《随机变量及其分布总结》
随机变量及其分布

记
p(xi)P{Xxi}, i1, 2,
(21)
则称{p(xi) i1 2 }为X的概率分布 有时也将p(xi)记为pi 用
下列表格形式来表示 并称之为X 的概率分布表
4
概率分布的性质
任何一个离散型随机变量的概率分布{p(xi)}必然满足下 列性质
1 p(xi)0 i1 2
(22)
((22))ii pp((xxi)i)11
事件的概率与密度函数的关系
(1)连续型随机变量X落于区间(a b]上的概率为
b
P{a X b} F(b) F(a)a f (x)dx
(2)连续型随机变量X落于点x上的概率为
P{Xx}0
(212)
(213)
19
例28 设X是在[a b]上等可能投点的位置 其分布函数为
0, F (x) bx1,aa ,
x
x
F(x) 0 F() lim F(x)1
若函数Fx)满足上述三
x
条性质 则它一定是某个随
(3)右连续性 F(x0)F(x) 机变量X的分布函数
10
三、分布函数
定义24(分布函数) 设X是一随机变量 则称函数
F(x)P{Xx} x( )
(29)
为随机变量X的分布函数 记作X ~F(x)
分布函数的性质 随机变量的分布函数必然满足下列性质
0 x1, x1.
14
四、离散型随机变量的分布函数
离散型随机变量的分布函数F(x)的共同特征是 F(x)是一 个阶梯形的函数 它在X的可能取值点处发生跳跃跳跃高度 等于相应点处的概率 而在两个相邻跳跃点之间分布函数值 保持不变
反过来 如果一个随机变量X的分布函数F(x)是阶梯型函 数 则X一定是一个离散型随机变量 其概率分布可由分布函 数F(x)惟一确定 F(x)的跳跃点全体构成X的所有可能取值 每 一跳跃点处的跳跃高度则是X在相应点处的概率
随机变量及其分布总结

随机变量及其分布1、基本概念⑴互斥事件:不可能同时发生的两个事件.如果事件A B C 、、,其中任何两个都是互斥事件,则说事件A B C 、、彼此互斥. 当A B 、是互斥事件时,那么事件A B +发生(即A B 、中有一个发生)的概率,等于事件A B 、分别发生的概率的和,即()()(P A B P A P B +=+.⑵对立事件:其中必有一个发生的两个互斥事件.事件A 的对立事件通常记着A . 对立事件的概率和等于1. ()1()P A P A =-.特别提醒:“互斥事件”与“对立事件”都是就两个事件而言的,互斥事件是不可能同时发生的两个事件,而对立事件是其中必有一个发生的互斥事件,因此,对立事件必然是互斥事件,但互斥事件不一定是对立事件,也就是说“互斥”是“对立”的必要但不充分的条件.⑶相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,(即其中一个事件是否发生对另一个事件发生的概率没有影响).这样的两个事件叫做相互独立事件.当A B 、是相互独立事件时,那么事件A B ⋅发生(即A B 、同时发生)的概率,等于事件A B 、分别发生的概率的积.即()()()P A B P A P B ⋅=⋅.若A 、B 两事件相互独立,则A 与B 、A 与B 、A 与B 也都是相互独立的.⑷独立重复试验①一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.②独立重复试验的概率公式p ,那么在n 次独立重复试验中这个试验恰好发生k 次的概率()()(1)0,12,.,k k n k n n P k n k C p p -==-⑸条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 发生的概率.知识结构公式:()(),()0.()P AB P B A P A P A => 2、离散型随机变量 ⑴随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用字母,,,X Y ξη等表示.⑵离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.⑶连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.⑷离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.若X 是随机变量,(,Y aX b a b =+是常数)则Y 也是随机变量 并且不改变其属性(离散型、连续型).3、离散型随机变量的分布列⑴概率分布(分布列)设离散型随机变量X 可能取的不同值为12,x x ,…,i x ,…,n x ,X )i i X x p ==,则称表为随机变量的概率分布,简称的分布列.性质:①0,1,2,...;i p i n ≥= ②1 1.n i i p ==∑⑵两点分布则称X 服从两点分布,并称(1)p P X ==为成功概率.⑶二项分布如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是()(1).k k n k n P X k C p p -==-我们称这样的随机变量X 服从二项分布,记作()p n B X ,~,并称p 为成功概率.判断一个随机变量是否服从二项分布,关键有三点:①对立性:即一次试验中事件发生与否二者必居其一;②重复性:即试验是独立重复地进行了n 次;① 等概率性:在每次试验中事件发生的概率均相等.② 注:⑴二项分布的模型是有放回抽样;⑵二项分布中的参数是,,.p k n⑷超几何分布一般地, 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{}X k =发生的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,于是得到随机变量X其中{}min ,m M n =,*,,,,n N M N n M N N ∈≤≤. 我们称这样的随机变量X 的分布列为超几何分布列,且称随机变量X 服从超几何分布.注:⑴超几何分布的模型是不放回抽样;⑵超几何分布中的参数是,,.M N n 其意义分别是总体中的个体总数、N 中一类的总数、样本容量.4、离散型随机变量的均值与方差⑴离散型随机变量的均值则称()1122i i n n E X x p x p x p x p =+++++为离散型随机变量X 的均值或数学期望(简称期望).它反映了离散型随机变量取值的平均水平.⑵离散型随机变量的方差则称21()(())n ii i D X x E X p ==-∑为离散型随机变量X 的方差,为随机变量X 的标准差.它反映了离散型随机变量取值的稳定与波动,集中与离散的程度. ()D X 越小,X 的稳定性越高,波动越小,取值越集中;()D X 越大,X 的稳定性越差,波动越大,取值越分散.。
第七章 随机变量及其分布(章末小结课件)高二数学(人教A版2019选择性必修第三册)

(2)小红和小明在研究了高尔顿板后,利用高尔顿板来到社团文化节上进行盈利性“抽奖”活动.小红使用图1所示的高尔顿板,付费6元可以玩一次游戏,小球掉入 号球槽得到的奖金为 元,其中 .小明改进了高尔顿板(如图2),首先将小木块减少成5层,然后使小球在下落的过程中与小木块碰撞时,有 的概率向左, 的概率向右滚下,最后掉入编号为1, , , 的球槽内,改进高尔顿板后只需付费4元就可以玩一次游戏,小球掉入 号球槽得到的奖金为 元,其中 .两位同学的高尔顿板游戏火爆进行,很多同学参加了游戏,你觉得小红和小明谁的盈利多?请说明理由.
方法总结 求离散型随机变量的均值、方差的步骤: 明确随机变量的取值,以及取每个值的试验结果; 求出随机变量取各个值的概率; 列出分布列; 用期望、方差公式求解; 标准差代入公式 求解.本题渗透了数据分析、数学运算的素养.
题型7 正态分布
例7 某物理量的测量结果服从正态分布 ,则下列结论中不正确的是( ).
方法总结 正态曲线的应用及求解策略:解答此类题目的关键在于将待求的问题向 , , 这三个区间进行转化,然后利用上述区间的概率求出相应的概率.解题过程渗透了直观想象、数学运算以及数据分析的素养.
高尔顿与高尔顿板
一、高尔顿简介
弗朗西斯·高尔顿( , —1911)是英国著名的统计学家、心理学家和遗传学家.他是达尔文的表弟,虽然不像达尔文那样声名显赫,但也不是无名之辈.并且,高尔顿幼年是神童,长大是才子,九十年的人生丰富多彩,是个名副其实的博学家.他涉猎范围广泛,研究水平颇深,纵观科学史,在同辈学者中能望其项背之人寥寥可数.他涉足的领域包括天文、地理、气象、机械、物理、统计、生物、遗传、医学、生理、心理等,还有与社会有关的人类学、民族学、教育学、宗教学,以及优生学、指纹学、照相术、登山术等等.
随机变量及其分布方法总结经典习题及解答

随机变量及其分布方法总结经典习题及解答一、离散型随机变量及其分布列1、离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
常用大写英文字母X、Y等或希腊字母ξ、η等表示。
2、分布列:设离散型随机变量ξ可能取得值为:x1,x2,…,x3,…,ξ取每一个值xi(i=1,2,…)的概率为,则称表ξx1x2…xi…PP1P2…Pi…为随机变量ξ的分布列3、分布列的两个性质:⑴Pi≥0,i=1,2,… ⑵P1+P2+…=1、常用性质来判断所求随机变量的分布列是否正确!二、热点考点题型考点一: 离散型随机变量分布列的性质1、随机变量ξ的概率分布规律为P(ξ=n)=(n=1,2,3,4),其中a是常数,则P(<ξ<)的值为A、B、C、D、答案:D考点二:离散型随机变量及其分布列的计算2、有六节电池,其中有2只没电,4只有电,每次随机抽取一个测试,不放回,直至分清楚有电没电为止,所要测试的次数为随机变量,求的分布列。
解:由题知2,3,4,5∵ 表示前2只测试均为没电,∴ ∵ 表示前两次中一好一坏,第三次为坏,∴ ∵ 表示前四只均为好,或前三只中一坏二好,第四个为坏,∴ ∵ 表示前四只三好一坏,第五只为坏或前四只三好一坏第五只为好∴ ∴ 分布列为2345P三、条件概率、事件的独立性、独立重复试验、二项分布与超几何分布1、条件概率:称为在事件A发生的条件下,事件B发生的概率。
2、相互独立事件:如果事件A(或B)是否发生对事件B (或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
①如果事件A、B是相互独立事件,那么,A与、与B、与都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
我们把两个事件A、B同时发生记作AB,则有P(AB)= P(A)P(B)推广:如果事件A1,A2,…An相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积。
概率论第二章随机变量及其分布小结

概率论第二章随机变量及其分布小结随机变量及其分布小结随机变量X=X(e)是定义在样本空间S={e}上的实值单值函数。
也就是说,它是随机试验结果的函数。
它的取值随试验的结果而定,是不能预先确定的,因此它的取值有一定的概率。
随机变量的引入,使概率论的研究由个别随机事件扩大为随机变量所表征的随即现象的研究。
一个随机变量,如果它所有可能取值是有限个或可列无穷多个,则称其为离散型随机变量,不是这种情况的则称为非离散型。
不论是离散型还是非离散型的随机变量X,都可以借助分布函数F ( x) P{X x}, x来描述。
若已知随机变量X的分布函数,就能知道X落在任意区间( x1 , x2 ]上的概率:P{x1 X x2 } F ( x1 ) F ( x2 ).这样,分布函数就完整的描述了随机变量取值的统计规律性。
对于离散型随机变量,我们需要掌握的是它可能取哪些值,以及它以怎样的概率取这些值,这就是离散型随机变量取值的统计规律性。
因而,对于离散型随机变量,用分布律P{X xk } pk ,k 1,2,或写成Xpkx1 x2 xk p1 p 2 p k来描述它的取值的统计规律性更为直观和简洁。
分布律与分布函数有以下关系:F ( x) P{X x} xk xP{X x }k它们是一一对应的。
分布律具有以下性质:1 pk 0;2pk 1k1.分布函数的基本性质:1 2F ( x)单调不减。
0 F ( x) 1, 且F ( ) lim F ( x) 0,x xF ( ) lim F ( x) 1.3F ( x) F ( x 0),即F ( x)是右连续的。
设随机变量X的分布函数为F(x),如果存在非负函数f(x),使得对于任意x,有F ( x)f ( x)dx,x则称X是连续型随机变量,其中f ( x) 0称为X的概率密度。
连续型随机变量的分布函数是连续的,连续型随机变量取任一指定实数值a的概率为0,这两点性质是离散型随+机变量不具备的。
高中数学必修知识点随机变量及其分布

高中数学必修知识点随机变量及其分布1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。
2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x nX 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质① p i ≥0, i =1,2, … ; ② p 1 + p 2 +…+p n = 1.5、二点分布:如果随机变量X 的分布列为:其中0<p<1,q=1-p ,则称离散型随机变量X 服从参数p 的二点分布6、超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,其中{}min ,m M n =,且*,,,,n N M N n M N N ∈≤≤7、条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率8、公式: .0)(,)()()|(>=A P A P AB P A B P9、相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
)()()(B P A P B A P ⋅=⋅10、n 次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验11、二项分布: 设在n 次独立重复试验中某个事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独立重复试验中)(k P =ξk n k k n q p C -=(其中 k=0,1, ……,n ,q=1-p )于是可得随机变量ξ的概率分布如下:这样的随机变量ξ服从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数12、数学期望:一般地,若离散型随机变量ξ的概率分布为则称 E ξ=x1p1+x2p2+…+xnpn +… 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。
随机变量及其分布考点总结

第二章 随机变量及其分布 复习一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.3、分布列:设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1( =i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列.1=≥i p ; ②121=++++ i p p p .注意:若随机变量可以取某一区间的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题:1、随机变量ξ的分布列为(),1,2,3(1)cP k k k k ξ===+……,则P(13)____ξ≤≤=2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为17,现在甲乙两人从袋中轮流摸去一球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。
(1)求ξ的分布列(2)求甲取到白球的的概率3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。
4已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;(3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.k2.072 2.7063.841 5.024 6.635 7.879 10.828(参考公式:2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)二、几种常见概率1、条件概率与事件的独立性(1)B|A 与AB 的区别:__________________(2)P(B|A)的计算公式_____________,注意分子分母事件的性质相同 (3)P(AB)的计算公式_____________注意三点:前提,目标,一般情况___________________ (4)P (A+B )的计算公式__________注意三点:前提,目标,一般情况____________________ 典型例题:1、市场上供应的灯泡,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率80%,则从市场上买到一个是甲厂产的合格品的概率是多少?2、把一副扑克52随即均分给钱四家,A={家得到六章草花},B={家得到3草花},计算P(B|A),P(AB)3、从混有5假钞的20百元钞票中任取两,将其中1在验钞机上检验发现是假钞,求两都是假钞的概率。
随机变量及其分布知识点总结

随机变量及其分布知识点总结随机变量是数学中的一个基本概念,描述了一个随机事件的可能结果。
在概率论和统计学中,随机变量的分布是研究随机变量性质的重要工具。
本文将总结随机变量及其分布的相关知识,包括随机变量的定义、表示、分布、期望、方差等。
一、随机变量的定义随机变量是一种描述随机事件可能的变量,通常用符号 $X$ 表示。
随机变量的取值可以是离散的或连续的。
离散的随机变量只取有限或可数个取值,而连续的随机变量则取无限个取值。
二、随机变量的表示随机变量的表示通常用概率密度函数 $f_X(x)$ 或概率质量函数$g_X(x)$ 表示。
概率密度函数是描述随机变量取值分布的函数,通常用$f_X(x)$ 表示。
概率质量函数是描述随机变量离散程度的函数,通常用$g_X(x)$ 表示。
三、随机变量的分布随机变量的分布描述了随机变量取值的概率分布。
离散分布描述了随机变量只取有限或可数个取值的概率分布,连续分布描述了随机变量取无限个取值的概率分布。
1. 离散分布离散分布通常用 $P(X=x)$ 表示,其中 $x$ 是随机变量的取值。
离散分布的概率质量函数通常用 $g_X(x)$ 表示。
例如,正态分布的概率质量函数为:$$g_X(x) = frac{sqrt{2pi}}{x!}e^{-frac{(x-1)^2}{2}}$$2. 连续分布连续分布通常用 $P(X leq x)$ 表示,其中 $x$ 是随机变量的取值。
连续分布的概率质量函数通常用 $f_X(x)$ 表示。
例如,均匀分布的概率质量函数为: $$f_X(x) = begin{cases}1, & x in [0,1],0, & x in [1,2],end{cases}$$四、期望和方差随机变量的期望是随机变量的取值的总和。
离散分布的期望通常用$E(X)$ 表示,连续分布的期望通常用 $E[X]$ 表示。
期望的概率质量函数通常用$f_X(x)$ 表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它们都是反映离散型随机变量偏离于均值的平均程度 的量,它们的值越小,则随机变量偏离于均值的平均 程度越小,即越集中于均值。
.
8、期望与方差的性质
E (a X b ) a E (X ) b E ( a X b) Y a(X E ) b( Y E )
D (a X b )a2D X
随机变量及其分布 总复习
.
一、概率计算公式 二、离散型随机变量的均值与方差 三、随机变量的分布 四、课堂练习
.
一、概率计算公式
.
设A、B为两个事件 公式: 1、古典概型 P(A)A事 件 总 包 试 含 验 的 结 试 果 验 数 结 果 数 2、几何概型
P (A ) 试 验 A 全 事 部 件 结 的 果 区 的 域 区 长 域 度 长 ( 度 面 ( 积 面 、 积 体 、 积 体 ) 积 )
.
7、方差
一般地,若离散型随机变量X的概率分布为:
X x1 x2 … xi … xn
P p1 p2 … pi … pn
则称 D ( X ) ( x 1 E ( X ) 2 p 1 ) ( x i E ( X ) 2 p i ) ( x n E ( X ) 2 p n )
n
(xi E(X))2pi 为随机变量X的方差。 i1
X
0
1
2
P 2 / 3 4 /15 1 /15
EX0.4
.
正态分布
设在一次数学考试中,某班学生的分数服从X~N(110,202), 且知满分150分,这个班的学生共54人.求这个班在这次数学 考试中及格(不小于90分)的人数和130分以上的人数. 思维启要迪求及格的人数,即求出P(90≤X≤150),而求 此概率需将问题化为正态变量几种特殊值的概率形式,然后 利用对称性求解.
.
三、随机变量的分布
.
1、两点分布
(1)试验要求: 随机变量只有0、1两个取值 (“P”为成功概率)
X01 P 1-p p
(2)期望与方差:
若X服从两点分布E, (X)则 p
若X服从两点分D布 (X), p(则 1p)
.
2、超几何分布
(1)试验要求: 随机试验中,不放回的从有限个物件(产品、小球)中 抽出n个物件,成功抽出指定物件的次数。
X0
1…
P
C
0 M
C
n N
M
C
n N
C C 1 n 1 M N M
Hale Waihona Puke Cn N…
k
C Ck n k M N M
C
n N
…n
…
C
n M
C
0 N
M
C
n N
(2)期望与方差: 无特定公式(需列出分布列,在利用公式求)
.
3、二项分布 (1)试验要求: 针对n次独立重复试验(同一件事、同一条件下重复了n次)
3、求两球号码之和X的分布列、均值和方差.
X2 3 4 5 6 P 1 /15 4 /15 1 / 3 4 /15 1 /15
EX 4 D X 1 6
15
.
变式三:
一盒子中有大小相同的球6个,其中标号为1的球4个,标号 为2的球2个,现从中任取一个球,若取到标号2的球就不再 放回,然后再取一个球,直到取到标号为1的球为止,求在 取到标号为1的球之前已取出的2号标号球数 X 的均值.
可类比:分步计数原理记忆
.
二、离散型随机变量的均值与方差
.
6、均值(数学期望) 一般地,若离散型随机变量X的概率分布为:
X x1
x2
… xi
… xn
P p1
p2
… pi
… pn
n
则称 E (X )x1p 1x2p 2 xip i xnp nxip i i 1
它反映了离散型随机变量取值的平均水平。
.
3、涉及互斥事件 概率加法公式:
若 A 与 B 互 斥 , 则 P ( A B ) P ( A ) P ( B )
可类比:分类计数原理记忆
4、条件概率
P(BA)n(AB)P(AB) n(A) P(A)
P(A) 0
5、涉及独立事件 概率乘法公式:
若 A 与 B 相 互 独 立 , 则 P ( A B ) P ( A ) P ( B )
.
变式一: 二项分布
一盒子中有大小相同的球10个,其中标号为1的球3个,标号为 2的球4个,标号为3的球3个,现从中依次有放回地抽取3个球 1、求恰好抽出两个2号球的概率
P (A ) C ( 3 20 .4 )2 (0 .6 ) 3 6 / 1 2 5
2、求至少抽出两个2号球的概率
P ( B ) C ( 3 2 0 . 4 ) 2 ( 0 . 6 ) C 3 3 ( 0 . 4 ) 3 ( 0 . 6 ) 0 4 4 / 1 2 5
(在抽取物件时,要有放回抽取)
(2)概率计算:
若X~B(n, p),
则 P ( X k ) C n k p k ( 1 p ) n k ,k 0 ,1 ,2 , L ,n
(3)期望与方差:
若 X ~ B (n ,p ), E (X 则 ) np
若 X ~ B ( n ,p ) , D ( X ) 则 n ( 1 p p )
(注意:面积等同于概率).
四、课堂练习
.
应用举例
摸球中的分布
一盒子中有大小相同的球10个,其中标号为1的球3个,标号为
2的球4个,标号为3的球3个。现从中任意抽取3个球,
1、求恰好抽出两个2号球的概率
超
几
P(X 2)CC421C3061 0.3
何 分
2、求至少抽出两个2号球的概率
布
P (X 2 ) P (X 2 ) P (X 3 ) C C 4 2 1 C 3 06 1 C C 1 3 4 3 0 1 3
.
4、正态分布
(1)如果对于任何实数 a<b,随机变量X满足:
b
P (a x b ) ap (x )d x F (b ) F (a )
则称X 的分布为正态分布.
记作:X~N(m,2) 。(EX= m , DX= 2)
(2)正态总体在三个特殊区间内取值的概率值
①P(μ-σ<X≤μ+σ)≈_0_.6_8_2_7___; ②P(μ-2σ<X≤μ+2σ)≈_0_.9_5_4_5__; ③P(μ-3σ<X≤μ+3σ)≈_0_._9_97_3____.
.
变式二:条件概率
一盒子中有大小相同的球 10 个,其中标号为1的球3个,标号
为 2 的球 4个,标号为 3 的球3个。现从中不放回地依次取出
1两、个求球第. 一次抽到3号球,第二次抽到1号球的概率.p(AB)CA131C2031
1 10
2、求在第一次抽出3号球的条件下,第二次抽到1号球的
概率.
P(BA)P(AB) 1 P(A) 3