大学物理上册复习资料

合集下载

大学物理学(上)复习提纲

大学物理学(上)复习提纲

dp F dt
惯性和力的概念,惯性系的定义 .
p mv
力学基本单位 m、 kg、 s 量纲:表示导出量是如何由基本量组成的关系式 .
牛 顿 第 二 定 律 的 数 学 表 达 式
一般的表达形式
dp F ma d t F Fxi Fy j Ft et Fn en
三、洛伦兹坐标变换式
x' ( x vt )
正 变 换
z' z v t ' (t 2 x)
c
y' y
逆 变 换
y y'
x ( x' vt ' )
z z' v t (t ' 2 x' )
c
v c
1 1 2
伽利略变换
v c 时,洛伦兹变换
(1) 求刚体转动某瞬间的角加速度,一般应用转动 定律求解. 如质点和刚体组成的系统,对质点列牛顿 运动方程,对刚体列转动定律方程,再列角量和线量 的关联方程,联立求解. (2) 刚体与质点的碰撞、打击问题,在有心力场作 用下绕力心转动的质点问题,考虑用角动量守恒定律.
(3) 在刚体所受的合外力矩不等于零时,比如木杆 摆动,受重力矩作用,一般应用刚体的转动动能定理 或机械能守恒定律求解. 另外,实际问题中常常有多个复杂过程,要分成几 个阶段进行分析,分别列出方程,进行求解.
W保 (Ep Ep0 ) Ep

力学中常见的势能
重力势能
1 2 弹性势能 E p kx 2
Ep mgz
六、功能原理、机械能守恒定律
m' m 引力势能 Ep G r

大学物理复习资料

大学物理复习资料

第1章(上册P40)1、某质点的运动方程分量式为x=10cos(0.5πt)m,y=10sin(0.5πt)m,则质点运动方程的矢量式为r= ,运动轨道方程为,运动轨道的形状为圆,任意时刻t的速度v= ,加速度 = ,速度的大小为,加速度的大小为,切向加速度的大小为0 ,法向加速度的大小为。

2、一质点做圆周运动的角量运动方程为θ=2+3t+4t2 (SI)。

它在2s末的角坐标为;在第3s内的角位移为,角速度为;在第2s末的角速度为,角加速度为;在第3s内的角加速度为;质点做运动。

3、某质点做直线运动规律为x= t2-4t+2(m),在(SI)单位制下,则质点在前5s内通过的平均速度和路程为( C )A、1m﹒s-1,5mB、3m﹒s-1,13mC、1m﹒s-1,13mD、3m﹒s-1,5mE、2m﹒s-1,13m4、某质点的运动规律为d v/dt=-k v2,式中k为常量,当t=0时,初速度为v0,则速率v随时间t的函数关系是(C )A、v=½k t2+ v0B、v=-½k t2+ v0C、1∕v =kt+1∕v0D、1∕v =-kt+1∕v0E、1∕v =k t2∕2- v05、已知某一质点沿X轴座直线运动,其运动方程为x=5+18t-2t2,取t=0,x=x0为坐标原点。

在国际单位制中,试求:①第1s末及第4s末的位置矢量;②第2s内的位移;③第2s内的平均速度;④第3s末的速度;⑤第3s末的加速度;⑥质点做什么类型的运动?6、一物体沿半径R=0.10m的圆周运动,其运动方程为θ=2+4t3,在国际单位制中,试问:①在t=2s时,它的切向加速度和法向加速度各是多大?②当切向加速度的大小恰好为总加速度大小的一半时,θ的值为多少?③在哪一时刻,切向加速度的大小等于法向加速度的大小?第4章(P122)1、一质量为m的质点,在OXY平面上运动,其位置矢量为r= cos wt i+b sin wt j,式中 、b、w为正的常量。

大学物理上复习全资料

大学物理上复习全资料

容提要位矢:k t z j t y i t x t r r)()()()(++== 位移:k z j y i x t r t t r r ∆+∆+∆=-∆+=∆)()(一般情况,r r ∆≠∆速度:k z j y i x k dt dz j dtdy i dt dx dt r d t r t•••→∆++=++==∆∆=0lim υ 加速度:k z j y i x k dtz d j dt y d i dt x d dt r d dt d t a t ••••••→∆++=++===∆∆=222222220lim υυ圆周运动 角速度:•==θθωdtd 角加速度:••===θθωα22dtd dt d (或用β表示角加速度) 线加速度:t n a a a += 法向加速度:22ωυR R a n ==指向圆心 切向加速度:αυR dtd a t ==沿切线方向 线速率:ωυR =弧长:θR s = 容提要动量:υ m p =冲量:⎰=21t t dt F I动量定理:⎰=21t t dt F p d ⎰=-210t t dt F p p 动量守恒定律:若0==∑i i F F ,则常矢量==∑ii p p力矩:F r M ⨯=质点的角动量(动量矩):υ ⨯=⨯=r m p r L 角动量定理:dtL d M =外力 角动量守恒定律:若0==∑外力外力M M ,则常矢量==∑ii L L功:r d F dW •= ⎰•=B A AB r d F W 一般地 ⎰⎰⎰++=B A B A B A z z z y y y x x x AB dz F dy F dx F W 动能:221υm E k = 动能定理:质点, 222121A B AB m m W υυ-=质点系,0k k E E W W -=+内力外力保守力:做功与路程无关的力。

保守力的功:p p p E E E W ∆-=--=)(12保守内力功能原理:p k E E W W ∆+∆=+非保守内力外力机械能守恒:若0=+非保守内力外力W W ,则00p k p k E E E E +=+容提要转动惯量:离散系统,∑=2i i rm J 连续系统,⎰=dm r J 2平行轴定理:2md J J C +=刚体定轴转动的角动量:ωJ L = 刚体定轴转动的转动定律:dt dL J M ==α 刚体定轴转动的角动量定理:021L L Mdt t t -=⎰ 力矩的功:⎰=θMd W 力矩的功率:ωM dtdW P ==转动动能:221ωJ E k = 刚体定轴转动的动能定理:20221210ωωθθθJ J Md -=⎰容提要库仑定律:r e r q q F 221041πε= 电场强度:0q F E = 带电体的场强:⎰∑==r i i e r dq E E 204πε 静电场的高斯定理:∑⎰⎰=•i S q S d E 01ε 静电场的环路定理:⎰=•L l d E 0电势:⎰∞•=p p l d E V 带电体的电势:∑⎰==r dqV V i 04πε导体静电平衡:电场,○1导体场强处处为零;○2导体表面处场强垂直表面 电势,○1导体是等势体;○2导体表面是等势面 电介质中的高斯定理:∑⎰⎰=•i Sq S d D 各向同性电介质:E E D r εεε==0 电容:UQ C = 电容器的能量:22212121CU QU C Q W === 容提要毕奥-萨伐尔定律:204re l Id B d r ⨯=πμ 磁场高斯定理:⎰⎰=•SS d B 0安培环路定理:⎰∑=•i I l d B 0μ 载流长直导线的磁场:)cos (cos 4210θθπμ-=rI B 无限长直导线的磁场:r I B πμ20=载流长直螺线管的磁场:)cos (cos 2210θθμ-=nIB无限长直螺线管的磁场:nI B 0μ=洛仑兹力:B q F ⨯=υ安培力:B l Id F d ⨯= 磁介质中的高斯定理:⎰⎰=•SS d B 0 磁介质中的环路定理:∑⎰=•i L I l d H各向同性磁介质:H H B r μμμ==0容提要法拉第电磁感应定律:dt d φε-= 动生电动势:⎰•⨯=l d B )(υε 感生电动势:⎰⎰⎰•∂-=•=S k S d dtB l d E ε 自感:LI =φ,dt dI LL -=ε 自感磁能:221LI W m = 互感:12MI =φ,dt dI M12-=ε 磁能密度:BH H B w m 21212122===μμ题7.4:若电荷Q 均匀地分布在长为L 的细棒上。

大学物理复习资料

大学物理复习资料

第1章<上册P40)1、某质点的运动方程分量式为x=10cos(0.5πt>m,y=10sin(0.5πt>m,则质点运动方程的矢量式为r=,运动轨道方程为,运动轨道的形状为圆,任意时刻t的速度v=,加速度=,速度的大小为,加速度的大小为,切向加速度的大小为0,法向加速度的大小为。

2、一质点做圆周运动的角量运动方程为θ=2+3t+4t2 (SI>。

它在2s末的角坐标为;在第3s内的角位移为,角速度为;在第2s 末的角速度为,角加速度为;在第3s内的角加速度为;质点做运动。

b5E2RGbCAP3、某质点做直线运动规律为x=t2-4t+2(m>,在(SI>单位制下,则质点在前5s内通过的平均速度和路程为< C )p1EanqFDPwA、1m﹒s-1,5mB、3m﹒s-1,13mC、1m﹒s-1,13mD、3m﹒s-1,5m E、2m﹒s-1,13mDXDiTa9E3d4、某质点的运动规律为dv/dt=-kv2,式中k为常量,当t=0时,初速度为v0,则速率v随时间t的函数关系是< C )RTCrpUDGiTA、v=½ kt2+v0B、v=-½ kt2+v0C、1∕v =kt+1∕v0D、1∕v =-kt+1∕v0E、1∕v =kt2∕2-v05PCzVD7HxA5、已知某一质点沿X轴座直线运动,其运动方程为x=5+18t-2t2,取t=0,x=x0为坐标原点。

在国际单位制中,试求:①第1s末及第4s末的位置矢量;②第2s内的位移;③第2s内的平均速度;④第3s末的速度;⑤第3s末的加速度;⑥质点做什么类型的运动?jLBHrnAILg6、一物体沿半径R=0.10m的圆周运动,其运动方程为θ=2+4t3,在国际单位制中,试问:①在t=2s时,它的切向加速度和法向加速度各是多大?②当切向加速度的大小恰好为总加速度大小的一半时,θ的值为多少?③在哪一时刻,切向加速度的大小等于法向加速度的大小?xHAQX74J0X第4章<P122)1、一质量为m的质点,在OXY平面上运动,其位置矢量为r=coswti+bsinwtj,式中、b、w为正的常量。

大学物理(上)复习要点及重点试题

大学物理(上)复习要点及重点试题

刚体复习重点(一)要点质点运动位置矢量(运动方程) r = r (t ) = x (t )i + y (t )j + z (t )k ,速度v = d r/d t = (d x /d t )i +(d y /d t )j + (d z /d t )k ,动量 P=m v加速度 a=d v/d t=(d v x /d t )i +(d v y /d t )j +(d v z /d t )k曲线运动切向加速度 a t = d v /d t , 法向加速度 a n = v 2/r .圆周运动及刚体定轴转动的角量描述 θ=θ(t ), ω=d θ/d t , β= d ω/d t =d 2θ/d t 2,角量与线量的关系 △l=r △θ, v=r ω (v= ω×r ),a t =r β, a n =r ω2力矩 M r F 转动惯量 2i i J r m =∆∑, 2d mJ r m =⎰ 转动定律 t d L M =M J α= 角动量: 质点p r L ⨯= 刚体L=J ω;角动量定理 ⎰tt 0d M =L -L 0角动量守恒 M=0时, L=恒量; 转动动能2k E J ω= (二) 试题一 选择题(每题3分)1.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(答案:C )(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (答案:C )(A) 小于β. (B) 大于β,小于2 β. (C) 大于2 β. (D) 等于2 β.3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (答案:A )(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大.4. 关于刚体对轴的转动惯量,下列说法中正确的是(答案:C )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为J 0/3.这时她转动的角速度变为(答案:D )(A) ω0/3. (B) ()3/1 ω0. (C) 3 ω0. (D) 3ω0.二、填空题1.(本题4分)一飞轮作匀减速运动,在5s 内角速度由40π rad/s 减少到10π rad/s ,则飞轮在这5s内总共转过了 圈,飞轮再经 的时间才能停止转动。

(完整版)大学物理(上)知识点整理

(完整版)大学物理(上)知识点整理

o 第2章 质点动力学一、质点:是物体的理想模型。

它只有质量而没有大小。

平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。

二、力:是物体间的相互作用。

分为接触作用与场作用。

在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。

1、弹性力:(为形变量)2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。

固体间的静摩擦力: (最大值)固体间的滑动摩擦力:3、流体阻力: 或。

4、万有引力:特例:在地球引力场中,在地球表面附近:。

式中R 为地球半径,M 为地球质量。

在地球上方(较大),。

在地球内部(),。

三、惯性参考系中的力学规律 牛顿三定律牛顿第一定律:时,。

牛顿第一定律阐明了惯性与力的概念,定义了惯性系。

牛顿第二定律:普遍形式:;h经典形式: (为恒量)牛顿第三定律:。

牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。

四、非惯性参考系中的力学规律1、惯性力:惯性力没有施力物体,因此它也不存在反作用力。

但惯性力同样能改变物体相对于参考系的运动状态,这体现了惯性力就是参考系的加速度效应。

2、引入惯性力后,非惯性系中力学规律:五、求解动力学问题的主要步骤恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出分量式的运动方程。

变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。

第3章 机械能和功一、功1、功能的定义式:恒力的功:变力的功:2、保守力若某力所作的功仅取决于始末位置而与经历的路径无关,则该力称保守力。

或满足下述i关系的力称保守力:3、几种常见的保守力的功:(1)重力的功:(2)万有引力的功:(3)弹性力的功:4、功率二、势能保守力的功只取决于相对位置的改变而与路径无关。

由相对位置决定系统所具有的能量称之为势能。

1、常见的势能有(1)重力势能(2)万有引力势能(3)弹性势能2、势能与保守力的关系(1)保守力的功等于势能的减少(2)保守力为势能函数的梯度负值。

大学物理上册考点复习考试必过

大学物理上册考点复习考试必过

间无相对滑动,滑轮轴光滑.两个定滑轮
的转动惯量均为 1 m r 2 ,将系统从静止释放, m ,r
m ,r
求两滑轮之间绳内2 的张力。
m 2m
2mg-T1=2ma
T2-mg=ma
T1 r-T r=
1 2
m
r 2
T
r-T2
r=
1 2
m
r
2
a=r
解上述5个联立方程得:
T
T2 am
mg
T=11mg / 8
式中A、B、 都是正的常量.由此可知外力在 t =0 到
t = /(2)这段时间内所作的功为—————。
v d r A s itn i B c o t js d t
v 0Bj v t Ai
W12mv22
12mv12
1m2(A2
2
B2)
上页 下页 返回 结束
10
大学
大学物理1总复习
物理学
物理学
1. 牛顿第二定律
第F2合 章=m 质a点 m动dd力vt 学
2. 力的时间积累
冲量
I
t2 t1
Fdt
质点系动量定理 I合 外p 2 p 1
系统的内力不能改变系统的总动量。
3. 力的空间积累
B

WAFdr
质点系动能定理 W 外 力 W 内 力Ek
系统的内力能改变系统的总动能。
上页 下页 返回 结束
该物体原以角速度
在距孔为R的圆周上转动,今将绳从小 孔缓慢往下拉,则物体
(A)动能不变,动量改变; (B)角动量不变,动量不变; (C)角动量改变,动量改变; (D)角动量不变,动能、动量都改变。
外力矩为零, 质点的角动量守恒.

大学物理上总复习资料重点

大学物理上总复习资料重点
度的正负。
3. 同一方程式中所有量都必须相对同一转轴。
解题步骤: 1. 认刚体;
2. 定转轴,找运动;
3. 分析力和力矩;
4. 定转向,列方程。(质心动力学 方程和定轴转动方程)
例: 一飞轮转速n=1500r/min,受到制动后均匀地减
速,经t=50s后静止。
(1)求角加速度和飞轮从制动开始到静止所转过的
此力为垒球本身重量的
F 845 616 倍 t2
mg 0.14 9.8
I Fdt
F
I
p
t t
t1
I
F(
解:如图,设垒球飞来方向为 x 轴
I
mv2
方向。棒对球的冲量大小为
I mv2 mv1
mv1
x
方向:与x轴夹角
m v12 v22 2v1v2 cos
16.9[N s] 180 arctan mv 2 sin
1522'
mv1 mv 2 cos
棒对球的平均冲力
F I 16.9 845[N] t 0.02
(3) 质点何时开始逆时针方向运动?
解:(1)
an
v2 R
at
dv dt
d 2s dt 2
an
V0
bt2
R
at b
a at an
大小: a V0 bt4 b2 2 R
at a
m
v
o .an
方向:
arctan
abt2
Rb
(2)
a
b时
V0 bt4 b2 b
匀加速运动
微分法:由
积分法: a v r
初始条件
求得速度方程: 求得运动方程:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r
s
P2
r (t1 ) r (t2 )
z 位移是矢量,路程是标量.
. Δr s
O
2014-11-15
P 1 ( x1 , y1 , z1 ) P2 ( x2 , y2 , z2 )
x
6
物理学
第五版
注意
r r , r ,
y
r1
O
r P 1
r2
(2)抛体运动
v v0 at
x x0 v0 xt
1 2 y y0 voy t gt 2
2014-11-15 10
物理学
第五版
(3)圆周运动
切向加速度(速度大小变化)
dv at et ret dt
法向加速度(速度方向变化)
d v 2 an v en ren en dt r
物理学
第五版
第一章
教学基本要求
一 掌握描述质点运动及运动变化的 四个物理量——位置矢量、位移、速度、 加速度.理解这些物理量的矢量性、瞬时 性和相对性. 二 理解运动方程的物理意义及作用. 会处理两类问题:(1)运用运动方程确定 质点的位置、位移、速度和加速度的方法; (2)已知质点运动的加速度和初始条件求 速度、运动方程的方法.
P2
r xi yj zk
2 2 2 z r x y z
2 2 2
2
的意义不同.
r
x
2
Δ r x2 y2 z2 x1 y1 z1
2
2014-11-15
7
物理学
第五版
6、速度矢量
v vx i v y j vz k
速度方向 速度大小 切线向前
r dr v lim v lim t 0 t 0 t dt
速度 v 的值
7、加速度
ds v dt
速率
2 v dv d r a lim 2 t 0 t dt dt
2014-11-15

a ax i a y j az k
r
o

*
P
x r (t ) x(t )i y(t ) j z(t )k z x x(t ) y y (t ) 分量式 y y (t ) P z z(t ) r (t )
从上式中消 去参数 t 得质点 2014-11-15 的轨迹方程.
2、运动方程
2
2014-11-15
11
物理学
第五版
一般圆周运动加速度
a at an 2 a ret rω en
a a
2 t
y
a
o
v
et A en an
at
大小 a
2 n
x
an 方向 θ tan at
1
2014-11-15 12
x
z
z (t )
o
x(t )
x
5
物理学
第五版
3、轨道方程
F ( x, y, z ) 0

4、位移矢量
5、 路程( s) 从P1到P2: 路程
r1 r r2 ,
s P 1P 2
r r2 r1
y
P 1
s'
位移与路程的区别 (1) 两点间位移是唯一的. (2) 一般情况 ( 3)
核心 质点运动学两类基本问题
1 由质点的运动方程可以求得质点在 任一时刻的位矢、速度和加速度;
2 已知质点的加速度以及初始速度和 初始位置, 可求质点速度及其运动方程.
2014-11-15
r (t )
求导 积分
v(t )
求导 积分
a (t )
3
物理学
第五版
第一类问题:
r r (t ), r r (t t ) r (t ), 2 dr dv d r F ( x, y, z, ) 0, v , a 2 dt dt dt
第二类问题:
v(t ) v0 a(t )dt
0
t
x(t ) x0 v(t )dt x0 v0 t ( a(t )dt)dt
0 0 0
2014-11-15 4
t
t
t
物理学
第五版
二、主要内容: 1、位置矢量
y
y
z
r xi yj zk
2014-11-15 1
物理学
第五版
三 掌握曲线运动的自然坐标表示法. 能计算质点在平面内运动时的速度和加速度 ,以及质点作圆周运动时的角速度、角加速 度、切向加速度和法向加速度. 四 理解伽利略速度变换式, 并会用 它求简单的质点相对运动问题.
2014-11-15
2
物理学
第五版
一、基本概念: 参照系、坐标系、质点、位置矢量、位移、 运动方程、轨道方程、瞬时速度、瞬时加速度。
物理学
第五版
(4) 圆周运动的角量描述
a、角位置 b、角位移 c、角速度
(t )
——圆周运动方程
(t t ) (t )
d lim t 0 t dt
单位为 rad s
1
d、角加速度
d lim t 0 t dt
R
ds d A B
ds Rd ds d v R R dt dt 2 v 2 an R R dv d at R R dt dt
2014-11-15
o
x15源自物理学第五版9 、相对运动
质点在相对作 匀速直线运动的两 个坐标系中的位移 S系 (Oxyz ) 基本参考系 S '系 (O' x' y' z ' ) 运动参考系
8
物理学
第五版
加速度大小
2 2 2 a a ax a y az
加速度方向 直线运动
a // v
曲线运动 指向凹侧
v1
a1
a2
v2
2014-11-15
9
物理学
第五版
8、几种主要运动 (1)直线运动
1 2 x x0 v0t at 2 2 v2 v0 2a( x x0 )
角加速度单位 rad s 2
13
2014-11-15
物理学
第五版
质点作匀变速圆周运动时
0 t 1 2 0 0 t t
2 02 2 ( 0 )
2
2014-11-15
14
物理学
第五版
(5)角量与线量的关系
线量和角量的关系
y
相关文档
最新文档