滤波反投影法

合集下载

反投影重建算法

反投影重建算法

反投影重建算法
反投影重建算法(FBP)是一种计算机断层扫描成像(CT)重建图像
的方法。

该算法基于通过旋转体与X射线束的物理原理,将多个方向
的X射线透射数据进行积分,并使用反投影算法将数据重构成一张图像。

FBP算法分为两个基本部分:投影操作和反投影操作。

投影操作是一
种从图像中提取片段的技术,而反投影操作则是将这些片段重构成图像。

FBP重建算法的本质是一种频域过滤操作,其通过滤波技术提取
图像中的高频信息,并使用反投影技术将其还原为一张二维图像。

反投影重建算法的主要优点是其速度和适应性。

这种算法能够轻松地
生成高质量的图像,并且对于许多不同的应用程序都可以使用不同的
滤波模式。

目前,FBP算法被广泛应用于医学成像、工业检测和材料
科学等领域。

需要注意的是,FBP算法并不是完美的。

由于其基于体积的积分,因
此它可能受到一个“锐角偏差”问题的影响。

锐角偏差问题是指,当
图像中存在锐利的边缘或角落时,算法可能会出现伪影或失真的问题。

为了应对这个问题,一些改进算法被提出,例如金刚簇算法(来自中
国科技大学),基于块的迭代顺序最小化算法和模糊模式匹配算法等。

总之,反投影重建算法是一种实用的成像算法,对于许多不同的领域都具有广泛的适用性。

虽然这种算法具有其局限性,但是通过改进算法可以进一步提高它的可靠性和精度。

滤波反投影法

滤波反投影法

滤波反投影法:
滤波反投影法根据附件三所给接收信息,采用先修正、后投影重建图像的做法,可得到原始图像的吸收率信息。

其原理为:在得到某一角度下的投影函数(一维函数)后,对此函数做滤波处理,得一修正后的滤波函数,再对修正后的滤波函数做反投影运算,得待检测介质吸收率在正方形托盘中的每一点的分布密度函数f(x,y)。

图1给出了滤波反投影法重建原始图像的流程图。

图1滤波反投影法流程图
反投影法重建原始图像的步骤:
(1) 在对应于投影函数的角度下对投影函数做一维Fourier 变换;
(2) 对(1)得到的变换结果乘以权重因子|ρ|;
(3) 对(2)加权后得到的结果做一维傅立叶;
(4) 对(3)所得函数做直接反投影;
(5) 改变投影角度,得到180个不同的投影角度,对每一角度,重复上述步骤(1)
~(4)。

R-L (Ram-Lak )滤波函数:
此函数的基本条件是二维图像函数的频率是有界的,显然,此题所得附件五的所有数据满足此条件。

故频域中的滤波函数可表示为:
G (ρ)={|ρ|, |ρ|≤ρ0 0, 其它
其函数图像如图1.
图1R-L 滤波函数图像
连续的R-L 卷积函数所得结果为:
g (R )=ρ02[2sin c (2ρ0R )−sin c 2(ρ0R )]
离散的R-L 卷积函数所得结果为:
g (nT )={ 14T 2 , n =0 0 , n 为偶数−1n 2π2T 2,n 为奇数
根据上述滤波原理,在本题中,对附件五中数据的具体滤波过程可用Matlab 内置的Ram-Lak 命令实现。

偏折层析的滤波反投影算法及误差分析

偏折层析的滤波反投影算法及误差分析

第26 卷第11 期2006 年11 月光学学报ACTA OP TICA SIN ICAVo l. 26 ,No. 11November , 2006文章编号: 025322239 (2006) 112165729偏折层析的滤波反投影算法及误差分析宋张斌贺安之(南京理工大学信息物理与工程系, 南京210094)摘要: 对偏折层析投影转换为相位层析投影的转换关系迚行了分析,给出明晰的数学关系,幵针对偏折层析的滤波反投影算法重建的结果迚行误差分析。

分析结果表明投影噪声对重建场的作用体现在与由偏折层析滤波反投影算法的滤波器有关的倾斜函数上。

因此提出了改迚的偏折层析滤波反投影算法,数值模拟表明,改迚算法在有效抑制倾斜现象的同时,对重建结果不会造成明显的失真。

在此基础上改迚的算法被用于真实火箭燃气射流密度场的三维重建中。

关键词: 信息光学; 偏折层析; 重建算法; 误差分析中图分类号: O438 文献标识码: AFil t e red B ac k2P r oject i o n Al gori t h m of Def lect i on To m og r ap h ya n d Er r or A n al ys isSong Y a ng Zhang Bin He Anzhi( Dep a r t me n t of I nf or m a t i on Physics & Engi neeri ng Na n ji ng U n iversit y of Scie nce & Tech nology , Na n ji ng 210094)Abs t r act : The conversion f rom deflection tomography p rojection to phase tomograp hy p rojection is analyzed , and an explicit exp ression correspondin g to the conversion is p r esented. An er ror analysis is made to the reconst r ucted fields by f iltered back2p rojection ( DFB P ) algorithm of deflection tomography. Results show that the effect of p rojection noise on the reconst ructed fields is rep resented by a slope f unction related to the filter used in deflection tomograp hic f iltered back2p rojection algorithm. So the deflection tomographic f ilter ed back2p rojection algorithm is modified. Numerical simulation shows that the modified algorithm dep resses the slope ph enomena efficiently , while no obvious distortion is int roduced to the reconst r uction. Based on the modified algor ithm , the three2dimensional reconst ruction for den sity field of the real rocket exhausted plumes is carried out .Key w or ds : information optics ; deflection tomograp hy ; reconst ruction algorithm ; error analysis1 引言光学层析技术( Optical Comp uterized Tomograp hy ,O CT)是以光波为载体, 由加载了被测场信息的多方向投影数据重建待测场物理量分布的技术。

滤波反投影法迭代方程

滤波反投影法迭代方程

滤波反投影法是一种用于图像重建的算法,其迭代方程通常由以下步骤组成:
1. 对当前投影图像进行滤波操作,以去除噪声和伪影。

2. 将滤波后的投影图像进行反投影,得到重建图像的更新值。

3. 将更新值与前一次迭代的重建图像进行叠加,得到新的重建图像。

4. 重复步骤1-3,直到达到预设的迭代次数或满足收敛条件。

具体来说,滤波反投影法的迭代方程可以表示为:
\(I^{k+1} = I^k + \lambda \left( \text{滤波后的投影图像} - \text{反投影图像} \right)\)
其中,\(I^{k+1}\)表示第\(k+1\)次迭代的重建图像,\(I^k\)表示第\(k\)次迭代的重建图像,\(\lambda\)是控制迭代的步长,\(\text{滤波后的投影图像}\)是滤波后的投影图像,\(\text{反投影图像}\)是反投影得到的图像。

需要注意的是,具体的迭代方程可能会因不同的滤波器和反投影方法而有所不同。

滤波反投影

滤波反投影

平行束滤波反投影1100500121 赵伟伦 准备知识:一维Fourier 变换:dt et f f f F t i ⎰+∞∞--⋅==πωω2)()(~)( 一维逆Fourier 变换: ωωπωd e f f F x f t i ⎰+∞∞--⋅==21)(~)~()( 且有:)~(~),(11f F F f f F F f --⋅=⋅=重要的性质:(卷积特性))(~)(~)*(ωωgf g f F ⋅=; )(~)(~)(ωωgf g f F *=⋅ 二维Fourier 变换: dX e x x f f f F x x i R ),(),(22121221212),(),(~)(⋅-⎰==ωωπωω; 逆二维Fourier 变换: Ω==⋅-⎰d e f f F x x f x x i R ),(),(221122121212),(~)~(),(ωωπωω; 中心切片定理:),)(ˆ()(2ϕωωfF f F r =Φ, 其中),(ˆϕr f 是),(21x x f 的Radon 变换: 解释:一个二元函数的Radon 变换关于r 的一维Fourier 变换与这个二元函数的二维Fourier 变换形式相等。

滤波反投影:思路:)(),(121f F F x x f ⋅=-()()[][]ϕϕωωϕωϕωϕωωϕωϕωϕωωωϕωωϕωϕωωϕωϕωωωϕωωωππωωππωωππωωππωωπd r f F r d fF F d d e fF x x r d d e fF d d e f F d d e f d d e f F X r x x r r r r i r x x i r x x i rx x i x x i R Φ⋅=-Φ⋅=-∞+∞-⋅∞+∞-⋅∞+⋅∞+⋅*⇔=⋅⇔⇔Φ⋅=Φ=⇔⇔⇔⇔⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)(H ),(ˆfourier fourier ),()(H ),)(ˆ(]),)(ˆ([),),(),(),(),)(ˆ(),)(ˆ()(~)(1),(1202121),(),(20),(),(2200),(),(2200221),(),(222121212121212121212变化变化等于函数点乘后的个函数的卷积的并根据卷积的性质:两设旋转角为为坐标映射到探测器上,设为用极坐标方式表示出来(把,可知),(由于中心切片定理)(),(~),(r H r f r G *=ϕϕ)(r H 是滤波器总结:ϕϕϕωωϕωππωπd r H r fd def F X f X r X r r i r Φ⋅=Φ⋅=+∞∞-⎰⎰⎰=⎥⎦⎤⎢⎣⎡⋅=)(*),(ˆ),)(ˆ()(020 解释为:投影数据),(ˆϕr f 先进行滤波)(*),(ˆr H r f ϕ 在对滤波数据进行投影ϕϕπd r H r f X r Φ⋅=⎰)(*),(ˆ0简单例子:(大圆与小圆)通过已得到的正投影‘round.dat’经过滤波后,反投影后的图像。

基于滤波反投影算法的CT系统成像研究

基于滤波反投影算法的CT系统成像研究

基于滤波反投影算法的CT系统成像研究摘要:CT系统的安装会使得旋转中心发生偏离,从而影响成像质量,因此需要借助于已知结构的样品来标定CT系统的参数,并且利用标定的参数对未知结构的样品进行图像重建。

首先根据直接反投影算法和滤波反投影算法对收集到的数据中的接收信息分别进行图像重建,通过成像图像可知,滤波反投影算法更优;旋转中心可能发生偏移以及CT系统具有初始角度,依次进行旋转、平移、裁剪和残影去除操作,来校正投影图像,从而得到较高质量的图像。

关键词:CT成像原理(影像医学与核医学);滤波反投影法;图像重建;吸收率引言CT(Computed Tomography)是用X线束从多个方向对人体检查部位具有一定厚度的层面进行扫描,由探测器而不用胶片接收透过该层面的X线,转变为可见光后,由光电转换器转变为电信号,再经模拟/数字转换器转为数字,输人计算机处理。

数字矩阵中的每个数字经数字/模拟转换器转为由黑到白不等灰度的小方块,称之为像素,并按原有矩阵顺序排列,即构成CT图像。

所以,CT图像是由一定数目像素组成的灰阶图像,是数字图像,是重建的断层图像。

首先根据直接反投影算法和滤波反投影算法对收集到的数据中的接收信息分别进行图像重建,将图像重建[4-6]的两种结果进行对比,得出效果较好的模型;然后,旋转中心可能发生偏移以及CT系统具有初始角度,通过旋转、平移、裁剪和残影去除等操作来校正投影图像,最后对图像进行标准化调整,从而提高了成像质量。

1 模型的准备与建立1.1 CT成像的数学基础Rand变换如图1所示,直线g是xOy平面内任意一条直线,t是原点到直线g的距离,φ为原点到直线g的垂线与x轴的夹角。

对于xOy平面内任意一条直线可以由(t,φ)唯一确定。

二维平面中函数f(x,y)沿着直线的积分等于其Rand变换。

中心切片定理中心切片定理是CT图像重建算法的基础,在非衍射源情况下,含义是图像在某个视角下平行投影的一维Fourier变换等同于该图像二维Fourier变换的一个中心切片。

CT反投影滤波重建算法设计

CT反投影滤波重建算法设计

地理与生物信息学院2012 / 2013 学年第二学期实验报告课程名称:医学图像处理和成像技术实验名称:CT反投影滤波重建算法设计班级学号: B10090405学生姓名: 陈洁指导教师: 戴修斌日期:2013 年 5 月一、实验题目:CT反投影滤波重建算法设计二、实验内容:1.显示图像;2.获得仿真投影数据;3.基于获得的仿真投影数据重建图像。

三、实验要求:1.Shepp-Logan头模型:画出Shepp-Logan头模型,简称S-L模型,头模型尺寸设定为128×128;2.仿真投影数据的获得:从头模型中获得投影数据,投影数据格式为180×185,即[0,179°]范围内角度每隔1°取样,每个角度下有185个探测器;3.卷积反投影重建算法的实现:基于获得的仿真投影数据重建图像,使用R-L卷积函数,重建尺寸为128×128。

四、实验过程:实验1. Shepp-Logan头模型①算法实现流程:I. S-L头模型由10个位置、大小、方向、密度各异的椭圆组成,象征一个脑断层图像。

Shepp-Logan头模型中的椭圆参数:II. 使用循环语句给像素赋值:for i=1:10for x….for y…..判断点(x, y)是否在第i个椭圆内;如是,则将第i个椭圆折射指数赋给点(x, y);endendendIII. 显示仿真头模型:使用imshow(f,[])函数显示出图像。

②实验代码:clear all;p=[0 0 0.92 0.69 pi/2 10 -0.0184 0.874 0.6624 pi/2 20.22 0 0.31 0.11 72/180*pi 0-0.22 0 0.41 0.16 108/180*pi 40 0.35 0.25 0.21 pi/2 50 0.1 0.046 0.046 0 60 -0.1 0.046 0.046 0 7-0.08 -0.605 0.046 0.023 0 80 -0.605 0.023 0.023 0 80.06 -0.605 0.046 0.023 pi/2 8];N=256;x=linspace(-1,1,N);y=linspace(-1,1,N);f=zeros(N,N);for i=1:Nfor j=1:Nfor k=1:10A=p(k,3);B=p(k,4);x0=p(k,1);y0=p(k,2);x1=(x(i)-x0)*cos(p(k,5))+(y(j)-y0)*sin(p(k,5));y1=-(x(i)-x0)*sin(p(k,5))+(y(j)-y0)*cos(p(k,5));if((x1*x1)/(A*A)+(y1*y1)/(B*B)<=1) %判断条件f(i,j)=p(k,6);endendendendf=rot90(f);imshow(f,[])③运行结果:实验2. 获得仿真投影数据:①算法实现流程:I. θ∈ [00, 10, ..., 1790], s ∈[-92, -91, ..., 91,92];II. 对于第i 个椭圆求出对应θ和s 的仿真投影数据:其中,(x 0, y 0)为中心坐标,A 为长轴,B 为短轴,a 为旋转角度,ρ为折射指数。

基于滤波反投影法的CT系统参数标定及图像重建问题

基于滤波反投影法的CT系统参数标定及图像重建问题
3.中国石油大学(华东)化学工程学院 山东青岛 266580)
摘 要:本文以CT图像成型为背景,研究如何利用传感器接收的数据进行图像成型。根据附件中的数据,综合多种数学基多组数据进行计算和处理,得出图像形状和大小,并分析了多种因素对图像成型效率的影响。
关键词:X射线成像原理 CT系统 中心切片定理 滤波反投影法(FBP)
科技创新导报 2018 NO.07 Science and Technology Innovation Herald
中图分类号:TP391
文献标识码:A
文章编号:1674-098X(2018)03(a)-0105-02
1 研究背景 计 算 机 断层成像 技 术(C T)是 一种 无损 技 术,它 广泛 应 用
于 各 个 领 域,如 医学 诊 断、工业 检 测、机 场 安 检 及 文 物 修 复等 领 域,特 别 是 在 医 学 疾 病 的 预 防、诊 断 治 疗 方 面 有 着 重要 的 作用。它 能 利 用 发 射 器和 探 测 器对 病 人身 体 组 织 进 行多角 度 断层扫 描,经 过 光电 转 换、模 数 转 换,将 投 影 信息 转 换 成 数 字 信号。医生可以通过观察断层图像来获得重要的参考数据,进 而用于预防、诊断和治疗,为诊断疾病提供了一种好方法。
一 般 地 ,物 体 在 x y 平 面 内 都 不 均 匀 ,即 衰 减 系 数
u =u (x,y),则在某一方向l,沿某一路径L的总衰减为:
= ( ) (2) 此即射线投影。显然测得I 0与I,即可知道∫udl。我们根据一
系列的投影∫udl,推求被积函数u 。这样就能得出相应于u 分布 (从而得出密度分布)的图像,这就是从投影重建图像。 3.2 Randon变换
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滤波反投影法:
滤波反投影法根据附件三所给接收信息,采用先修正、后投影重建图像的做法,可得到原始图像的吸收率信息。

其原理为:在得到某一角度下的投影函数(一维函数)后,对此函数做滤波处理,得一修正后的滤波函数,再对修正后的滤波函数做反投影运算,得待检测介质吸收率在正方形托盘中的每一点的分布密度函数。

图1给出了滤波反投影法重建原始图像的流程图。

图1滤波反投影法流程图
反投影法重建原始图像的步骤:
(1)在对应于投影函数的角度下对投影函数做一维Fourier变换;
(2)对(1)得到的变换结果乘以权重因子;
(3)对(2)加权后得到的结果做一维傅立叶;
(4)对(3)所得函数做直接反投影;
(5)改变投影角度,得到180个不同的投影角度,对每一角度,重复上述步骤(1)~(4)。

R-L(Ram-Lak)滤波函数:
此函数的基本条件是二维图像函数的频率是有界的,显然,此题所得附件五的所有数据满足此条件。

故频域中的滤波函数可表示为:
其函数图像如图1.
图1R-L滤波函数图像
连续的R-L卷积函数所得结果为:
离散的R-L卷积函数所得结果为:
根据上述滤波原理,在本题中,对附件五中数据的具体滤波过程可用Matlab内置的Ram-Lak命令实现。

相关文档
最新文档