos30|(4)3π--︒+--321=-31=2.=【点拨】本题考查实数的运算,考查了负整数指数幂,锐角三角函数,绝对值,零次幂的运算,掌握以上知识是解题的关键.19.5【分析】由反比例函数图象的性质可得k <0,化简分式时注意去绝对值.解:由题意得k <0.()()224416164444k k k k k k k k +---=----441415k k k k k +=++-=+-+==【点拨】本题考查反比例函数图象的性质和分式的化简,关键在于去绝对值时符号的问题. 20.2【分析】分别利用零指数幂、负指数幂的性质,绝对值的性质和特殊角的三角函数值分别化简即可.解:原式=)1212++-=121+=2【点拨】此题主要考查了根式运算,指数计算,绝对值,三角函数值等知识点,正确应用记住它们的化简规则是解题关键.21.(1)2;(2)12. 【分析】(1)根据绝对值、零指数幂、二次根式的计算方法计算即可.(2)根据分式的混合运算法则计算即可.解:(1) 0|3|(1)3122π-+-=+-=. (2)111111122212x x x x x x x x x x x ++++⎛⎫÷+=÷=⋅= ⎪+⎝⎭. 【点拨】本题考查分式的混合运算和绝对值、零指数幂、二次根式的计算,关键在于熟练掌握相关的计算方法.22.1【分析】根据负整数指数幂,绝对值的运算,0次幂分别计算出每一项,再计算即可. 解:101|2|20202-⎛⎫--+ ⎪⎝⎭221=-+ 1=.【点拨】本题考查负整数指数幂,绝对值的运算,0次幂,熟练掌握运算法则是解题的关键.23.-;5或×;5【分析】先选择符号,然后按照有理数的四则运算进行计算即可.解:(1)选择“-”212212⎛⎫+⨯- ⎪⎝⎭1422=+⨯ 41=+5=(2)选择“×”212212⎛⎫+⨯⨯ ⎪⎝⎭ 1422=+⨯ 41=+5=【点拨】本题考查了有理数的四则运算,熟知有理数的四则运算法则是解题的关键. 24.4-【分析】根据绝对值的性质,特殊角的三角函数值,零次幂,负整数指数幂进行运算即可.解:201|12sin 45(3.14)2π-︒⎛⎫-+-- ⎪⎝⎭1214=--114=-4=-【点拨】本题考查了绝对值的性质,特殊角的三角函数值,零次幂,负整数指数幂,熟知以上运算是解题的关键.25.21x - 【分析】首先进行通分运算,进而利用因式分解变形,再约分化简分式.解:原式=221x x x x x ++⨯- =()()()2111x x x x x +⨯+- =21x - 【点拨】此题主要考查了分式的化简求值,正确利用分解因式再化简分式是解题关键. 26.1a a- 【分析】首先把分子分母分解因式,把除法变为乘法,然后再约分后相乘即可.解:原式23(3)1(1)a a a a a ++=÷-- , 23(1)1(3)a a a a a +-=⋅-+, 1a a-=. 【点拨】此题主要考查了分式的乘除法,关键是掌握分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.27.3-.【分析】直接利用零指数幂的性质以及负指数幂的性质、特殊角的三角函数值分别化简得出答案.解:原式1312-+-=131-=3=-.故答案为3-.【点拨】本题考查实数运算,正确化简各数是解题关键.28.【分析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.解:原式143=++=【点拨】此题主要考查了实数运算,正确化简各数是解题关键.29.2a a - 【分析】直接利用分式的乘除运算法则化简,进而利用分式的加减运算法则计算得出答案;解:原式2(1)(1)112(2)2a a a a a -+=⨯---- 1122a a a +=--- 2a a =-. 【点拨】此题主要考查了分式的混合运算,正确化简是解题关键.30.7【分析】直接利用完全平方公式以及结合二次根式的性质化简进而得出答案.解:原式346=+-34=+-7=.【点拨】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.31.(1)6;(2)x=32【分析】(1)先计算乘方、去绝对值符号、计算二次根式的乘法及零指数幂,再计算加减可得;(2)去分母化分式方程为整式方程,解之求得x 的值,再检验即可得.解:(1)原式=43416-++=;(2)两边都乘以()()11x x +-,得:()215x +=, 解得:32x =, 检验:当32x =时,()()51104x x +-=≠, ∴原分式方程的解为32x =. 【点拨】本题主要考查二次根式的混合运算与解分式方程,解题的关键是熟练掌握二次根式的乘法法则及解分式方程的步骤.32.()(33)x x +-.【分析】直接利用完全平方公式化简,进而利用平方差公式分解因式即可.解:原式221210x x x =-++-29x =-(3)(3)x x =+-.【点拨】此题主要考查了公式法分解因式,正确运用公式是解题关键.33.1【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值分别化简得出答案.解:原式12-=1=1=.【点拨】此题主要考查了实数运算,正确化简各数是解题关键.34.74- 【分析】先根据整数指数幂、负指数幂、零指数幂、三角函数和绝对值进行化简,再进行加减运算.解:原式111424=-++-11124=-++- 74=-. 【点拨】本题考查指数幂、三角函数和绝对值,解题的关键是掌握指数幂、三角函数和绝对值.35.-4.【分析】先求(-2)3=-8,再求12×8=4,即可求解;解:原式844=-+=-【点拨】本题考查有理数的计算;熟练掌握幂的运算是解题的关键.36.2 【分析】111=12=212()-⎛⎫ ⎪⎝⎭,()012019=π-,sin 301=2︒ 解:原式12122=-+⨯ 211=-+2=.【点拨】本题考查了负整数指数幂,零指数幂,特殊角的正弦值,掌握即可解题. 37.2x =-【分析】根据点A 、B 到原点的距离相等可知点A 、B 表示的数值互为相反数,即21x x =+,解分式方程即可.解:∵点A 、B 到原点的距离相等∵A 、B 表示的数值互为相反数 即21x x =+,去分母,得2(1)x x =+,去括号,得22x x =+,解得2x =-经检验,2x =-是原方程的解.【点拨】本题考查了相反数,绝对值的定义,解分式方程,解本题的关键是读懂题意,根据题中点A 、B 到原点的距离相等可知点A 、B 表示的数值互为相反数38.1x【分析】平方差公式a 2-b 2=(a+b )(a -b )完全平方公式(a±b )2=a 2±2ab+b 2 解:原式2(1)(1)(1)x x x -=+-÷(1)1x x x -+ (1)(1)x x -=+×1(1)x x x +- 1x=. 【点拨】本题考查了运用完全平方公式与平方差公式,提公因式进行因式分解,分式的化简,注意符号问题即可.39.圆圆的解答不正确.正确解为2x x -+,解答见解析. 【分析】根据完全平方差公式先对分式进行通分,再化简,即可得到答案.解:圆圆的解答不正确.正确解答如下: 原式242(2)4(2)(2)(2)(2)(2)(2)x x x x x x x x x +-=--+-+-+- 24(24)(4)(2)(2)x x x x x -+--=+- (2)(2)(2)x x x x --=+- 2x x =-+. 【点拨】本题考查分式化简,解题的关键是掌握完全平方差公式.40.3【分析】根据绝对值、零指数幂、特殊角的三角函数值、负指数幂法则计算即可解:原式124+14==3【点拨】本题考查零指数幂、特殊角的三角函数值,负指数幂,熟练掌握相关的知识是解题的关键.41.21(3)x -,原式=13. 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值. 解:原式=231[](3)(3)9x x x x x x x +--•--- 2(3)(3)(1)(3)9x x x x x x x x -+--=•-- 2291(3)9(3)x x x x x x -=•=---当x = 原式=13. 【点拨】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.42.2a a 1-,原式=4. 【分析】先把分母因式分解后约分,再进行通分和同分母的减法运算得到()()()()212111a a a a a a a +--÷-+ ,接着化简计算得到2a a 1- ,然后化简()10123a -⎛⎫=-- ⎪⎝⎭,最后把2a = 代入计算即可; 解:2221211a a a a a a +⎛⎫÷- ⎪-+-⎝⎭()()()()212111a a a a a a a +--=÷-- ()()()()211211a a a a a a a +-=•--- ()()111a a a a a +=•-+2a a 1=-, 当()10123312a -⎛⎫=-- ⎪⎝⎭=﹣=时,原式22421==- . 【点拨】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.注意分式有意义的条件.43.6【分析】直接利用负指数幂的性质、特殊角的三角函数值、绝对值的性质、零指数幂的性质分别化简得出答案.解:原式==6. 【点拨】此题主要考查了实数运算,正确化简各数是解题关键.44.【分析】先化简分式,然后将x 的值代入计算即可.解:原式=(x−1)÷2221(1)(1)1x x x x x x x x -+=-⋅=--,当x 1时,12=+. 【点拨】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键. 45.x+2;当1x =-时,原式=1.【分析】先化简分式,然后将x 的值代入计算即可.解:原式()()22244242x x x x x x ⎡⎤--=-÷⎢⎥---⎢⎥⎣⎦ 244224x x x x x -⎡⎤=-÷⎢⎥---⎣⎦ ()()22424x x x x x -+-=⋅-- 2x =+∵20x -≠,40x -≠,∵2x ≠且4x ≠,∵当1x =-时,原式121=-+=.【点拨】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键. 46.(2)31m m -+;13-. 【分析】(1)先化简二次根式、计算负整数指数幂、代入三角函数值,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.解:(1)原式-2+4×122+2(2)原式=()()2m 3m 3(m 3)+-+÷(m 3m 3++-2m 3+) =m 3m 3-+•m 3m 1++ =m 3m 1-+, 当m=2时,原式=2321-+=13-. 【点拨】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.47.-3【分析】分别根据负整数指数幂的性质、算术平方根的定义、特殊角的余弦值、零指数幂以及积是乘方逆运算化简即可解答. 解:原式20191131(0.1258)22=--+++-⨯11311322=--++-=-. 【点拨】此题主要考查了实数运算,正确化简各数是解题关键.48.1;1a a -+13【分析】先根据变形得到2821333a a a a a ++⎛⎫+-÷ ⎪++⎝⎭,进行乘法运算得到22283(1)a a +-=+,化简得到11a a -+,然后将a 的整数解代入求值. 解:原式28(3)(3)33(1)a a a a a +-++=⋅++ 22283(1)a a +-=+2(1)(1)(1)a a a +-=+ 11a a -=+, 解不等式得534a <<, ∵不等式组的整数解为2a =,当2a =时, 原式211213-==+. 【点拨】本题考查分式的化简求值和完全平方公式,熟练分解因式是解题的关键.49.11m m +-. 【分析】本题考查了扇形统计图,条形统计图,树状图等知识点,解题时注意:概率=所求情况数与总情况数之比. 解:原式=2212m m m +++÷2432m m -++ =2(1)22(1)(1)m m m m m ++⨯++- 11m m +=-,m =3tan30°+(π﹣3)0=1,【点拨】本题考查了分式的化简求值,熟练分解因式是解题的关键.50.-1.【分析】原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解:原式122=-12=-+1=-. 【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.51.(1)0;(2)1x -.【分析】根据零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则准确计算即可;解:(1)120112302π-⎛⎫+-=+-= ⎪⎝⎭;(2)()()()111x x x x -+--=2211x x x x --+=-;【点拨】本题考查实数的运算,整式的运算;熟练掌握零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则是解题的关键.52.【分析】先分别计算幂、三角函数值、二次根式,然后算加减法. 解:原式=111422++⨯﹣﹣ =﹣4+1=﹣3.【点拨】本题考查了实数的运算,熟练掌握三角函数值、零指数幂的运算是解题的关键. 53.5【分析】先根据完全平方公式及单项式与多项式的乘法计算,再合并同类项,然后把a =代入计算即可.解:原式=22221221a a a a a -+++=+,当a =原式=221⨯+=5.【点拨】本题考查了整式的化简求值熟练掌握运算顺序及乘法公式是解答本题的关键. 54.2【分析】根据题目中的公式可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题. 解:22332428x x x x x x ++--- ()22324(2)(2)24x x x x x x x x ++=---++ 3122x x =--- 22x =-,当3x =时,原式2232==- 【点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 55.-1.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 解:221·11a a a a a a a ---+- =()()()a 1a 1aa a a 1a 1a 1+---+- =a 1a 1-- =a 1a a 1--- =1a 1-- 当a 2=时,原式=1121-=-- 【点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 56.5.【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.解:(﹣1)2019sin60°﹣(﹣3)=﹣+3 =﹣1+3+3=5【点拨】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.57.13.【分析】分别运算每一项然后再求解即可.解:22()()19(6)2-+--+-÷1693=++-13=.【点拨】本题考查实数的运算,熟练掌握实数的运算法则是解题的关键.58.1(1)a a -,-4. 【分析】根据分式的减法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 解:221(1)a a a a a-+-- 2(1)1(1)a a a a a-+=-- 11a a a a+=-- 2(1)(1)(1)a a a a a --+=- 221(1)a a a a -+=- 1(1)a a =-, 当12a =时,原式1411122==-⎛⎫- ⎪⎝⎭. 【点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 59.67x【分析】按顺序先分别进行积的乘方运算、同底数幂的乘法运算,然后再合并同类项即可. 解:()32242x x x -⋅ =668x x -67x =.【点拨】本题考查了整式的混合运算,涉及了积的乘方、同底数幂的乘法、合并同类项,熟练掌握各运算的运算法则是解题的关键.60【分析】先将多项式进行因式分解,根据分式的加减乘除混合运算法则,先对括号里的进行通分,再将除法转化为乘法,约分化简即可.解:原式()()2224222x x x x x x x ⎡⎤-+-=-÷⎢⎥---⎢⎥⎣⎦ 22224x x x x x x +-⎛⎫=-⋅ ⎪---⎝⎭ 2224x x x -=⋅-- 24x =-,当4tan452cos304124x ︒︒=+=⨯+=原式=== 【点拨】本题主要考查了分式的加减乘除混合运算,熟练应用分式的基本性质进行约分和通分是解题的关键.61.-1.【分析】根据ab=1,b=2a -1,可以求得b -2a 的值,从而可以求得所求式子的值.解:∵ab =1,b =2a -1,∵b -2a =-1,∵122111b a a b ab ---===- 【点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 62【分析】直接利用特殊角的三角函数值、绝对值的性质、零指数幂的性质分别化简得出答案. 解:()020191sin6011π-+-︒== 【点拨】此题主要考查了实数运算,正确化简各数是解题关键.63.34. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求出其整数解, 继而代入计算可得. 解:原式211(1)(1)11x x x x x x -⎛⎫=÷+ ⎪+---⎝⎭ 21•(1)(1)x x x x x-=+-1x x =+, 解不等式组11,{52 2.x x ->-≥-得722x <≤,则不等式组的整数解为3,当3x =时,原式33314==+. 【点拨】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算 法则及解一元一次不等式组的能力.64.4【分析】根据实数的混合运算顺序和运算法则计算可得解:原式21414=-+-=【点拨】此题考查实数的混合运算,掌握运算法则是解题关键65.a -2【分析】先去括号,再注意到(a+1)(a -1)可以利用平方差公式进行化简,最后合并同类项即可解:原式2222(1)a a a =-+-22222a a a =-+-2a =-【点拨】此题考查代数式的化简,掌握运算法则是解题关键66.(1)2020;(2)1【分析】(1)根据负指数幂、零指数幂、绝对值和三角函数、二次根式,即可得到答案;(2)根据分式的性质进行化简,再代入1a =-,即可得到答案.解:1()原式201912++=2020+= 2020=;2()原式()()222a b a a a b a b -=-+ ()()()()2a b a b aa ab a b -+=-+ 1a b =+, 当1a =-时,取2b =,原式1112==-+. 【点拨】本题负指数幂、零指数幂、绝对值、三角函数、二次根式和分式的化简,解题的关键是掌握负指数幂、零指数幂、绝对值、三角函数、二次根式和分式的化简.67.3【分析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.解:20()||243()225cos π---︒+-,4(221=--,421=-,3=.【点拨】本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.68.【分析】根据实数的性质进行化简,即可求解.解:原式11=+=【点拨】此题主要考查实数的运算,解题的关键是熟知实数的性质.69.1a b-+,-1 【分析】根据平方差公式进行变形,再根据分式混合运算法则进行计算,再根据平方差公式的性质和二次根式的性质进行求解,即可得到答案. 解:原式2()2()()()a b a a b a b a a b a b-=-+--+ 12a b a b=-++ 1a b =-+,∵a ,b 满足2(2)0a -+=,∵20a -=,10b +=,2a =,1b =-,原式1121=-=--.【点拨】本题考查平方差公式和二次根式的性质,解题的关键是掌握平方差公式和二次根式的性质.70.12a +,12- 【分析】直接将括号里面通分进而利用分式的混合运算法则计算得出答案. 解:原式()()1112a a a a a +-=⨯- 12a +=, 当2a =-时,原式21122-+==-. 【点拨】此题主要考查了分式的化简求值,正确掌握运算法则是解题关键.71【分析】直接利用负指数幂的性质和零指数幂的性质、绝对值的性质分别化简得出答案.解:原式211=-【点拨】此题主要考查了实数运算,正确化简各数是解题关键.72.4.【分析】直接利用根式计算,绝对值计算和零指数幂的运算进行逐一计算即可解:321=+-原式4=【点拨】本题考查实数的简单计算,掌握计算法则是解题关键73.13x +. 【分析】先利用分式的运算规则将分式进行化简,然后将x 值带入即可解:原式()233633x x x x -+-=÷++()23333x x x x --=÷++ ()23333x x x x -+=⋅-+ 13x =+ 代入3x 原式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【分析】直接运用倒数的定义求解即可.
【解答】解:2022的倒数为 .
故选:D.
举一反三
1.(2022•河南模拟)计算 的结果等于( )
A.3B. C. D.﹣3
【解答】解:| | .
故选:C.
2.(2022•睢阳区二模)若m与 互为相反数,则m的值为( )
A.﹣3B. C. D.3
【解答】解:﹣( ) ,
专题一:实数
一:
1.理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.
2.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).
3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).
4.理解有理数的运算律,并能运用运算律简化运算.
故选:A.
3.(2022•丽水二模)实数π,0,﹣1, 中,有理数的个数为( )
A.3B.2C.1D.0
【解答】解:实数π,0,﹣1, 中,有理数是:0,﹣1,
所以,有理数共有2个,
故选:B.
练习:数轴
1.(2022•镇江)如图,数轴上的点A和点B分别在原点的左侧和右侧,点A、B对应的实数分别是a、b,下列结论一定成立的是( )
【解答】解:原式=﹣9+4 ( 1)+1+4
=﹣9+2 1+1+4
3.
2.(2022•顺德区校级三模)计算:| |﹣tan60°﹣( )﹣1 (π﹣3.14)0.
【解答】解:原式 3﹣2 1
=2﹣2 .
3.(2022•西城区校级模拟)计算:(π﹣3)0+( )﹣2﹣3tan60°+|1 |.
【解答】解:原式=1+9﹣3 1
【解答】解:原式=﹣2+2 1+2
=﹣2 1+2
1.
2.(2022•益阳)计算:(﹣2022)0+6×( ) .
【分析】利用零指数幂的意义,有理数的乘法,二次根式的性质化简运算即可.
【解答】解:原式=1+(﹣3)+2
=0.
举一反三
1.(2022•金凤区校级三模)计算:﹣32+4cos30°﹣|1 |+(π﹣2022)0+( )﹣2.
∴ab<0,故该选项不符合题意;
B选项,∵a<0,b>0,|a|>|b|,
∴a+b<0,故该选项不符合题意;
C选项,|a|>|b|,故该选项不符合题意;
D选项,∵a<b,
∴a+1<b+1,故该选项符合题意;
故选:D.
举一反三
1.(2022•鼓楼区校级模拟)如图,数轴上与2 对应的点大致是( )
A.点AB.点BC.点CD.点D
故选:C.
2.(2022•吉林)实数a,b在数轴上对应点的位置如图所示,则a,b的大小关系为( )
A.a>bB.a<bC.a=bD.无法确定
【分析】由数轴上b在a的右侧可得b与a的大小关系.
【解答】解:∵b>0,a<0,
∴a<b,
故选:B.
举一反山
1.(2022•仓山区校级模拟)以下各数中最小的是( )
(5)差值比较法
无理数常见的四种类型
(1)开不尽的数,如 ,
(2)含有π的绝大部分数,如π,
(3)具有特定结构的数,如0.10100000(两个1之间依次增加1个0)
(4)三角函数数中的一些数,如 , , .
实数大小比较的7种技巧
(1)比较绝 对值法
(2)开方法
(3)平方法或立方法
(4)取近似值法
(5)放缩法
【解答】解:由题意可知b<﹣a<0<a<﹣b=|b|,
故选:C.
3.(2022•泉港区模拟)下列实数中,比 大的数是( )
A.1B.2C.0D.﹣2
【解答】解:∵1 ,
∴2 .
∴比 大的数是2.
故选:B.
练习:相反数、倒数、绝对值
1.(2022•百色)﹣2023的绝对值等于( )
A.﹣2023B.2023C.±2023D.2022
比较实数大小的五种方法
(1)绝对值比较法:两个负数比较大小,绝大值大的反而小
(2)数轴比较法:在数轴上表示的两个数,右边的数总比左边的数大
(3)平方比较法:先将要平方的两个数分别平方,再根据a>0,b>0时,可由a2>b2得到a>b来比较大小。
(4)取近以值法:首先对要比较的两个数取近以值通过比较其近似值来比较两个数的大小,
根据有理数的加法法则知:a+b<0,故A是错误的;
根据有理数的乘法法则知:ab<0,故B是错误的;
根据有理数的减法法则知:a﹣b>0,故C是正确的;
根据有理数的减法法则知:|a|﹣|b|<0,故D是错误的;
故选:C.
3.(2022•桥西区校级模拟)如图,数轴上的点B表示实数b,若实数a满足不等式b<a<﹣b,则a可能为( )
多个有理数相乘的法则及规律:
(1)几个不是0的数相乘,负因数的个数是奇数时,积是负数;
负因数的个数是偶数时,积是正数。
确定符号后,把各个因数的绝对值相乘。
(2)几个数相乘,有一个因数为0,积为0;反之,如果积为0,那么至少有一个因数是0.
注:带分数与分数相乘时,通常把带分数化成假分数,再与分数相乘。
A. B.﹣2022C.0D.2022
【解答】解:根据正数大于0,0大于负数,负数中绝对值大的反而小可知,
﹣2022 0<2022,
故选:B.
2.(2022•三水区校级三模)实数a,b在数轴上的位置如图所示,把a,b,﹣a,|b|按照从小到大的顺序排列正确的是( )
A.|b|<a<﹣a<bB.b<a<﹣a<|b|C.b<﹣a<a<|b|D.|b|<﹣a<a<b
【解答】解:11000000=1.1×107.
故选:B.
2.(2022•青岛)我国古代数学家祖冲之推算出π的近似值为 ,它与π的误差小于0.0000003.将0.0000003用科学记数法可以表示为( )
A.3×10﹣7B.0.3×10﹣6C.3×10﹣6D.3×107
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【分析】利用绝对值的意义求解.
【解答】解:因为负数的绝对值等于它的相反数;
所以,﹣2023的绝对值等于2023.
故选:B.
2.(2022•广安)从百年前的“奥运三问”到今天的“双奥之城”,2022年中国与奥运再次牵手,2022年注定是不平凡的一年.数字2022的倒数是( )
A.2022B.﹣2022C. D.
③设 是任意两实数.
若 ,则 ;
若 ,则 ;
若 ,则 .
数轴
数轴的三要素为原点、正方向和单位长度.数轴上的点与实数一一对应.
相反数、倒数、绝对值
(1)实数a、b互为相反数,则a+b=0.
(2)实数a、b互为倒数,则ab=1.
(3)绝对值:
|a|的几何意义是数轴上表示a的点与原点之间的距离.
科学记数法
步骤:(1)减法化加法;
(2)省略括号和加号;
(3)运用加法运算律使计算简便;
(4)运用有理数加法法则进行计算。
注:运用加法运算律时,可按如下几点进行:
(1)同号的先结合;
(2)同分母的分数或者比较容易通分的分数相结合;
(3)互为相反数的两数相结合;
(4)能凑成整数的两数相结合;
(5)带分数一般化为假分数或者分为整数和分数两部分,再分别相加。
所以,有理数的个数是2,
故选:B.
举一反三
1.(2022•万州区校级一模)下列各数是有理数的是( )
A. B. C.πD.
【解答】解: 是有理数,
、π、 是无理数,
故选:A.
2.(2022•将乐县模拟)实数﹣3, , ,2中,负整数是( )
A.﹣3B. C. D.2
【解答】解:实数﹣3, , ,2中,负整数是﹣3,
(6)作差法
(7)特殊值法
练习:
1.(2022•巴中)下列各数是负数的是( )
A.(﹣1)2B.|﹣3|C.﹣(﹣5)D.
【分析】先将各选项的数进行化简,再根据负数的定义进行作答即可.
【解答】解:(﹣1)2=1,是正数,故A选项不符合题意;
|﹣3|=3,是正数,故B选项不符合题意;
﹣(﹣5)=5,是正数,故C选项不符合题意;
,是负数,故D选项符合题意.
故选:D.
2.(2022•日照)在实数 ,x0(x≠0),cos30°, 中,有理数的个数是( )
A.1个B.2个C.3个D.4个
【分析】根据零指数幂,特殊角的三角函数值,实数的意义,即可解答.
【解答】解:在实数 ,x0(x≠0)=1,cos30° , 2中,有理数是 ,x0(x≠0),
【解答】解:用科学记数法可以表示0.0000003得:3×10﹣7;
故选:A.
举一反三
1.(2022•杏花岭区校级模拟)2022年春节期间,为响应国家号召,多数人选择“就地过年”,太原市文旅系统推出了探寻晋商年味之旅、魅力山西时尚之旅等10条主题线路,使“就地过年”更有年味、更加贴心,2月1日至2月16日,全市20家A级景区平均每天接待游客2万人次,则全市这20家A级景区这7天共接待的游客数量用科学记数法可表示为( )
把一个数写成a×10n(其中1≤|a|<10,n为整数)的形式
四:
数轴
(1)数轴的三要素:原点、正方向、单位长度(重点)
(2)任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
相关文档
最新文档