面积与代数恒等式
八年级数学上册 面积与代数恒等式教案 (新版)华东师大版

面积与代数恒等式教学内容教科书P.51的内容教学分析重点、难点从图形面积到代数恒等式、从代数恒等式到图形面积教学方法:引导启发、自主探索、合作交流教学手段:网络教学教学过程(一)引入:前一阶段我们学习了整式的乘法和因式分解,无论是整式的乘法还是因式分解,我们都接触了一些幂的运算公式和乘法公式。
今天我们借用拼图的方式来验证它们的正确性。
(二)从图形面积到代数恒式:1、说一说首先请同学们观察用硬纸片拼成的几幅图形:这些图形面积的两种不同表示,可以用来解释什么等式?,2、做一做请同学们利用制作的纸片拼出一些图形,并用拼成图形面积的不同表示方法,写出一个代数恒等式.3、议一议如图3,用4个长为、宽为的长方形拼成一个正方形,请你根据颜色部分面积的不同表示方法写出一个代数恒等式。
请大家再想一想,利用我们学过的公式进行计算,能不能验证它的正确性呢?4、用一用如图,是一个L形钢条的截面图,试验利用这个图形来说明等式:小结:利用同一图形面积的不同表示方法可以得出代数恒等式(三)从代数恒等式到图形面积:1、做一做前面我们根据拼图面积的不同表示方法,写出了代数恒等式。
现已知代数恒等式,同学们能否用拼图的方法来验证它们的正确性?如:代数恒等式:(1) (2)(3) (4)小结:由代数恒等式来设计图形,可根据恒等式左右两边的特点来进行。
如:可以看成一个边长为的正方形的面积,画出图形;可以看成一个长为,宽为的长方形的面积,画出图形;可以看成一个长为,宽为的长方形的面积,画出图形。
然后对画出的图形进行适当的割补!2、试一试让大家都当一回设计师,帮一个工程队设计一套住房,要求:在一块长为,宽为的长方形荒地上建成一套两室一厅一厨一卫的房子。
其中客厅面积为;两卧室面积共为;厨房面积为;卫生间面积为。
根据今天所学的内容,请你试着把自己的想法画成平面结构示意图。
(四)意外收获:在周长一定的长方形中,以正方形面积为最大。
中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
八年级数学上册《面积与代数恒等式》教案、教学设计

八年级的学生在数学学习上已具备一定的知识基础和思维能力,他们对平面几何图形有一定的了解,掌握了基本的面积计算方法。但在代数恒等式的理解和运用上,可能还存在一定的困难。因此,在本章节的教学中,需要针对学生的实际情况,采取以下措施:
1.对于基础较好的学生,可以引导他们通过自主探究、拓展练习等方式,提高他们在面积计算和代数恒等式运用上的能力。
1.请学生完成课后练习题,包括不同类型的图形面积计算和代数恒等式的应用题,旨在让学生通过实际操作,加深对课堂所学知识的掌握。
2.设计一道综合性的实际问题,要求学生运用本节课所学的面积计算方法和代数恒等式解决问题。例如,计算一个不规则图形的面积,其中包含多个三角形、四边形和圆的组合,让学生学会将复杂的图形分解为简单的部分,并运用代数恒等式进行计算。
(三)情感态度与价值观
1.培养学生热爱数学,树立正确的数学观念,认识到数学在生活中的重要作用。
2.激发学生的学习兴趣,鼓励他们勇于探索、积极思考,培养他们的创新意识和合作精神。
3.培养学生严谨、认真的学习态度,让他们在解决问题的过程中,体会数学的精确性和严谨性。
4.引导学生关注社会、关注生活,将数学知识应用于实际,增强他们的社会责任感和使命感。
4.鼓励学生认真完成作业,培养他们良好的学习习惯和责任感,提高作业的完成质量。
6.融合信息技术,提高教学效果:运用多媒体、网络资源等现代信息技术,为学生提供丰富的学习资源,提高教学效果。
7.注重过程评价,激发学习动力:关注学生在学习过程中的表现,给予积极的评价和鼓励,激发他们的学习动力。
8.拓展延伸,提高思维品质:通过拓展练习、研究性学习等,培养学生的高阶思维,提高他们的思维品质。
2.对于基础一般的学生,要注重巩固他们对面积计算方法的理解,同时通过实例讲解和变式训练,帮助他们掌握代数恒等式的应用。
面积与代数恒等式PPT课件

b
b
a
a
b
2020年10月代2日数恒等式:4a2-b2=(2a+b)(2a-b)
14
想
你能根据下列代数式的特点,
一
构造出图形,并利用图形的面积来
想
说明其正确性吗?
(1) (a+b)(a+2b) = a2 + 3ab + 2b2
拼
(2) (a+2b)(a-2b) = a2 – ab - 2b2
一
拼
(3) (a-2b)2 = a2 - 4ab + b2
= a2+2ab+b2
2020年10月2日
4
a a-b
b
a
a
平方差公式
b
b
= (a+b)(a-b)
a2 - b2
2020年10月2日
5
a(b+c) = ab + ac (m+n)(a+b) = mb+nb+ma+na (a+b)(a+b)=(a+b)2 = a2+2ab+b2 (a-b)(a+b) = a2 - b2
2020年10月2日
8
图形特点:
都是由几个矩形组合成一个新矩形。
b
c
a
m
n
b
a
ab a
b
2020年10月2日
a
b
a-b
b
9
根据式的几何意义构造图形
二次恒等式 图形面积的不同表达式
图形
bc a
a(b+c) = ab+ac
ab a b
综合与实践 面积与代数恒等式(等面积法)

问题分析与解决
问题分析
首先需要明确问题的背景和要求, 分析问题所涉及的数学知识点, 包括面积和代数恒等式的概念、 性质和应用。
解决方案设计
根据问题分析,设计合适的解决方 案,包括选择适当的数学方法和公 式,建立数学模型,并确定解题步 骤。
实施解决方案
按照设计的解决方案进行计算和推 理,得出积表示为基底与高的乘积。对于更复杂的图形,可 以通过分割、重组或近似等方法将其转化为简单的几何图形,再利用基底和高 的关系计算面积。
恒等式的几何意义
恒等式是数学中一个重要的概念,它描述了数或代数式之间 的等价关系。
恒等式的几何意义是将代数关系转化为几何图形。通过将代 数恒等式中的变量视为几何图形中的长度、角度或面积等参 数,可以直观地理解恒等式的几何意义。
课程展望
未来发展方向
研究等面积法在解决复杂 问题中的新方法和技巧。
培养学生对数学知识的综 合运用能力。
01
02
03
04
05
06
探索面积与代数恒等式在其 他数学分支的交叉应用。
学生能力培养
提高学生的数学建模和解 决实际问题的能力。
THANKS
感谢观看
面积与代数恒等式的概念及其 关系。
重点与难点解析
难点:如何运用等面积法解决 实际问题。
后续学习建议
深化知识点
01
探索等面积法在解决复杂问题中的技巧和 策略。
03
02
进一步研究面积与代数恒等式在其他数学领 域的应用。
04
实践与应用
结合实际问题,运用等面积法进行建模和 求解。
05
06
参与数学建模竞赛,提高解决实际问题的 能力。
解决方案的验证与优化
八年级数学面积与代数恒等式

公式法是利用已知的数学公式或定理进 行证明,如平方差公式、完全平方公式 等。
代入法是将一个或多个已知条件代入到 恒等式中,通过验证两边的值是否相等 来证明恒等式。
因式分解法是将一个多项式进行因式分 解,然后利用因式的性质进行证明。
配方法是将一个多项式配成完全平方的 形式,然后利用完全平方的性质进行证 明。
数学综合素质。
理解和掌握,提高解题速度和准确性。
THANKS FOR WATCHING
感谢ቤተ መጻሕፍቲ ባይዱ的观看
物理量。
03
电磁学问题
在电磁学问题中,代数恒等式可以用来表示电场和磁场的关系,如高斯
定理、安培环路定律等。同时,面积可以用来表示电场线和磁场线的分
布和强度等物理量。
05 练习与巩固
基础练习题
计算矩形、三角形、 平行四边形的面积。
运用面积公式解决简 单的实际问题,如计 算土地面积、涂色面 积等。
掌握面积的基本公式, 如矩形面积=长x宽, 三角形面积=底x高 /2等。
03
传递性是指如果f(x)=g(x) 和g(x)=h(x)是恒等式,那 么f(x)=h(x)也是恒等式。
04
可加性是指如果f(x)=g(x)是一 个恒等式,那么对于任意常数 c,c×f(x)=c×g(x)也是一个恒 等式。
恒等式的证明方法
证明恒等式的方法有多种,包括因式分 解法、配方法、代入法、公式法等。
01
在解决一些复杂的面积问题时, 需要利用代数恒等式来转化或化 简问题。
02
例如,在求解不规则图形的面积 时,可以利用代数恒等式将不规 则图形转化为规则图形,从而方 便计算面积。
面积与代数恒等式的相互转化
在数学学习中,面积与代数恒等式是相互关联的。一方面,通过代数恒等式可以推导出各种 图形的面积公式;另一方面,利用面积公式也可以验证代数恒等式的正确性。
面积与代数恒等式

面积与代数恒等式在数学中,面积与代数恒等式是两个重要的概念。
面积,作为几何学中的基本概念,是用于量化物体或图形占据的空间大小。
而代数恒等式则是数学中的一种基本工具,用于描述两个或多个数学表达式之间的等量关系。
面积在各个数学和物理领域中都有着广泛的应用。
在二维几何中,面积被定义为平面图形占据的区域大小。
比如,矩形的面积是长乘以宽,圆的面积是π乘以半径的平方。
在三维几何中,体积的概念类似,用来描述立体图形占据的空间大小。
代数恒等式是数学的基础组成部分,用于描述两个或多个数学表达式之间的等量关系。
比如,a² + b² = c²可以被认为是勾股定理的代数恒等式表示。
另外,代数恒等式也可以表示某些量在某些条件下的取值范围,比如二次方程判别式等等。
面积与代数恒等式的关系:面积和代数恒等式看似是两个没有交集的概念,但在一些特定的情况下,他们可以相互转化。
比如,在一些代数问题中,我们需要求解一些变量的值,而这些变量可能隐藏在一些几何图形的面积或者体积中。
同时,在一些几何问题中,我们可能需要使用代数恒等式来证明两个几何量之间的等量关系。
例如,在解析几何中,我们可以使用代数恒等式来描述和求解一些几何量的关系。
比如,在直角三角形中,我们可以使用勾股定理的代数恒等式a² + b² = c²来描述两条直角边的平方和等于斜边的平方的关系。
又比如,在极坐标系中,我们可以使用代数恒等式来描述和求解一些极径和极角的计算问题。
比如,极径的计算公式是ρ = x² + y²,极角的计算公式是tanθ = y/x。
综上所述,面积和代数恒等式都是数学的基础概念,在各个领域中都有着广泛的应用。
虽然它们看起来似乎是两个没有直接联系的概念,但在某些情况下,它们可以相互转化和结合使用,为我们的数学学习和研究提供更多的工具和方法。
八年级数学上册 第13章 课题学习 面积与代数恒等式教案 华东师大版-华东师大版初中八年级上册数学教

第13章课题学习-面积与代数恒等式教学目标知识与技能:引导学生体会代数式与图形之间的联系,以及几何背景,体会它们的几何意义.过程与方法:经历探索、讨论、交流、应用数学知识解释有关问题的过程,从中体会数学的应用价值.情感态度与价值观:培养开拓思想,发展数学思维,获得一些研究问题、解决问题的经验和方法.重点、难点、关键重点:通过探索与思考体会数学的应用价值,增强数学的开放性、探索性和实践性的认识.难点:对问题的观察与探索的方向的把握.关键:应用数形结合理解面积图形与代数恒等式之间的关系,体会它们的几何意义.教具准备多媒体课件、投影仪.学具准备硬纸片、剪刀、胶水.教学设计教学过程一、数形结合,探索实践1.事例分析,导入新知在前面的学习中,大家接触了许多等式和公式等,例如(a+b)(a-b)=a2-b2,(ab)n=a n b n,(a+b)2=a2+2ab+b2等,这些等式都称为代数恒等式.我们可以用直观的几何图形表形象地表现出有些代数恒等式,例如课本P46•图1,可以表示(2a)2=4a2,图2可以用来表现(a+b)2=a2+2ab+b2等,•还可以有许许多多代数恒等式可以用硬纸片拼成的图形面积来说明其正确性.2.参与实践,探索新知.(1)准备:尽可能多地做一些如课本P46图3所示的正方形和长方形硬纸片.(2)操作:利用制作的硬纸片拼成一些长方形或正方形,•并用所拼成的图形面积来说明所学的乘法公式及某一些幂的运算法则的正确性.(3)观察:利用面积的不同表示法写出课本P46图4的一个代数恒等式来.(4)探索:任意写出一个一般的代数恒等式,比如(a+2b)(2a-b)=2a2+3ab-2b2,然后用上面所学方法画出几何直观图并说明它的正确性.(5)讨论:哪些形式的代数恒等式可以用上述方法来说明?点评:①做硬纸片的过程,实际上就是一个参与探索的开端,也是学生体验数学的开始,更是学生兴趣产生的起点.②这是一个具有一定的开放性的操作题,用几X硬纸片拼图,是拼成长方形还是正方形?应让学生根据需要进行选择,但是做出的图形必须是能说明所学的乘法公式或某些幂的运算公式的正确性.③这是一个边长为(a+b),中间挖掉一个“孔”的正方形,中间的“孔”又是一个边长为(a-b)的正方形,鼓励学生用多种方法计算图形的面积,•再引导学生根据自己所学的知识进行计算,验证结果的正确性.④这是一个开放性较强的问题,应打开思路,体现任意性.⑤这一问题实际上是对前面所做的问题的一个理性的思考,主要是通过自主探索找到可以接受的答案.教师活动:操作投影,提出问题.学生活动:动手实践,讨论.教学方法和媒体:投影显示问题,师生交流,合作学习.二、随堂练习,巩固新知1.用几何面积图形表示下列各代数恒等式.(1)m(a+b+c)=ma+mb+mc (2)(3a)2=9a2(3)(a-2b)(a+b)=a2-ab-2b2 2.任意画出三种不同的几何面积图形,然后用代数恒等式表示.三、全课小结,提高认识1.学完本节课内容你在运用数形结合的探究方面有何体会?2.是否每一个代数恒等式都能用几何面积图形表示出来?举例说明?四、作业布置1.课本P45复习题第17~19题.2.选用课时作业设计.课时作业设计一、画出下列代数恒等式的几何面积直观图形1.(a-2b)2=a2-4ab+b2 2.(a-5b)(a+5b)=a2-25b23.2x(x+y+z)=2x2+2xy+2xz 4.(2a+3b)2=4a2+12ab+9b25.(7a)2=49a2 6.3c(a+2b)=6cb+3ca二、写出下列几何面积图形所能表示的代数恒等式.三、观察思考题11.任意写出几个代数恒等式,看一看是否能用几何面积图形表示出来?并说明一个数学的道理.(答案)略.。
面积与代数恒等式

课题:“面积与代数恒等式”教材:义务教育课程标准华师大实验教材(一)教学目标1.知识与技能①让学生了解一些代数恒等式的几何意义,并体会代数与图形之间的联系。
从中探求数形结合的思想方法。
②使学生具有初步的动手操作能力,图形的识别,建立数学模型的能力。
2.过程与方法①通过这一课题的学习,让学生丰富实践经验,并体验从实际问题中抽象出数学问题过程。
②引导学生在合作探索中体会数学的应用价值,发展数学思维能力,并获得一些研究问题和解决问题的经验和方法。
3. 情感态度与价值观①激发学生自主探索的欲望,。
鼓励学生积极参与探究,保持对科学的兴趣和求知欲。
②体验小组合作的成果,培养学生合作交流的能力和创新的意识,同时也增强同学之间的团结互助精神。
(二)教学重点与难点1.重点:对学习方式改变的探索,让学生经历合作探索、讨论、交流、应用的过程;体会代数与图形之间的联系,从中探求数形结合的思想方法。
2.难点:学生在小组合作过程中的经验和方法的获得与再应用。
(三)教学方法与教学手段新课程标准中要求课题学习重在学生的探究和经历,要体现学生学习的个性特点。
本节课学习的课题是面积与代数恒等式的活动展示课,需要学生在课前准备很多硬纸片与整理要交流的研究成果,在教学中,既要学生自主探索,又要学生合作交流,所以,本节课采用的是小组合作汇报的学习方法。
学生可借助多媒体或实物投影仪。
在教学中,教师主要是起到“导”的作用,是学生数学活动的组织者、引导者和合作者,因此,教学中,要展现学生的主体性,让学生从小组合作学习的实践活动中发现规律,通过自己的探索与发现得出结论、找到答案。
这时,教师既要肯定学生探索的多种可能结论,又要适时引导,得出我们想要的结论,并且适时归纳总结,让学生明确学习的目标。
(四)教学过程:【教材的地位及作用】数与形是世界上万事万物的共同存在形式,因而专门反映数与形规律的数学,现实世界中无所不在,无处不用。
在第十四章《整式的乘法》的学习中,我们接触了很多代数恒等式,也从几何图形的面积关系中认识了一些代数恒等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a+b)(m+n)= am+an+bm+bn (2a)2 = 4a2 (a+b)2 = a2+2ab+b 2
像上述这种,不论字母取什么值,左边恒 等于右边的式子 叫做代数恒等式 。
代数恒等式是如何建立的?
5
思考
仔细观察拼图过程,思考由此图可以得出一 个什么代数恒等式。
a2a-2ab
b ab
a
30
做一做
(4) (a+2b) (2a-b) = 2a2 +3ab-2b2
a
a
a
a
a
a
b b
(a+2b) (2a-b)
b b
= 2a2 + 4ab- ab -2b2 = 2a2 +3ab-2b2
33
设计师要求:在一块长为4y,宽为4x 的长方形地上建成一套
两室一厅一厨一卫的房子。其中客厅面积6xy ,两卧室面积共 为8xy ,厨房面积为xy ,卫生间面积为xy 。
(a+b)(a-b) =a2 - b2
拼一拼 请同学们利用下列的纸片拼图。
a a
b
b
a
b
要求:
1.在同一个图形中可以多次使用同一种纸片;
2.拼成的图形由2张或者2张以上但不超过4张 的纸片构成,并且整体上是一个规则图形;
3.尽可能多的拼出不同的几何图形,并写出相 应的代数恒等式。
15
议一议
如图,请利用面积的不同表示方法写出 一个代数恒等式:
根据今天所学的内容,请你试着把自己的想法画成平面结构
示意图。
4y
y y 2y
x 厨房 卫生间
卧室
4x 3x 客厅
卧室
38
数缺形时少直观, 形少数时难入微。 数形结合百般好, 隔离分家万事非。
———华罗庚
作业: 试利用图形面积推导出乘法公式
(a+b+c)2 (a+b - c)2 (a - b -c)2
a bc a
b c
华师版 数学 八年级上
综合与实践
面积与代数恒等式
长春市第八十二中学 芦晶
试一试
用不同的方法来表示同一个图形的面积。
m
n
b
bm
bn
a
am
an
= (a+b)(m+n)
am+an+bm+bn
试一试
用不同的方法来表示同一个图形的面积。
aa
ab
a
a
a2
ab
a
b ab
b2
(2a)2 = 4a2
(a+b)2 =a2+2ab+b2
b a
a
b
代数恒等式:(a+b) 2-(a-b) 2=4ab
24
做一做
前面我们利用同一图形面积的不同表示方法,得出了代 数恒等式。现已知代数恒等式,你能否设计出相应图形来验 证它们的正确性?
(1) 2a·b = 2ab (2) a(a+b)=a 2+ab (3) (2a+b)(a+b)=2a 2+3ab+b 2
红色部分 面积??
再给上图加一同样大小的
长方形在右侧呢?
此时红色部分的面积是:
a2-ab
b
ab
a
a2-ab+ab
a
ab
请思考:
b2 红色部分的面积又是多少
b 呢?
a2-ab+ab-b2
a
a2-ab
b
ab
b 红色部分面积是:
a2-ab+ab-b2
即:a2-b2
b2ห้องสมุดไป่ตู้
还可以表示为:(a+b)(a-b)