(完整word版)高等数学经典方法与典型例题归纳
高等数学微积分学习方法及联系题汇总

01:函数概念五要素,定义关系最核心。
02:分段函数分段点,左右运算要先行。
03:变限积分是函数,遇到之后先求导。
04:奇偶函数常遇到,对称性质不可忘。
05:单调增加与减少,先算导数正与负。
06:正反函数连续用,最后只留原变量。
07:一步不行接力棒,最终处理见分晓。
08:极限为零无穷小,乘有限仍无穷小。
09:幂指函数最复杂,指数对数一起上。
10:待定极限七类型,分层处理洛必达。
11:数列极限洛必达,必须转化连续型。
12:数列极限逢绝境,转化积分见光明。
13:无穷大比无穷大,最高阶项除上下。
14:n项相加先合并,不行估计上下界。
15:变量替换第一宝,由繁化简常找它。
16:递推数列求极限,单调有界要先证,两边极限一起上,方程之中把值找。
17:函数为零要论证,介值定理定乾坤。
18:切线斜率是导数,法线斜率负倒数。
19:可导可微互等价,它们都比连续强。
20:有理函数要运算,最简分式要先行。
21:高次三角要运算,降次处理先开路。
22;导数为零欲论证,罗尔定理负重任。
23:函数之差化导数,拉氏定理显神通。
24:导数函数合(组合)为零,辅助函数用罗尔。
25:寻找ξη无约束,柯西拉氏先后上。
26:寻找ξη有约束,两个区间用拉氏。
27:端点、驻点、非导点,函数值中定最值。
28:凸凹切线在上下,凸凹转化在拐点。
29:数字不等式难证,函数不等式先行。
30:第一换元经常用,微分公式要背透。
31:第二换元去根号,规范模式可依靠。
32:分部积分难变易,弄清u 、v 是关键。
33:变限积分双变量,先求偏导后求导。
加日志标题 34:定积分化重积分,广阔天地有作为。
35;微分方程要规范,变换,求导,函数反。
36:多元复合求偏导,锁链公式不可忘。
37:多元隐函求偏导,交叉偏导加负号。
38:多重积分的计算,累次积分是关键。
39:交换积分的顺序,先要化为重积分。
40:无穷级数不神秘,部分和后求极限。
41:正项级数判别法,比较、比值和根值。
(完整word版)高等数学辅导讲义

第一部分函数极限连续历年试题分类统计及考点分布本部分常见的题型1.求分段函数的复合函数。
2.求数列极限和函数极限。
3.讨论函数连续性,并判断间断点类型。
4.确定方程在给定区间上有无实根。
一、 求分段函数的复合函数例1 (1988, 5分) 设2(),[()]1x f x e f x x ϕ==-且()0x ϕ≥,求()x ϕ及其定义域。
解: 由2()x f x e =知2()[()]1x f x e x ϕϕ==-,又()0x ϕ≥,则()0x x ϕ=≤.例2 (1990, 3分) 设函数1,1()0,1x f x x ⎧≤⎪=⎨>⎪⎩,则[()]f f x =1.练习题: (1)设 1,1,()0,1,(),1,1,x x f x x g x e x ⎧<⎪===⎨⎪->⎩求[()]f g x 和[()]g f x , 并作出这两个函数的图形。
(2)设20,0,0,0,()(),,0,,0,x x f x g x x x x x ≤≤⎧⎧==⎨⎨>->⎩⎩求[()],[()],[()],[()]f f x g g x f g x g f x .二、 求数列的极限方法一 利用收敛数列的常用性质一般而言,收敛数列有以下四种常用的性质。
性质1(极限的唯一性) 如果数列{}n x 收敛,那么它的极限唯一。
性质2(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界。
性质3(收敛数列的保号性) 如果lim n n x a →∞=,且0a >(或0a <),那么存在0n N +∈,使得当0n n >时,都有0n x >(或0n x <).性质4(数列极限的四则运算法则) 如果,,lim lim n n n n x a y b →∞→∞==那么(1)()lim n n n x y a b →∞±=±;(2)lim n n n x y a b →∞•=•;(3)当0()n y n N +≠∈且0b ≠时,limn n n x a y b→∞=.例3 若lim nn xa →∞=,则lim nn xa →∞=.注: 例3的逆命题是不对的, 例如我们取(1)n n x =-, 显然1lim n n x →∞=,但数列(1)n n x =-没有极限。
(完整word版)高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14 种方法一、极限的定义1. 极限的保号性很重要:设limf (x)A ,x x 0( i )若 A 0 ,则有0 ,使适当 0 | x x 0 |时, f (x) 0 ; ( ii )如有0, 使适当 0 | x x 0 |时, f (x)0,则A0 。
2. 极限分为函数极限、数列极限,此中函数极限又分为限能否存在在:x时函数的极限和 xx 0 的极限。
要特别注意判断极( i )数列 x n 收敛于 a 的充要条件 是它的全部子数列均收敛于 a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”( ii )limf (x)Alimf ( x)limAxxx(iii)lim f ( x)AlimlimAx xx x 0x x 0(iv) 单一有界准则 ( v )两边夹挤准则(夹逼定理 / 夹逼原理) ( vi ) 柯 西 收 敛 准 则 ( 不 需 要 掌 握 )。
极 限 limf ( x) 存 在 的 充 分 必 要 条 件 是 :x x 00,0, 使适当 x 1、 x 2U o ( x 0 )时,恒有 | f ( x 1 ) f ( x 2 ) |二.解决极限的方法以下:1. 等价无量小代换。
只好在乘除 时候使用。
例题略。
..2. 洛必达( L ’ho spital )法例(大题目有时会有示意要你使用这个方法)它的使用有严格的使用前提。
第一一定是X 趋近,而不是 N 趋近,因此面对数列极限时候先要转变为求 x 趋近状况下的极限,数列极限的n 自然是趋近于正无量的,不行能是负无量。
其次 , 一定是函数的导数要存在,假如告诉 f (x )、g (x ), 没告诉能否可导, 不行直接用洛必达法例。
此外,一定是 “0 比 0”或“无量大比无量大” ,而且注意导数分母不可以为 0。
洛必达法例分为 3 种状况:(i )“ 0”“”时候直接用(ii) “0? ”“”,应为无量大和无量小成倒数的关系,因此无量多数写成了无量小的倒数形式了。
高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)高等数学求极限的常用方法(附例题和详解)在高等数学中,求极限是一个基础而重要的概念,它在各个数学领域都有广泛的应用。
本文将介绍一些常用的方法,以及针对这些方法的例题和详细解析。
I. 无穷小量法无穷小量法是求解极限最常见的方法之一。
它的基本思想是将待求极限转化为无穷小量之间的比较。
下面通过一个例题来说明这个方法。
例题1:求极限lim(x→0) (sin x) / x解析:考虑当 x 趋近于 0 时,sin x 和 x 的关系。
根据三角函数的极限性质,我们知道 sin x / x 的极限为 1。
因此,原式可以看作(sin x) / x ≈ 1,即它在 x 趋近于 0 时趋近于 1。
故lim(x→0) (sin x) / x = 1.II. 夹逼法夹逼法也是常用的求解极限的方法,它适用于求解含有不等式的极限问题。
下面通过一个例题来说明夹逼法的思想。
例题2:求极限lim(x→0) x^2sin(1/x)解析:首先,我们要注意到 x^2sin(1/x) 的取值范围在 [-x^2, x^2] 之间,因为 -1 ≤sin(θ) ≤ 1 对任意θ 成立。
然后,我们可以利用夹逼法,将 x^2sin(1/x) 夹逼在 0 和 0 之间。
也就是说,对于任何 x,都有 -x^2 ≤ x^2sin(1/x) ≤ x^2。
根据夹逼定理,当 x 趋近于 0 时,x^2sin(1/x) 的极限为 0。
故lim(x→0) x^2sin(1/x) = 0.III. 泰勒展开法泰勒展开法是一种将函数在某点附近进行多项式逼近的方法,它可以帮助我们求解一些复杂的极限问题。
下面通过一个例题来说明泰勒展开法的应用。
例题3:求极限lim(x→0) (e^x - 1) / x解析:考虑函数 f(x) = e^x 在 x = 0 处的泰勒展开式:f(x) = f(0) + f'(0)x + f''(0)x^2 / 2! + f'''(0)x^3 / 3! + ...其中,f'(0)表示 f(x) 在 x = 0 处的导数,依次类推。
高等数学(完整版)详细

二、1、 f ( x0 ); 2、 f (0); 3、2 f ( x0 ). 四、(1)当k 0时, f ( x)在 x 0处连续;
步骤: ( 1 ) 求 y 增 f ( x x 量 ) f ( x );
(2 )算比 y f(x 值 x ) f(x );
x
x
(3)求极 y 限 lim y.
x 0 x
例1 求函 f(x ) C 数 (C 为)常 的数 .导数
解 f(x)lim f(xh )f(x)limCC 0.
f(x0)
y x
f(x0)
0( x 0 ) y f(x 0 ) x x
l x 0 i y m l x 0 i [ f m ( x 0 ) x x ] 0
函f(数 x )在x 0 连 点 . 续
.
注意: 该定理的逆定理不成立.
★ 连续函数不存在导数举例
1. 函数 f(x)连续 ,若f(x0)f(x0)则称x0点 为函f(数 x)的角,函 点数在角点 . 不
,
则
它 们 的 导 数 分 别 为 dy 1 = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ ,
dx
dy 2 = _ _ _ _ _ _ _ _ _ _ _ _ _ , dy 3 = _ _ _ _ _ _ _ _ _ _ _ _ _ .
dx
dx
.
4、 设 f(x)x2,则 ff(x)________________; ff(x)_________________.
解 ylim loa(g xh )loax g
h 0
h
h
lim
loga
(1
) x
1
h0
h
数学归纳法典型例题

数学归纳法典型例题【知识梳理】数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。
近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。
一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n = n 0时命题成立;(2)(归纳递推)假设n = k()时命题成立,证明当时命题也成立。
只要完成这两个步骤,就可以断定命题对从开始的所有正整数n都成立。
上述证明方法叫做数学归纳法。
数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。
【要点解析】1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。
用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。
2、运用数学归纳法时易犯的错误(1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。
(2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。
(3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。
(完整word版)高等数学辅导讲义.doc

第一部分函数极限连续函数、极限、连续函数极限连续函数概念函数的四种反函数与复初等函数数列极限函数极限连续概念间断点分类初等函数的连闭区间上连续特征合函数续性函数的性质函数的有界数列极限的函数极限的第一类间断有界性与最大性定义定义点值最小值定理函数的单调收敛数列的函数极限的可去间断点零点定理性性质性质函数的奇偶极限的唯一函数极限的跳跃间断点性性唯一性函数的周期收敛数列的函数极限的第二类间断性有界性局部有界性点收敛数列的函数极限的保号性局部保号性数列极限四函数极限与数则运算法则列极限的关系极限存在准函数极限四则则运算法则夹逼准则两个重要极限单调有界准无穷小的比则较高阶无穷小低阶无穷小同阶无穷小等价无穷小历年试题分类统计及考点分布考点复合函数极限四则两个重要单调有界无穷小的合计运算法则极限准则阶年份19871988 5 3 8 19891990 3 3 6 1991 5 3 8 1992 3 3 1993 5 3 8 1994 3 3 1995 3 3 1996 3 6 3 12 1997 3 3 199819992000 5 5 200120022003 4 4 8 2004 4 4 20052006 12 3 15 2007 4 4 2008 4 4 2009 4 4 2010 4 4 2011 10 10 20 合计8 18 37 32 27本部分常见的题型1.求分段函数的复合函数。
2.求数列极限和函数极限。
3.讨论函数连续性,并判断间断点类型。
4.确定方程在给定区间上有无实根。
一、 求分段函数的复合函数 例 1 (1988, 5 分) 设 f (x)e x2, f [ (x)]1 x 且 ( x) 0 求 (x) 及其定义,域。
解: 由 f (x) e x 2知 f [ ( x)] e2( x)1x ,又 (x) 0 ,则 ( x)ln(1 x), x 0 .例 2 (1990, 3 分) 设函数 f ( x)1, x1则 f [ f ( x)]10, x 1, .1, x1,练习题 : (1)设f (x)0, x1, g ( x)e x , 求f [ g( x)] 和 g[ f (x)] , 并作出这1, x 1,两个函数的图形。
(完整word)高等数学:常微分方程的基础知识和典型例题

常微分方程1 .( 05,4 分)微分方程xy 2yxln x 满足y(1)22x y)= x ln x.2 .( 06,4 分) 微分方程 y= y(1 x)的通解为 ———— x分析:这是可变量分离的一阶方程,分离变量得dy( 11)dx.积分得 ln y ln x x C 1,即 y e C1xe x yxy Cxe x, 其中C 为任意常数 .(二)奇次方程与伯努利方程1 .( 97,2,5 分) 求微分方程 (3x2 2xy y 2)dx (x 22xy)dy 0的通解解:所给方程是奇次方程 . 令 y=xu, 则 dy=xdu+udx. 代入原方程得 3 ( 1+u- u 2) dx+x(1-2 u) du=0. 分离变量得1-2u2 du 3dx, 1uu x积分得 ln 1 u u 2 3ln x C 1,即 1 u u 2=Cx 3. 以 u y代入得通解 x 2xy y 2.xx( y x 2y 2)dx xdy 0(x 0),2 .(99,2,7 分 ) 求初值问题 的解 .y x1 0分析:这是一阶线性微分方程原方程变形为 . dy +2y dx x 2 dx lnx, 两边乘 e x=x 得积分得y(1)x 2y=C+ x 2 ln xdx C 1 ln xdx 3 3 1 11 得 C 0 y xln x x.9 39 C 1 x 3 ln x 3 13 x. 9 1 的解解:所给方程是齐次方程 (因 dx, dy 的系数 (y+ x 2 y 2)与 (-x)都是一次齐次函数)令 dy xdu udx,带入得x(u 1 u 2dx x( xdu udx) 0, 化简得 12u 2dx xdu 0.分离变量得dx- du=0. x 1 u 2积分得 ln x ln(u 1 u 2) C 1,即 u 1 u 2Cx. 以 u y代入原方程通解为y+ x 2 y 2 Cx 2.x 再代入初始条件 y x 1 0,得 C=1.故所求解为 y+x 2y2x 2,或写成y 12 (x 2 1).(三)全微分方程 练习题(94,1,9 分)设 f ( x)具有二阶连续导数, f (0) 0, f (0) 1,且 [xy(x+y)- f(x)y]dx+[ f (x)+x 2y]dy=0为一全微分方程,求 f(x)以及全微分方程的通解先用凑微分法求左端微分式的原函数:122 122( y dx x dy ) 2( ydx xdy ) yd (2sin x cos x) (2sin x cos x)dy 0, 22 122d [ x y 2xy y (cos x 2sin x)] 0. 2其通解为 1x 2y 2 2xy y (cos x 2sin x) C.4.( 98,3分) 已知函数y y(x)在任意点x 处的增量 y= y2 x ,当 x0时 ,1x是 x 的高阶无穷小,y(0)= ,则 y(1)等于 ( )解:由全微分方程的条件,有 即 x22xy f (x) f (x)y因而 f (x)是初值问题y x 2[xy(x y) f(x)y] y 2xy, 亦即 f (x) f (x) x 2.2yx的解,从而解得0, y x 0 12.22[ f (x) xy], x 2sin x cosx)dy 0.(A)2 .(B) .(C)e 4 .(D) e 4 .分析:由可微定义,得微分方程 y y. 分离变量得21x1y dx2,两边同时积分得 ln y arctan x C ,即 y Ce arctanx.y1x代入初始条件y(0) ,得 C= ,于是 y(x) earctanx,由此, y(1) e 4.应选 ( D)二、二阶微分方程的可降阶类型5( . 00,3分) 微分方程 x y 3y 0的通解为分析:这是二阶微分方程的一个可降阶类型,令 y =P( x),则 y =P ,方程可化为一阶线性方程xP 3P 0,标准形式为 P+3P=0,两边乘 x 3得 (Px 3) =0. 通解为 y P C 30 .xx再积分得所求通解为 y C 22C 1.x216 .( 02,3分)微分方程 yy y 2=0满足初始条件y x 01, y x 0 2的特解是分析:这是二阶的可降阶微分方程 .令 y P(y)(以 y 为自变量 ),则 y dy dP P dP.dx dx dy代入方程得 yP dP +P 2=0,即 y dP+P=0(或 P=0, ,但其不满足初始条件y x 0 1)dy dy2分离变量得 dP dy 0,PyC积分得 ln P +ln y =C ,即 P= 1(P=0对应 C 1=0); y11由 x 0时 y 1, P=y , 得 C 1 ,于是221 y P ,2 ydy dx, 积分得 y x C 2 2y .又由 y x 0 1 得 C 2. 1,所求特解为 y 1 x.三、二阶线性微分方程(一)二阶线性微分方程解的性质与通解结构7 .( 01,3分)设 y e x(C 1sin xC 2cosx)(C 1,C 2为任意常数 )为某二阶常系数线性齐次微分方程的通解,则该方程为 ___ .r1,r2 1 i,从而得知特征方程为分析一:由通解的形式可得特征方程的两个根是22(r r1 )(r r2) r (r1 r2 )r r1r2 r 2r 2 0.由此,所求微分方程为y 2y 2y 0.分析二:根本不去管它所求的微分方程是什么类型(只要是二阶),由通解y e x(C1sinx C2 cosx)求得y e x[( C1 C2 )sin x (C1 C2)cos x], y e x( 2C2 sin x 2C1 cos x),从这三个式子消去C1与C2,得y 2y 2y 0.(二)求解二阶线性常系数非齐次方程9.( 07,4分) 二阶常系数非齐次线性微分方程y 4y 3y 2e2x的通解为y=分析:特征方程24 3 ( 1)( 3) 0的根为1, 3.非齐次项 e x, 2不是特征根,非齐次方程有特解y Ae2x.代入方程得(4A 8A 3A)e2x2e2x A 2.因此,通解为y C1e x C2e3x2e2x..10.(10,10分 )求微分方程y 3y 2y 2xe x的通解.分析:这是求二阶线性常系数非齐次方程的通解.1由相应的特征方程2 3 2 0, 得特征根 1 1, 2 2 相应的齐次方程的通解为y C1e x C2e2x.2非齐次项 f ( x) 2xe x , 1是单特征根,故设原方程的特解xy x(ax b)e .代入原方程得ax2 (4a b)x 2a 2b 3[ax2 (2a b)x b] 2(ax2 bx) 2x,即 2ax 2a b 2x, a 1,b 2.3原方程的通解为y C1e x C2e2x x(x 2)e x,其中 C1,C2为两个任意常数.04, 2, 4分)微分方程y y x2 1 sin x的特解形式可设为( )22(A)y ax bx c x(Asin x B cosx).(B)y x(ax bx c Asin x B cos x).22(C)y ax bx c Asin x.(D )y ax bx c Acosx.分析:相应的二阶线性齐次方程的特征方程是2 1 0,特征根为i .y y x2 1L()与 1 y y sin xL( 2)方程 (1) 有特解 y ax2 bx c,方程(2)的非齐次项 f (x) e x sin x sin x( 0, 1,i 是特征根), 它有特解y x(Asin x B cosx).y ax2 bx c x(Asin x Bbcosx).应选 (A).(四)二阶线性变系数方程与欧拉方程12.(04, 4分 )欧拉方程x2 d2y 4x dy 2y 0(x 0)的通解为dx dx分析:建立 y 对 t 的导数与y 对 x 的导数之间的关系 .222dy dy dx dyd y d y 2 dy 2 d y dy( sin x), 2 2 sin t cost (1 x ) 2 x .dt dx dt dx dt dx dx dx dxd 2y于是原方程化为 2 y 0,其通解为 y C 1 cost C 2sint.dt 2 回到 x 为自变量得 y C 1x C 2 1 x 2.x由 y (0) C 2 1 C 2 1.y(0) C 1x 02 C 1 2.1 x 2因此 特解为 y 2x 1 x 2 .四、高于二阶的线性常系数齐次方程13.( 08, 4分)在下列微分方程中,以 y C 1e xC 2cos2x C 3 sin 2x(C 1, C 2, C 3为任意常数)为通 解的是()(A)y y 4y 4y 0.(B)y y 4y 4y 0. (C)y y 4y 4y 0.(D ) y y 4y 4y 0.分析:从通解的结构知,三阶线性常系数齐次方程相应的三个特征根是: 1, 2i(i 1),对 应的特征方程是 ( 1)( 2i)( 2i) ( 1)( 24) 3244 0,因此所求的微分方程是 y y 4y 4y 0,选(D).(00,2,3分 ) 具有特解 y 1 e x , y 2 2xe x ,y 3 3e x的三阶常系数齐次线性微分方程是( )(A)y y y y 0.(B)y y y y 0. (C)y 6y 11y 6y 0.(D)y2y y 2y 0.分析:首先,由已知的三个特解可知特征方程的三个根为 r 1 r 21,r 3 1,从而特征方程为(1)求导数 f (x); (2)证明:当 x 0时 ,成立不等式 e分析:求解欧拉方程的方法是:作自变量22d y dy d y dy 2 (4 1) 2y 0,即 2 3 2y xe t(t l n x),将它化成常系数的情形: 0.1, 2 2, 通解为 yC 1e t C 2e 2t. y C 1 x C 22,其中C 1,C 2为任意常数(05,2,12分 )用变量代换 xcost (0 t)化简微分方程 (1 x 2)y xy y 0,并求其(r 1)2(r 1) 0,即r3r 2r 1 0,由此,微分方程为y y y y 0.应选(D).五、求解含变限积分的方程00, 2,8分) 函数y=f(x)在0, 上可导,f (0) 1,且满足等式1xf (x) f (x) 1 f (t)dt 0,x10f(x) 1.求解与证明()首先对恒等式变形后两边求导以便消去积分: 1x(x 1)f (x) (x 1)f(x) 0f (t)dt 0,(x 1)f (x)(x 2)f (x)0.在原方程中令变限 x 0得 f (0) f (0) 0,由 f (0) 1,得 f (0) 1.现降阶:令 u f (x),则有 u x 2u 0,解此一阶线性方程得x1x e f (x) u C eu 0x1 x e 由 f (0) 1,得 C 1,于是 f (x) e. x1xe (2)方法 1 用单调性 . 由f (x) e0(x 0), f (x)单调减 , f(x) f(0) 1(x );x1x 又设 (x) f (x) e x ,则 (x) f (x) e x x e x0(x 0), (x)单调增,因此 (x)x1 (0) 0(x 0),即 f(x) e x(x 0) . 综上所述,当 x 0时 ,e x f (x) 1.方法 2 用积分比较定理 . 由 牛顿 -莱布尼茨公式,有六、应用问题 (一)按导数的几何应用列方程 练习题 1 .( 96,1,7分)设对任意 x 0,曲线 y f(x)上点 (x, f(x))处的切线在 y 轴上的截距等于1 xf (t)dt,求 f ( x)的一般表达式 . x 0解:曲线 y f (x)上点 (x, f ( x))处的切线方程为 Y f ( x) f ( x)( X x).令 X 0得 y 轴上的截距 Y f(x) xf (x).由题意 1x1f(t)dt f(x) xf (x) x 0x, 得x 2f(t)dt xf (x) x 2f (x)( ) 恒等式两边求导,得 f (x) f (x) xf (x) 2xf (x) x 2f ( x),即 xf (x) f (x) 0 在 ( )式中令 x 0得 0 0,自然成立 . 故不必再加附加条件. 就是说f (x)是微分方程 xy y 0的通解 . 令 y P(x),则 y P ,解 xP P 0,得 y P C 1.xf ( x) f (0) x0 f (t)dt, f(x) t 由于 0 e t1从而有 e x e t (t 0),有 0 f (x) 1. 0t e t d t 1 dt . 1 x t e t dt x e (x再积分得 y f ( x) C1 ln x C2.12( . 98,2,8分) 设 y y(x)是一向上凸的连续曲线 ,其上任意一点 (x, y)处的曲率为 1,1 y 2y P tan( x).(二 )按定积分几何应用列方程3.(97,2,8分 )设曲线 L 的极坐标方程为 r r( ), M (r, )为 L 上任一点 ,M 0(2,0)为 L 上一定点 ,若极径 OM 0,OM 与曲线 L 所围成的曲边扇形面积值等于 L 上 M 0、 M 两点间弧长值的一半, 求曲线L 的方程 .且此曲线上点 (0,1)处的切线方程为 y x 1, 求该曲线的方程,并求函数 y y( x)的极值 .解:由题设和曲率公式有y( x)向上凸 , y 0, y令 y P(x),则 y P ,方程化为 y) ,化简得 y 12. yP1 P 21, dP 分离变量得 2 dx,积分得C 1.y (0) 1即 P(0) 1,代入可得 C 1,故再积分得 y ln cos( x) C 2 又由题设可知y(0)1,代入确定 C 2 11ln 2,1y ln cos( x) 1 ln 2x , 即当 4 2,3时 ,cos( x) 0, 而3 或 时, 44cos( x)y ln cos( 40,ln cos( x)1 x) 12 ln2( 4 x34 )显然,当 x 时 ,ln cos( x) 4410, y 取最大值 1 1ln 2,显然 y 在 (3),没有极小值解:由已知条件得r 2d r 2 r 2d , 2020 两边对 求导 ,,得 r 2 r 2 r (隐式微分方程)2 ,解出 r r r 2 1,从而, L 的直角坐标方程为 x m 3y 2.1 arccos r 分离变量,得 dr r r 2 dr r r 2 1 d 1 1 d( )1 r (r 1)2 arccos 1 , 或 r dr r r 2 1d tarccos 1(r sect ) 两边积分,得 代入初始条件 r(0) 2,得 1arccos 2 1arccos r3L 的极坐标方程为 1 r cos( ) 31 co s 3si。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年山东省普通高等教育专升本考试2014年山东专升本暑期精讲班核心讲义高职高专类高等数学经典方法及典型例题归纳—经管类专业:会计学、工商管理、国际经济与贸易、电子商务—理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自动化、交通运输、计算机科学与技术、土木工程2013年5月17日星期五曲天尧编写一、求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 011011ΛΛ 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limx xx x +-+→【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
主要考第二个重要极限。
例5:求极限xx x x ⎪⎭⎫⎝⎛-++∞→11lim【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X1+,最后凑指数部分。
【解】2221212112111lim 121lim 11lim e x x x x x x x xx x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--+∞→+∞→+∞→ 例6:(1)x x x ⎪⎭⎫ ⎝⎛-+∞→211lim ;(2)已知82lim =⎪⎭⎫⎝⎛-++∞→xx a x a x ,求a 。
5.用等价无穷小量代换求极限【说明】(1)常见等价无穷小有:当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x-,()abx ax x x b~11,21~cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式..; (3)此方法在各种求极限的方法中应作为首选.....。
例7:求极限0ln(1)lim1cos x x x x →+=-【解】 002ln(1)lim lim 211cos 2x x x x x xx x →→+⋅==-.例8:求极限xxx x 30tan sin lim -→【解】x x x x 30tan sin lim -→613lim 31cos lim sin lim 222102030-=-==-=-=→→→xx x x x x x x x x 6.用洛必达法则求极限例9:求极限220)sin 1ln(2cos ln lim xx x x +-→ 【说明】∞∞或0型的极限,可通过罗必塔法则来求。
【解】220)sin 1ln(2cos ln lim x x x x +-→xx xx x x 2sin 12sin 2cos 2sin 2lim 20+--=→ 3sin 112cos 222sin lim20-=⎪⎭⎫⎝⎛+--=→x x x x x 【注】许多变动上显的积分表示的极限,常用洛必达法则求解例10:设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x【解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xxxx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 00)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f xxx +⎰⎰→=.21)0()0()0(=+f f f7.用对数恒等式求)()(lim x g x f 极限例11:极限xx x 2)]1ln(1[lim ++→【解】 xx x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e++→=.2)1ln(2lim)]1ln(1ln[2lim00e eex x x x x x ==+++→→【注】对于∞1型未定式)()(lim x g x f 的极限,也可用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -因为===-+)1)(1ln()(lim ))(ln()(lim )()(lim x f x g x f x g x g e e x f )()1)(lim(x g x f e -例12:求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解1】 原式2cos ln 331limx x x ex +⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x →+⎛⎫ ⎪⎝⎭= 20ln 2cos ln 3lim x x x →+-=()01sin 2cos lim 2x x x x →⋅-+=()011sin 1lim 22cos 6x x x x →=-⋅=-+【解2】 原式2cos ln 331limx x x ex +⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭= 2cos 1ln 3limx x x →-+=(1)20cos 11lim 36x x x →-==- 8.利用Taylor 公式求极限例13 求极限 ) 0 ( ,2lim 20>-+-→a xa a x x x . 【解】 ) (ln 2ln 1222ln x a x a x ea ax x ο+++==,) (ln 2ln 1222x a x a x axο++-=-;). (ln 2222x a x aa xxο+=-+-∴ a xx a x x a a x x x x 22222020ln ) (ln lim 2lim =+=-+→-→ο. 例14 求极限011lim (cot )x x x x→-. 【解】 00111sin cos lim (cot )lim sin x x x x x x x x x x x→→--= 323230()[1()]3!2!lim x x x x x x x xοο→-+--+= 333011()()12!3!lim 3x x x x ο→-+==.9.数列极限转化成函数极限求解例15:极限21sin lim n n n n ⎪⎭⎫ ⎝⎛∞→【说明】这是∞1形式的的数列极限,由于数列极限不能使用洛必达法则,若直接求有一定难度,若转化成函数极限,可通过7提供的方法结合罗必塔法则求解。
【解】考虑辅助极限611sin 11011sin 222lim lim 1sin lim -⎪⎪⎭⎫ ⎝⎛-→⎪⎭⎫ ⎝⎛-+∞→+∞→===⎪⎭⎫ ⎝⎛+e eex x y y y y x x x x x x所以,6121sin lim -∞→=⎪⎭⎫ ⎝⎛e n n n n10.n 项和数列极限问题n 项和数列极限问题极限问题有两种处理方法 (1)用定积分的定义把极限转化为定积分来计算; (2)利用两边夹法则求极限.例16:极限⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n Λ 【说明】用定积分的定义把极限转化为定积分计算,是把)(x f 看成[0,1]定积分。
⎰=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∞→10)(211limdx x f n n f n f n f n n Λ 【解】原式=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+∞→222112111111lim n n n n n n Λ 1212ln2111102+--=+=⎰dx x例17:极限⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim Λ 【说明】(1)该题遇上一题类似,但是不能凑成⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛∞→n n f n f n f n n Λ211lim 的形式,因而用两边夹法则求解;(2) 两边夹法则需要放大不等式,常用的方法是都换成最大的或最小的。
【解】⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim Λ 因为11211122222+≤++++++≤+n n nn n n nn n Λ又 nn nn +∞→2lim11lim2=+=∞→n n n所以 ⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim Λ=1 11.单调有界数列的极限问题例18:设数列{}n x 满足110,sin (1,2,)n n x x x n π+<<==L (Ⅰ)证明lim n n x →∞存在,并求该极限;(Ⅱ)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在.【详解】 (Ⅰ)因为10x π<<,则210sin 1x x π<=≤<. 可推得 10sin 1,1,2,n n x x n π+<=≤<=L ,则数列{}n x 有界. 于是1sin 1n nn nx x x x +=<,(因当0sin x x x ><时,), 则有1n n x x +<,可见数列{}n x 单调减少,故由单调减少有下界数列必有极限知极限lim n n x →∞存在.设lim n n x l →∞=,在1sin n n x x +=两边令n →∞,得 sin l l =,解得0l =,即lim 0n n x →∞=.(Ⅱ) 因 22111sin lim lim nn x x n n n n n n x x x x +→∞→∞⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,由(Ⅰ)知该极限为1∞型, 61sin 01sin 110032221lim lim sin 1lim --→⎪⎭⎫ ⎝⎛-→→===⎪⎭⎫ ⎝⎛+++eee x x xx x x x x x x xx(使用了洛必达法则)故 2211116sin lim lim e nn x x n n n n n n x x x x -+→∞→∞⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.二、常见不定积分的求解方法的讨论0. 引言不定积分是《高等数学》中的一个重要内容,它是定积分、广义积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础,要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是常见不定积分的解法。