数学知识点总结(优秀3篇)
高三数学知识点总结(3篇)

高三数学知识点总结第一章:集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集:N-或N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实即:①任何一个集合是它本身的子集。
AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型交集并集补集第二章:基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈-.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
初中数学知识点总结5篇

初中数学知识点总结5篇初中数学知识点总结【篇1】棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。
棱锥的的性质:(1)侧棱交于一点。
侧面都是三角形(2)平行于底面的截面与底面是相似的多边形。
且其面积比等于截得的棱锥的高与远棱锥高的比的平方正棱锥正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。
各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形esp:a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。
且顶点在底面的射影为底面三角形的垂心。
初中数学知识点总结【篇2】幂函数的性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则_^(p/q)=q次根号(_的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则_=1/(_^k),显然_≠0,函数的定义域是(-∞,0)∪(0,+∞)。
因此可以看到_所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于_0,则a可以是任意实数;排除了为0这种可能,即对于_0_=0的所有实数,q不能是偶数;排除了为负数这种可能,即对于_为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则_肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则_不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
七年级上册数学知识点总结3篇

七年级上册数学知识点总结第一篇:整数与有理数整数1. 自然数:1、2、3、4、5、……2. 整数:自然数及其相反数,其中0既不是自然数又不是负数。
3. 整数的加减法:同号相加得同号;异号相加得正数和它们绝对值的差的相反数。
有理数1. 有理数:能表示成两个整数之比的数,其中分母不为0。
2. 有理数的加减法:分母相同,则分子相加减;分母不同,则通分后再加减。
绝对值1. 绝对值:一个数a的绝对值是它到0的距离,记作|a|。
2. 绝对值的性质:①|a|≥0 ②|-a|=|a| ③|ab|=|a||b| ④如果|a|<b,则-a<b<a。
第二篇:比例与百分数比例1. 比例:两个比较的量(同一基准下)相等的关系。
2. 比例的解法:已知3个量,求第4个量时,可以用已知量的比例关系算出来。
3. 比例的应用:可以用来解决问题中的“几分之几”和“增长几倍”等问题。
百分数1. 百分数:以100作为基数的百分比表示法,记作%。
2. 百分数与分数的转换:将百分数去掉百分号再除以100即可得到分数;将分数化简成最简形式后乘以100,再加上百分号即可得到百分数。
比例、百分数与实际问题的应用1. 比例和百分数可以用来解决各种实际问题,如购物打折、利润分成、人口统计等等。
2. 在解题时,需要根据实际问题找到适合的比例关系、选择对应百分数计算方法,最后确定答案的单位和精度。
第三篇:代数与方程代数1. 代数:用字母来表示数的一种数学方法。
2. 代数式:由数、字母和运算符号组成的式子。
3. 代数式的化简:将同类项合并,将分数化为通分后合并,将加减法运用到括号内。
方程1. 方程:含有未知数的等式。
2. 解方程的基本原则:等式两边同时变化,使变量单独在一边,另一边为已知量。
一元一次方程1. 一元一次方程:未知数的最高次数为一的方程。
2. 解一元一次方程:先消去括号,将未知数放在等式左边,常数放在等式右边,再将系数化为1。
三年级数学总结知识点(优质5篇)

三年级数学总结知识点(优质5篇)1.三年级数学总结知识点第1篇人教版第六单元多位数乘一位数1、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数;哪一位上乘得的数积满几十,就向前一位进几;与哪一位相乘,积就写在哪一位下面。
2、一个因数中间有0的乘法:①0和任何数相乘都得。
②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。
③一个因数末尾有 0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。
3、①0和任何数相乘都得0。
②1和任何不是0的数相乘还得原来的数。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
5、公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数路程÷时间=速度路程÷速度=时间7、“大约”类应用题的计算问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有“大约”都是求近似数,用估算。
(≈)第七单元长方形和正方形1、由4条直的边和4个角组成的封闭图形,叫做四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点①对边相等、对角相等。
②平行四边形容易变形。
(三角形不容易变形)7、封闭图形一周的长度,就是它的周长。
8、公式长方形的周长=(长+宽)×2①长方形的长=周长÷2-宽②长方形的宽=周长÷2-长①正方形的周长=边长×4②正方形的边长=周长÷4第八单元分数的初步认识1、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
数学知识点归纳总结7篇

数学知识点归纳总结7篇篇1一、引言数学作为自然科学的基础学科,知识点众多且相互关联。
为了帮助我们更好地掌握数学知识,本文将对其核心知识点进行归纳总结。
本文内容严谨、结构清晰,旨在帮助读者系统地理解数学的基本概念和方法。
二、数与代数1. 数的认识(1)自然数、整数、有理数、无理数、实数的概念与性质。
(2)数的分类与数轴表示。
2. 代数式(1)代数式的概念、分类与运算。
(2)代数式的化简、因式分解。
3. 方程与不等式(1)一元一次方程、一元二次方程的解法。
(2)不等式的基本性质与解法。
(3)方程与不等式的应用。
三、几何知识1. 平面几何(1)点、线、面、角的性质。
(2)三角形、四边形、圆的性质与计算。
(3)相似与全等图形的概念与性质。
2. 立体几何(1)三维图形的认识与分类。
(2)表面积、体积的计算。
(3)空间位置关系。
四、函数与图像1. 函数概念与性质(1)函数的概念、分类与性质。
(2)反函数、复合函数的概念与应用。
2. 图像与性质分析(1)函数的图像表示。
(2)函数图像的平移、对称性质。
(3)函数的单调性、周期性分析。
五、数列与极限1. 数列概念与性质(1)数列的分类、通项公式与前n项和公式。
等差数列和等比数列的性质与应用。
无穷数列的概念与性质。
极限概念及计算六、微积分知识初级微积分知识,包括导数概念与应用,微分法则;积分概念,积分运算方法,定积分的应用等。
七、概率与统计概率基础知识,随机事件及其概率计算;统计学的描述性统计和推断性统计基础,包括数据的收集、整理与分析等。
八、数学史与数学文化介绍数学的发展历程,著名数学家的生平与贡献,数学在各个领域的应用等。
九、总结通过上述归纳和总结,我们可以清晰地看到数学知识体系的框架和各个知识点之间的联系。
为了更好地掌握数学知识,我们需要不断地学习与实践,深入理解各个知识点,掌握其应用方法。
同时,我们还需要注重数学与其他学科的交叉融合,拓展数学知识在各个领域的应用。
数学的知识点总结(通用3篇)

数学的知识点总结第1篇1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的`,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4。
初三数学知识点归纳总结3篇

初三数学知识点归纳总结(一)数与式一、整数的进位和退位:1. 等于或大于5的数进1,小于5的数舍去;2. 计算过程中数字右侧的0不用写出来,加减乘除都适用;3. 当加上(或减去)一个数后,得到的和(或差)比被加数(或被减数)大10的整数倍时,通常采用进位(退位)的方法,即在个位数上加1(或减1),十位、百位、千位等数依次同样采用这样的方法。
二、分数的约分与通分:1. 分数的约分:将分子和分母同时除以一个最大公约数,约分后得到的新分数与原分数相等。
2. 分数的通分:将两个及以上的分数分别乘以它们对应的分母的相乘积,得到的新分数就是它们的公分母。
三、代数式与方程:1. 代数式:由数、字母及它们的各种符号所组成的式子。
2. 方程式:已知数和未知数间相等的关系,用等号隔开,这种包含未知数的公式称为方程式。
(二)几何一、图形的认识:常见的基本图形有:点、线段、直线、射线、角、三角形、四边形、圆、梯形、正方形、长方形等。
了解几何图形的定义及性质。
二、相似:相似的两个图形,可以用一个比值(称为相似比)来表示。
这个比值可以是边长、面积或者其他几何量之间的比值。
在相似中,对应的角相等,对应的边成比例。
三、全等:全等的两个图形,必须每一条边的对应边和每一个角的对应角都相等。
四、平移、旋转、翻折:我们可以通过平移(移动)、旋转和翻折来改变一个图形的位置或方向。
平移、旋转、翻折后得到的图形与原来的图形对应部分一一匹配,则它们是全等的。
(三)数据分析一、数据的搜集:在收集数据的时候要清晰明了,数据的总数、表格和图表的标题,要简明扼要、通俗易懂。
二、中心趋势度量:1. 平均数:一组数据的平均数是所有数据之和与数据总个数的商。
2. 中位数:将一组数据按照从小到大(或从大到小)排序后,位于中间的一个数,即为中位数。
3. 众数:在一组数据中出现次数最多的数,即为众数。
三、数据的描绘:我们可以使用表格、图表和描述等方式来描绘数据。
《初一到初三的数学知识点总结.doc》(优选3篇)

《初一到初三的数学知识点总结.doc》(优选3篇)《初一到初三的数学知识点总结.doc》第1篇(一)概率1.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
2.互斥事件:不可能同时发生的两个事件叫做互斥事件。
3.对立事件:即必有一个发生的互斥事件叫做对立事件。
4.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。
5.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。
(二)有理数1.定义:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
2.相反数:指绝对值相等,正负号相反的两个数互为相反数。
3.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。
4.有理数的加减法:同号相加,把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
5.有理数的乘法:两数相乘,同号得正,异号得负,并把绝对值相乘。
6.有理数的除法:两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不为0的数,都得0。
《初一到初三的数学知识点总结.doc》第2篇第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
2点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形生活中的立体图形柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学知识点总结(优秀3篇)一、认知离散数学离散数学是计算机科学基础理论的核心课程之一,是计算机及应用、通信等专业的一门重要的基础课。
它以研究量的结构和相互关系为主要目标,其研究对象一般是有限个或可数个元素,充分体现了计算机科学离散性的特点。
学习离散数学的目的是为学习计算机、通信等专业各后续课程做好必要的知识准备,进一步提高抽象思维和逻辑推理的能力,为计算机的应用提供必要的描述工具和理论基础。
1.定义和定理多2.方法性强在离散数学的学习过程中,一定要注重和掌握离散数学处理问题的方法,在做题时,找到一个合适的解题思路和方法是极为重要的。
如果知道了一道题用怎样的方法去做或证明,就能很容易地做或证出来。
反之,则事倍功半。
在离散数学中,虽然各种各样的题种类繁多,但每类题的解法均有规律可循。
所以在听课和平时的复习中,要善于总结和归纳具有规律性的内容。
在平时的讲课和复习中,老师会总结各类解题思路和方法。
作为学生,首先应该熟悉并且会用这些方法,同时,还要勤于思考,对于一道题,进可能地多探讨几种解法。
3.抽象性强在学习离散数学中所遇到的这些困难,可以通过多学、多看、认真分析讲课中所给出的典型例题的解题过程,再加上多练,从而逐步得到解决。
在此特别强调一点:深入地理解和掌握离散数学的基本概念、基本定理和结论,是学好离散数学的重要前提之一、所以,同学们要准确、全面、完整地记忆和理解所有这些基本定义和定理。
如何应对考试:一般来说,离散数学的考试要求分为了解、理解和掌握。
了解是能正确判别有关概念和方法;理解是能正确表达有关概念和方法的含义;掌握是在理解的基础上加以灵活应用。
为了考核学生对这三部分的理解和掌握的程度,试题类型一般可分为:判断题、填空题、选择题、计算题和证明题。
判断题、填空题、选择题主要涉及基本概念、基本理论、重要性质和结论、公式及其简单计算;计算题主要考核学生的基本运用技能和速度,要求写出完整的计算过程和步骤;证明题主要考查应用概念、性质、定理及重要结论进行逻辑推理的能力,要求写出严格的推理和论证过程。
学习离散数学的最大困难是它的抽象性和逻辑推理的严密性。
在离散数学中,假设让你解一道题或证明一个命题,你应首先读懂题意,然后寻找解题或证明的思路和方法,当你相信已找到了解题或证明的思路和方法,你必须把它严格地写出来。
一个写得很好的解题过程或证明是一系列的陈述,其中每一条陈述都是前面的陈述经过简单的推理而得到的。
仔细地写解题过程或证明是很重要的,既能让读者理解它,又能保证解题过程或证明准确无误。
一个好的解题过程或证明应该是条理清楚、论据充分、表述简洁的。
针对这一要求,在讲课中老师会提供大量的典型例题供同学们参考和学习。
通过离散数学的学习和训练,能使同学们学会在离散数学中处理问题的一般性的规律和方法,一旦掌握了离散数学中这种处理问题的思想方法,学习和掌握离散数学的知识就不再是一件难事了。
首先要明确的是,由于《离散数学》是一门数学课,且是由几个数学分支综合在一起的,内容繁多,非常抽象,因此即使是数学系的学生学起来都会倍感困难,对计算科学专业的学生来说就更是如此。
大家普遍反映这是大学四年最难学的一门课之一、但鉴于《离散数学》在计算科学中的重要性,这是一门必须牢牢掌握的课程。
既然如此,在学习《离散数学》时,大家最应该牢记的是唐诗“熟读唐诗三百首,不会做诗也会吟。
”学习过程是一个扎扎实实积累的过程,不能打马虎眼。
离散数学是理论性较强的学科,学习离散数学的关键是对离散数学(集合论、数理逻辑和图论)有关基本概念的准确掌握,对基本原理及基本运算的运用,并要多做练习。
《离散数学》的特点是:1、点,线,面点,线,面:①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
2、角线:①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。
射线只有一个端点。
③将线段的两端无限延长就形成了直线。
直线没有端点。
④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。
始边继续旋转,当他又和始边重合时,所成的角叫做周角。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段2端点距离相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点性质定理:角平分线上的点到该角两边的距离相等判定定理:到角的两边距离相等的点在该角的角平分线上正方形:一组邻边相等的矩形是正方形性质:正方形具有平行四边形、菱形、矩形的一切性质判定:1、对角线相等的菱形2、邻边相等的矩形1、高一数学知识点总结:集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N或N+整数集Z有理数集Q实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R,x-3>2},{x,x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x,x2=-5}2、高一数学知识点总结:集合间的基本关系1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x,x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A?A②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作AB(或BA)③如果A?B,B?C,那么A?C④如果A?B同时B?A那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集,一般我们把不含任何元素的集合叫做空集。
3、高一数学知识点总结:集合的分类(1)按元素属性分类,如点集,数集。
(2)按元素的个数多少,分为有/无限集关于集合的概念:(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。
集合可以根据它含有的元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
非负整数全体构成的集合,叫做自然数集,记作N;在自然数集内排除0的集合叫做正整数集,记作N+或N;整数全体构成的集合,叫做整数集,记作Z;有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
)实数全体构成的集合,叫做实数集,记作R。
(包括有理数和无理数。
其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。
)1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。
例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。
例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+}大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。