ADC关键性能指标及误区

合集下载

高速ADC几个关键指标的定义

高速ADC几个关键指标的定义

高速ADC几个关键指标的定义介绍高速ADC几个指标的定义一个基本概念分贝(dB):按照对数定义的一个幅度单位。

对于电压值,dB以20log(V A/V B)给出;对于功率值,以10log(P A/P B)给出。

dBc是相对于一个载波信号的dB值;dBm是相对于1mW的dB值。

对于dBm而言,规格中的负载电阻必须是已知的(如:1mW提供给50Ω),以确定等效的电压或电流值。

静态指标定义:量化误差(Quantization Error)量化误差是基本误差,用图3所示的简单3bit ADC来说明。

输入电压被数字化,以8个离散电平来划分,分别由代码000b到111b去代表它们,每一代码跨越Vref/8的电压范围。

代码大小一般被定义为一个最低有效位(Least Significant Bit,LSB)。

若假定Vref=8V时,每个代码之间的电压变换就代表1V。

换言之,产生指定代码的实际电压与代表该码的电压两者之间存在误差。

一般来说,0.5 LSB偏移加入到输入端便导致在理想过渡点上有正负0.5LSB的量化误差。

图3 理想ADC转换特性偏移与增益误差(Offset Gain Error)器件理想输出与实际输出之差定义为偏移误差,所有数字代码都存在这种误差。

在实际中,偏移误差会使传递函数或模拟输入电压与对应数值输出代码间存在一个固定的偏移。

通常计算偏移误差方法是测量第一个数字代码转换或“零”转换的电压,并将它与理论零点电压相比较。

增益误差是预估传递函数和实际斜率的差别,增益误差通常在模数转换器最末或最后一个传输代码转换点计算。

为了找到零点与最后一个转换代码点以计算偏移和增益误差,可以采用多种测量方式,最常用的两种是代码平均法和电压抖动法。

代码平均测量就是不断增大器件的输入电压,然后检测转换输出结果。

每次增大输入电压都会得到一些转换代码,用这些代码的和算出一个平均值,测量产生这些平均转换代码的输入电压,计算出器件偏移和增益。

系统分析中ADC的几个关键指标(2)

系统分析中ADC的几个关键指标(2)

系统分析中ADC的几个关键指标(2)ADC增益能力ADC电路内的模拟和/或数字增益有时明显,有时却不那么明显。

例如,基本SAR-ADC便没有模拟增益能力。

只要您查看数据表的首页和简化版ADC电路图,就会很容易知道这一点。

另一方面,一些SAR-ADC具有内部可编程增益放大器(PGA)电路。

这种PGA功能提供一种器件内部模拟增益。

尽管这是一种方便的增益模块,但是有一点很重要,那就是要注意位数不随PGA增益变化而改变。

唯一明显的变化是ADC的输入范围和码宽(LSB)电压。

随着PGA增益的增加,ADC 的输入范围缩小。

如果转换器拥有12位以上,则或许可以通过转换器实现数字(或者过程)增益。

如果您使用一个24位ΔΣ ADC,则您会发现4,096个能产生12位码的输出码位置。

一个24位ADC的输出码数为224即16,777,216码。

功耗至于功耗,您可以利用SAR-ADC实现降耗功能。

SAR-ADC在转换某个信号时会产生功耗。

SAR-ADC通过输入模拟信号的“快照”产生一个数字输出码。

当SAR-ADC不在转换时,器件进入睡眠模式。

这种特性在电池供电型应用中很有用。

ΔΣ转换器的功耗模型不同于SAR-ADC。

ΔΣ转换器获取众多输入信号采样,然后把这些采样组合成一个输出码表示。

在输出有效期间,转换器继续采样,以为下一输出码做准备。

ΔΣ转换器没有这种方便的SAR-ADC即降功耗功能。

吞吐量计时尽管SAR-ADC和ΔΣ转换器都发射串行输出数据流(代表其转换),但是在其转换期间这两种器件有明显的差异。

SAR-ADC对输入信号进行采样,然后把一个信号转换为串行数字输出。

图2显示了一个SAR-ADC转换计时的过程。

图中吞吐时间包括转换时间(tCONV)和静态时间(tq)。

转换器在其输出端(SDO)发射串行12位数据流。

图2:使用ADC7886的12位SAR-ADC转换器计时图您可以把SAR-ADC看作一个单次传输模式转换器,其中输出数据代表一个单模拟采样。

ADC芯片的选择

ADC芯片的选择

ADC 芯片的选择(1)ADC 的性能指标在模数转换过程中,衡量ADC 转换性能的指标主要有:采样速率、采样精度、无杂散动态范围、信噪比、有效转换位数、孔径误差、转换灵敏度、全功率输入带宽等。

1)采样速率与采样精度采样速率是指模数变换的速率,而采样精度(分辨率)表示变换输出数据的比特数。

较高的采样速率与采样精度对应较宽的信号输入带宽和动态范围,因此这两个指标对于AD 采样器件性能是非常重要的衡量标准。

2)信噪比与无杂散动态范围信噪比(SNR)是信号电平的有效值和各种噪声(包括量化噪声、热噪声、白噪声等)有效值之比。

对于一个满量程的正弦输入信号,理论SNR 为:6.02 1.7610lg[/2B]s SNR n dB f =++式中,n 为采样位数,s f 为采样频率,B 为模拟带宽。

实际上,ADC 的信噪比还要考虑内部非线性、孔径抖动等因素,实际的信噪比要小得多。

而无杂散动态范围(Spurious Free Dynamic Range ,SFDR)是指ADC 输入信号的功率与ADC 输出信号频谱的最大信号峰值功率之比。

这一指标反映的是在ADC 输入大信号时,器件对小信号的检测和分辨能力。

SNR 是信号功率和残差功率之比,而SFDR 是信号功率与最大的寄生信号的峰值功率之比。

残差功率包括最大寄生信号的峰值功率,因此SFDR 要比SNR 大。

3)转换灵敏度:假设一个ADC 器件的输入电压范围为(-V ,V),转换位数为n ,即它有2n 个量化电平,则它的量化电平为:2/2n V V ∆=V ∆ 也可以称之为转换灵敏度。

ADC 的转换位数越多,器件的电压输入范围越小,它的量化电平越小则其转换灵敏度越高。

4)有效转换位数有效转换位数(ENOB)是ADC 对应于实际信噪比的分辨率,可以通过测量各频率点的实际信噪比(SINAD)来测量。

对于一个满量程的正弦输入信号有:( 1.76)/6.02ENOB SINAD =-5)孔径误差由于模拟信号到数字信号的转换需要一定的时间来完成采样、量化、编码等工作,从而会产生孔径误差。

ADC参数解释和关键指标

ADC参数解释和关键指标

第五章ADC 静态电参数测试(一)翻译整理:李雷本文要点:ADC 的电参数定义ADC 电参数测试特有的难点以及解决这些难题的技术ADC 线性度测试的各类方法ADC 数据规范(Data Sheet)样例快速测试ADC 的条件和技巧用于ADC 静态电参数测试的典型系统硬件配置关键词解释失调误差 Eo(Offset Error):转换特性曲线的实际起始值与理想起始值(零值)的偏差。

增益误差E G(Gain Error):转换特性曲线的实际斜率与理想斜率的偏差。

(在有些资料上增益误差又称为满刻度误差)线性误差Er(Linearity Error):转换特性曲线与最佳拟合直线间的最大偏差。

(NS 公司定义)或者用:准确度E A(Accuracy):转换特性曲线与理想转换特性曲线的最大偏差(AD 公司定义)。

信噪比(SNR): 基频能量和噪声频谱能量的比值。

一、ADC 静态电参数定义及测试简介模拟/数字转换器(ADC)是最为常见的混合信号架构器件。

ADC是一种连接现实模拟世界和快速信号处理数字世界的接口。

电压型ADC(本文讨论)输入电压量并通过其特有的功能输出与之相对应的数字代码。

ADC的输出代码可以有多种编码技术(如:二进制补码,自然二进制码等)。

测试ADC 器件的关键是要认识到模/数转换器“多对一”的本质。

也就是说,ADC 的多个不同的输入电压对应一个固定的输出数字代码,因此测试ADC 有别于测试其它传统的模拟或数字器件(施加输入激励,测试输出响应)。

对于 ADC,我们必须找到引起输出改变的特定的输入值,并且利用这些特殊的输入值计算出ADC 的静态电参数(如:失调误差、增益误差,积分非线性等)。

本章主要介绍ADC 静态电参数的定义以及如何测试它们。

Figure5.1:Analog-to-Digital Conversion Process. An ADC receives an analog input and outputs the digital codes that most closely represents then input magnitude relative to full scale.1.ADC 的静态电参数规范ADC的静态电参数主要验证器件的输入-输出转换曲线符合设计(理想)曲线的程度。

ADC的九个关键指标

ADC的九个关键指标

ADC器件的九项关键规格[2008.7.1]作者:Brad Brannon,美国模拟公司模拟转换器性能不只依赖分辨率规格大量的模数转换器(ADC)使人们难以选择最适合某种特定应用的ADC器件。

工程师们选择ADC时,通常只注重位数、信噪比(SNR)、谐波性能,但是其它规格也同样重要。

本文将介绍ADC器件最易受到忽视的九项规格,并说明它们是如何影响ADC性能的。

1. SNR比分辨率更为重要。

ADC规格中最常见的是所提供的分辨率,其实该规格并不能表明ADC器件的任何能力。

但可以用位数n来计算ADC的理论SNR:不过工程师也许并不知道,热噪声、时钟抖动、差分非线性(DNL)误差以及其它参数异常都会限制ADC器件的SNR。

对于高性能高分辨率转换器尤其如此。

一些数据表提供有效位数(ENOB)规格,它描述了ADC器件所能提供的有效位数。

为了计算ADC的ENOB值,应把测量的SNR值放入上述公式,并求解n。

ENOB提供了有价值的规格说明,而噪声频谱密度(单位:dBm/Hz或)则提供了更有价值的ADC性能规格。

前一个规格说明要求已知ADC器件的输入阻抗,而后者并不需要,可根据ADC器件的采样率、输入范围、SNR(来自数据表)和输入阻抗(dBm/Hz)来计算这些值。

只需知道两种频谱密度值的任一个,就可以选择与转换器前方的模拟电路的性能相匹配的ADC器件。

这种ADC器件选择方法考虑了总体噪声分布的影响,只需声明转换器的分辨率或ENOB。

许多工程师还关注ADC器件乱真失真和谐波抑制。

他们可能并不了解:谐波性能和乱真畸变是与ADC器件的分辨率规格完全关於的。

ADC设计者会调整IC设计特性,以便谐波符合人们对具有n位分辨率的ADC的预期。

因此在选择转换器时,应密切注意SNR和无杂散动态范围(SFDR),但要把这些规格与ADC的分辨率位数规定值区分开。

2. 应检查电源噪声。

电源抑制比(PSSR)描述了与ADC器件样本网络耦合的电源线路上的噪声信号数量。

ADC参数解释和关键指标

ADC参数解释和关键指标

第五章 ADC静态电参数测试(一)翻译整理:李雷本文要点:ADC的电参数定义ADC电参数测试特有的难点以及解决这些难题的技术ADC线性度测试的各类方法ADC数据规范(Data Sheet)样例快速测试ADC的条件和技巧用于ADC静态电参数测试的典型系统硬件配置关键词解释失调误差Eo(Offset Error):转换特性曲线的实际起始值与理想起始值(零值)的偏差。

增益误差E G(Gain Error):转换特性曲线的实际斜率与理想斜率的偏差。

(在有些资料上增益误差又称为满刻度误差)线性误差Er(Linearity Error):转换特性曲线与最佳拟合直线间的最大偏差。

(NS公司定义)或者用:准确度E A(Accuracy):转换特性曲线与理想转换特性曲线的最大偏差(AD 公司定义)。

信噪比(SNR): 基频能量和噪声频谱能量的比值。

一、 ADC静态电参数定义及测试简介模拟/数字转换器(ADC)是最为常见的混合信号架构器件。

ADC是一种连接现实模拟世界和快速信号处理数字世界的接口。

电压型ADC(本文讨论)输入电压量并通过其特有的功能输出与之相对应的数字代码。

ADC的输出代码可以有多种编码技术(如:二进制补码,自然二进制码等)。

测试ADC器件的关键是要认识到模/数转换器“多对一”的本质。

也就是说,ADC的多个不同的输入电压对应一个固定的输出数字代码,因此测试ADC有别于测试其它传统的模拟或数字器件(施加输入激励,测试输出响应)。

对于ADC,我们必须找到引起输出改变的特定的输入值,并且利用这些特殊的输入值计算出ADC的静态电参数(如:失调误差、增益误差,积分非线性等)。

本章主要介绍ADC静态电参数的定义以及如何测试它们。

Figure5.1:Analog-to-Digital Conversion Process. An ADC receives an analog input and outputs the digital codes that most closely represents then input magnitude relative to full scale.1.ADC的静态电参数规范ADC的静态电参数主要验证器件的输入-输出转换曲线符合设计(理想)曲线的程度。

ADC的九个关键指标

ADC的九个关键指标

ADC器件的九项关键规格[2008.7.1]作者:Brad Brannon,美国模拟公司模拟转换器性能不只依赖分辨率规格大量的模数转换器(ADC)使人们难以选择最适合某种特定应用的ADC器件。

工程师们选择ADC时,通常只注重位数、信噪比(SNR)、谐波性能,但是其它规格也同样重要。

本文将介绍ADC器件最易受到忽视的九项规格,并说明它们是如何影响ADC性能的。

1. SNR比分辨率更为重要。

ADC规格中最常见的是所提供的分辨率,其实该规格并不能表明ADC器件的任何能力。

但可以用位数n来计算ADC的理论SNR:不过工程师也许并不知道,热噪声、时钟抖动、差分非线性(DNL)误差以及其它参数异常都会限制ADC器件的SNR。

对于高性能高分辨率转换器尤其如此。

一些数据表提供有效位数(ENOB)规格,它描述了ADC器件所能提供的有效位数。

为了计算ADC的ENOB值,应把测量的SNR值放入上述公式,并求解n。

ENOB提供了有价值的规格说明,而噪声频谱密度(单位:dBm/Hz或)则提供了更有价值的ADC性能规格。

前一个规格说明要求已知ADC器件的输入阻抗,而后者并不需要,可根据ADC器件的采样率、输入范围、SNR(来自数据表)和输入阻抗(dBm/Hz)来计算这些值。

只需知道两种频谱密度值的任一个,就可以选择与转换器前方的模拟电路的性能相匹配的ADC器件。

这种ADC器件选择方法考虑了总体噪声分布的影响,只需声明转换器的分辨率或ENOB。

许多工程师还关注ADC器件乱真失真和谐波抑制。

他们可能并不了解:谐波性能和乱真畸变是与ADC器件的分辨率规格完全关於的。

ADC设计者会调整IC设计特性,以便谐波符合人们对具有n位分辨率的ADC的预期。

因此在选择转换器时,应密切注意SNR和无杂散动态范围(SFDR),但要把这些规格与ADC的分辨率位数规定值区分开。

2. 应检查电源噪声。

电源抑制比(PSSR)描述了与ADC器件样本网络耦合的电源线路上的噪声信号数量。

adc质量标准

adc质量标准

adc质量标准ADC是指模数转换器(Analog-to-Digital Converter),是一种电子器件,用于将模拟信号转换为数字信号。

ADC的质量标准对于保证转换精度和减小噪音干扰十分重要。

下面是一些与ADC质量标准相关的内容:1. 位数精度:ADC的位数精度是指它能够将模拟信号转换为数字信号的精确度。

通常用位数来表示,比如8位、10位、12位等。

较高位数的ADC能够提供更高的精度。

质量标准中应规定所需的位数精度,以确保ADC能够满足应用需求。

2. 采样率:ADC的采样率是指每秒钟对输入信号进行采样的次数。

采样率越高,可以更精确地还原输入信号。

对于某些应用,如音频或视频处理,较高的采样率是必要的。

质量标准应规定所需的最低采样率,以确保ADC能够满足应用需求。

3. 噪音干扰:ADC在信号转换过程中可能会引入噪音干扰,从而降低信号的质量。

质量标准中应规定ADC对于输入信号的信噪比要求,以减小噪音干扰对信号质量的影响。

4. 非线性误差:ADC的输入输出关系可能存在非线性误差,即输入信号的线性变化无法完全对应于输出信号的线性变化。

非线性误差会导致精度损失。

质量标准中应规定ADC的最大非线性误差限制,以确保ADC能够提供足够的线性度。

5. 温度特性:ADC的性能可能随温度的变化而变化。

高温度可能导致ADC的精度下降。

质量标准中应规定ADC的温度特性,以确保其在不同温度下均能提供稳定的性能。

6. 电源电压:ADC的性能可能与电源电压有关。

较低的电源电压可能导致ADC的精度下降或工作不稳定。

质量标准中应规定ADC所需的最低电源电压,以确保其能够正常工作。

7. 异常检测和保护:ADC应具备异常检测和保护功能,能够及时检测到输入信号异常或自身故障,并采取适当的措施,如输出错误信息或自动切换到备用模式,以保护系统的安全和稳定。

8. 校准精度:ADC的性能可能会随时间而变化,需要进行定期的校准以保持其性能。

质量标准中应规定ADC的校准周期和校准精度要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ADC关键性能指标及误区
由于ADCADC产品相对于网络产品和服务器需求小很多,用户和集成商在选择产品时对关键指标的理解难免有一些误区误区,加之部分主流厂商刻意引导,招标规范往往有不少非关键指标作被作为必须符合项。

接下来就这些误区和真正的关键指标做一些探讨。

误区1: CPU数量和主频。

目前大部分厂商采用了类似的通用CPU架构,但还是可能采用不同厂家的CPU。

即使是同一个厂家,也可能是不同系列。

最关键的是CPU数量和主频并不代表性能,除非是同一个厂家的同一个软件。

同样,完全相同的硬件配置,不同厂商的架构和系统发挥出来的性能可能相差数倍,正如完全相同的几个人在不同的管理环境下发挥出来的贡献差别会很大。

并行计算处理不好,由于CPU间信开销及锁的问题,CPU数量增加并不意味性能增加。

如果1个CPU可以跑出其它产品8个cpu的性能,谁会选择8个CPU的产品?成本,功耗,体积都会大很多。

因此,CPU硬件配置并不代表性能。

误区2:内存。

同样与系统架构相关。

同样与架构有关,对于CPU独享内存的架构,每个核即使只配置2G内存,一个8核的产品就需要16G内存,但每个核可访问的内存资源只有2G。

这样的架构一份数据需要复制多次并保存多份,使用效率很低,最终也会影响到性能。

而共享内存架构的产品,每个核可以访问所有内存资源,数据也只需要保存一份。

如果是32位操作系统,共享内存架构4G内存的实际效率就超过独享内存架构的任意配置产品(目前A10之外的产品均为32位操作系统,独享内存架构)。

64位操作系统突破4G的限制,实际效率就会更高。

因此,内存不代表性能。

如果一定要比较,需要比较每个核可访问的内存资源。

误区3:端口数量。

ADC产品不同于2/3层交换机,端口数量代表可连接更多设备。

ADC 产品部署环境一定会有2/3层交换机,服务器不需要直接连接到ADC产品。

只要端口数量大于实际需要的吞吐量并有足够端口与交换机连接即可。

误区4:交换能力。

这个指标也是沿用了交换机的指标。

交换机性能与交换矩阵芯片交换能力密切相关,与CPU关系不是很大。

而ADC产品则不同,交换矩阵并不是必须部件,大多产品采用通用CPU架构使用PCIe总线扩展接口,这部分已经不是ADC产品的瓶颈所在。

ADC 性能基本取决于系统整体架构下CPU发挥出来的效率。

而且大部分产品本身已经是服务器的硬件架构,应该没有人对服务器要求交换能力的指标。

可以看出,误区所在均为沿用了服务器或交换机的一些指标,这些硬件配置并不代表ADC 产品的真正性能,但一些厂商还是刻意利用这些指标(尤其是CPU和内存)来误导客户屏蔽竞争对手。

ADC真正关键的性能指标性能指标如下。

1. 4/7层吞吐量。

由于需要CPU进行复杂的4-7层处理,4/7层吞吐量交2/3层吞吐量要低很多,但这是ADC真正能处理的数据吞吐量。

这也是2/3层吞吐量对于ADC产品并不关键的原因。

这个指标的测试方式通常是发送尽可能多HTTP GET请求,服务器应答较大HTTP 对象(如512Kbytes或1MBytes,会分为若干数据包传输),计算无失败情况下线路上传输的数据量。

差异在于不同仪表厂商或不同测试可能会不计算2/3层包头或GET请求部分,由于这部分所占比例极小,影响不是很大。

严格来说,横向比较时应该确定所取HTTP对象大小及是否计算2/3层包头部分。

2. 4层每秒新建连接速率(L4 CPS)。

衡量ADC产品每秒钟可以处理多少个TCP新建连接。

通常测试方法为发送尽可能多的HTTP GET请求,服务器应答较小HTTP对象(如1Bytes,128Bytes,1KBytes), ADC产品在中间只根据4层信息进行复杂均衡。

每个连接需要完整的3次握手建立过程,GET请求,和TCP关闭连接过程。

这个指标对于ADC产品应付突发大量连接非常重要。

好比一个地铁入口的通过率一样,如果入口太小,客流突然增加时,如果客人无法进入,业务自然会受到影响。

比较该指标时需要注意所取HTTP对象大小。

3. 7层每秒新建连接速率(L7 CPS)。

与4层新建连接速率类似,只是ADC产品在中间需
要根据应用层信息进行服务器选择(通常测试使用url交换),而且每个TCP连接上只能传输1个HTTP请求。

使用7层处理对CPU效率要求更高。

如同进入地铁时需要核查客人更多信息和安检一样,其通过率比正常通过率会有不同程度降低。

A10产品通常可以做到4层新建连接速率的70-80%,而其它很多厂商只能做到30-40%。

比较该指标时同样要注意HTTP对象大小和每个TCP连接传输的请求数。

4. 7层每秒交易速率(L7 RPS)。

有些厂商使用L7 RPS作为L7 CPS来混淆误导客户,RPS 测试会定义每个TCP连接可以传输多少个HTTP请求,通常会有10个请求/TCP连接,无限制请求连接/TCP连接几种测试数据。

使用1个请求的L7 RPS值就是L7 CPS。

差别在于每个连接传送多个请求时的L7 RPS测试中,ADC可以省去大量TCP连接建立和关闭过程。

比较该指标时同样要注意HTTP对象大小和每个TCP连接传输的请求数。

5. 并发会话数量。

如果新建连接速率代表了一个地铁入口通过率,并发会话则代表了该地铁线路上在车上的所有人数。

如果内部承运能力不够高,就会造成乘客挤压过载最后瘫痪。

并发会话测试并不是简单的在内存中保存这些条目,实际测试中,必须在每个连接上定时传送数据验证设备可以准确查找已有会话并转发数据。

测试中还可能会细分4层并发会话数量和7层并发会话数量,区别在于ADC基于不同信息建立会话和每个连接占用的会话条目不同。

由于并发会话与内存关系很大,32位系统的ADC由于4G内存限制都不可能做得很大,而64位系统的ADC就不会受到这个限制。

6. 防DDoS攻击能力(syn/sec)。

ADC产品的并发会话能力和新建连接速率远远大于防火墙类产品,因此在ADC外部署防火墙会成为瓶颈。

这就要求ADC本身有足够强大的防攻击能力。

目前大部分ADC产品均采用了Syn-cookie方式来防御DDoS攻击,实际性能取决于各自的系统架构和处理算法。

值得一提的是,F5的7层新建速率与4层新建速率相比下降非常大,因此会有使用与其他厂商不同的一些数据来作为L7 CPS应答的情况。

F5 提供3个L7 CPS/RPS指标.
L7 Connection per Sec(1-1), 客户侧连接 1 request/connection,服务器侧连接 1 request/connection。

通用L7 CPS定义。

L7 Requests per Sec (1-inf),客户侧连接 1 request/connection,服务器侧连接unlimited request/connection。

用户通常看到的L7 CPS数据。

L7 Requests per Sec (inf-inf),客户侧连接unlimited request/connection,服务器侧连接unlimited request/connection。

F5公开的测试报告明确描述其所有7层测试均启用连接复用功能,因此测试报告中看到的都是“L7 Requests per Sec (1-inf)”。

比较L7 CPS时时应该注意使用其CPS(1-1)指标。

其他SSL指标、DNS QPS指标、HTTP压缩指标对于使用该类应用的用户很重要,但不属于通用关键指标,就暂不逐一解释了。

相关文档
最新文档