离散时间信号处理-知识点总结

合集下载

数字信号处理----离散时间信号

数字信号处理----离散时间信号

数字信号处理----离散时间信号数字信号是模拟信号抽样⽽来的,也叫做序列x(n),值是在各时间点的抽样值。

x(n)=x a(t)|t=nT = x a(nT), n = ....,-2,-1,0,1,2,....T为两个时间样本之间的间隔或抽样周期,抽样间隔T的倒数,记为抽样率F T,F T=1/T。

信号可能是源源不断传输的,也可能是截取的⼀段,所以可分为有限长序列和⽆限长序列。

若左右两边都⽆限长,称作双边序列,若是⼀边⽆限长,称作左序列或⼜序列。

序列的基本运算1. 积运算w[n] = x[n] * y[n] ,对应时刻相乘,调制、滤波的实质就是积运算(这点以后再谈),这个过程通常也叫加窗,由⽆限长序列⽣成有限长序列。

2. 标量乘法w[n] = Ax[n],实现信号的放⼤等作⽤。

3. 加w[n] = x[n]+y[n],两路信号相加,或者信号与噪声相加。

4. 时移包括延迟和超前,就是将信号按时间进⾏平移。

w[n] = x[n-5] 延迟5个时间单位5. 时间反转w[n] = x[-n] ,以0时刻为中⼼,将信号左右翻转⼀下。

6. 混合运算混合运算就是上⾯⼏种运算的混合,实际的信号处理电路就是实现混合运算。

序列的分类1. 基于对称性若满⾜ x[n] = x*[-n] ,称为共轭对称序列;若满⾜ x[n] = - x*[-n] ,成为共轭反对称序列。

>> 实共轭对称序列称为偶序列>> 实共轭反对称序列称为奇序列>> 任何复序列都能表⽰成共轭对称部分x cs[n]与共轭反对称部分x cs[n]之和2. 周期信号与⾮周期信号3. 能量信号与功率信号某时刻信号的能量是此刻信号幅值的平⽅,总能量就是所有时刻能量的求和。

有限长的求和会是⼀个有限的值,⽆限长的信号能量求和结果也是⽆限的。

能量信号⼀般指有限长信号,能量是有限的。

功率信号⼀般指⽆限长信号,它的能量是⽆限的,但功率是有限的。

数字信号处理复习 (3)

数字信号处理复习 (3)

式。
4、正弦型序列
x(n) sin(n )
要求:会判断正弦型序列的周期性
四、正弦序列的周期性
x(n) sin(n ) 的周期有三种情况:
2 1 、 N 是整数,则x(n)是周期序列,周期为N;
2 P 2、 是有理数,(其中P、Q为互质整数), Q
则x(n)是周期序列,周期为P;
m
x ( m) h ( n m)

上式中,若序列x(n)和h(n)的长度分别是M和L,
则y(n)的长度为L+M-1。
三、几种常用序列 1、单位抽样序列δ(n) (1)定义式
1 (n 0) ( n) 0 (n 0)
1 (n m) ( n m) 0 (n m)
n
1.2 线性、移不变(LSI)系统 一、线性系统: 若y1(n)=T[x1(n)]、y2(n)=T[x2(n)], 则a1 y1(n)+ a2y2(n)=T[a1x1(n)+ a2x2(n)]
例:判断下列系统是否线性系统。
y(n)=x(n)+1 y(n)=x(n+5) y(n)=x(3n)
二、移不变系统:
当n<0时,h(n)=0,则系统是因果系统。
例:下列单位抽样响应所表示的系统是否因果系统? A.h(n)=δ(n) C.h(n)= R10(n) B.h(n)=u(n) D.h(n)=e-20nu(n)
五、稳定系统 1、稳定系统的定义: 稳定(BIBO)系统是指当输入有界时,输出也有界的系统。 例:判断下列系统是否稳定系统。 y(n)=x(n-2)
二、掌握用留数法求Z反变换的方法
例:已知
X( z) 1 (1 2 z 1 )(1 1.2 z 1 )

数字信号处理_笔记

数字信号处理_笔记

n
2
序列的能量: x(n) 信号的归一化能量,即在 1Ω电阻上产生的能量。
n
序列的运算:相加,相乘,移位(延迟),
k
任何序列都可表示为: x(n) x(k) (n k) k
线性非移变系统(LSI 系统):
线性系统:满足叠加定理的系统称为线性系统。用 T[]表示系统的变化。 y(n) T[x(n)]
为有限值,则序列为因果序
lim z
x(z) 列。|Z|<R 表示左边序列,且
为有限值,则序列为逆因果序列。
常见序列的 Z 变换有:
lim z0
???自己查资料补全。
Z 变换的性质和定理有: ???自己查资料补全。
系统函数 H(Z)
定义为: H (z) h(n)zn Y (Z )
n
X (Z)
①对差分方程两边求 Z 变换,再移向可得 H(Z)。(结合 Z 变换的移位性质)
4:根据零极点分布图画幅度响应和相位响应图。
思考题部分:
2.7 IIR 和 FIR
差分方程 IIR 存在反馈回路,即有 y(n k) ,而 FIR 不存在 y(n k) 项。
无限脉冲响应滤波器是数位滤波器的一种,简称 IIR 数位滤波器(infinite impulse response filter)。由于无限脉冲响应滤波器中存在反馈回路,因此对于脉冲输入信号的响应是无限延 续的。 有限脉冲响应滤波器是数字滤波器的一种,简称 FIR 数字滤波器(finite impulse response filter)。这类滤波器对于脉冲输入信号的响应最终趋向于 0,因此是有限的,而得名。它是 相对于无限脉冲响应滤波器(IIR)而言。
线性常系数差分方程:描述线性非移变系统。

离散时间信号和系统理论知识介绍

离散时间信号和系统理论知识介绍

离散时间信号和系统理论知识介绍离散时间信号和系统理论是信号与系统理论领域的重要分支,用于描述和分析在离散时间点上的信号及其相应的系统行为。

离散时间信号是在离散时间集合上定义的函数,通常由离散采样得到。

离散时间系统则是对输入离散时间信号进行操作和处理得到输出信号的过程。

离散时间信号是时间的一个离散序列,可以通过对连续时间信号进行采样得到。

最常见的离散时间信号是离散时间单位脉冲信号,其在一个时间点的值为1,其他时间点的值为0。

其他常见的离散时间信号包括阶跃信号、正弦信号、方波信号等。

每个离散时间信号都有其特定的频谱和幅度特性。

离散时间系统是对离散时间信号进行处理和操作的载体。

离散时间系统可以是线性系统或非线性系统。

线性系统可以通过线性时不变(LTI)系统模型来描述,即系统的输入和输出之间存在线性时不变关系。

LTI系统可以用巴特沃斯(Bartow)方程式或其它传输方程式来表示,并可以通过离散时间卷积来分析系统的响应。

非线性系统则不满足线性性质的要求,其描述和分析方法更为复杂。

离散时间信号和系统理论的基本概念包括线性性、时不变性、因果性和稳定性等。

线性性要求系统对输入信号的加法性和乘法性具有反应;时不变性要求系统的性质不随时间变化而改变;因果性要求系统的响应仅依赖于过去和当前的输入信号;稳定性要求系统的输出有界且有限。

离散时间信号和系统的分析方法包括时域分析和频域分析。

时域分析主要关注信号和系统在时间域上的行为,如脉冲响应、单位样本响应、单位阶跃响应等;频域分析则关注信号和系统在频域上的特性,如频谱分析、频率响应等。

离散时间信号和系统在实际应用中有广泛的应用。

例如,它们可以用于数字音频处理、数字图像处理、通信系统、控制系统等领域中。

在这些应用中,离散时间信号和系统的理论方法可以帮助我们分析和设计系统,优化信号处理算法,并提高系统的性能。

总而言之,离散时间信号和系统理论是信号与系统理论中重要的一部分,用于描述和分析离散时间信号和系统的特性。

离散信号 知识点总结

离散信号 知识点总结

离散信号知识点总结一、离散信号的定义离散信号是指在离散时间点上的取样值的集合。

在数学上,它可以用一个序列来表示,即{..., x[-2], x[-1], x[0], x[1], x[2], ...}。

其中,x[n]表示在时刻n处的取样值,n为整数。

离散信号与连续信号相对,连续信号是在连续的时间上取值的,而离散信号是在离散的时间上取值的。

二、离散信号的性质1. 有界性:离散信号通常是有界的,即存在一个有限的范围,超出这个范围时信号值为零。

2. 周期性:某些离散信号是周期的,即满足x[n+N]=x[n]的性质,其中N为周期。

3. 非周期性:另一些离散信号是非周期的,即没有周期性结构。

4. 平稳性:离散信号的平稳性是指信号的统计特性在时间平移后保持不变,即x[n]=x[n-k]。

若满足这个条件,则称该信号是平稳的。

5. 因果性:对于实际系统的输入信号来说,它通常是因果的,即在某一时刻的取值只取决于之前时刻的取值。

三、离散信号的表示离散信号可以通过多种方式来表示,包括序列表示法、块状表示法、方块表示法等。

其中,序列表示法是最常见的一种表示方法。

在序列表示法中,离散信号可以通过一列有序的数值来描述,例如{x[0], x[1], x[2], ...}。

这种表示方法简单直观,便于分析和处理。

四、离散信号的处理方法离散信号的处理方法包括离散信号的运算、变换和滤波等。

其中,离散信号的运算主要是指对离散信号进行加法、乘法、卷积等运算。

这些运算可以通过离散信号的表示法来实现。

另外,离散信号的变换主要是指离散信号的傅里叶变换、离散余弦变换等。

这些变换可以用于信号的频域分析和压缩。

最后,离散信号的滤波是指通过滤波器来对信号进行频率选择和抑制。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器等。

总之,离散信号是一种在离散时间点上取样的信号,在信号处理中具有重要的作用。

通过对离散信号的定义、性质、表示和处理方法的总结,可以更好地理解离散信号的特点和应用。

数字信号处理第一章离散时间信号和离散时间

数字信号处理第一章离散时间信号和离散时间

离散卷积的计算
计算它们的卷积的步骤如下: (1)折叠:先在哑变量坐标轴k上画出x(k)和h(k),将h(k)以纵坐标为对称轴折 叠成 h(-k)。 (2)移位:将h(-k)移位n,得h(n-k)。当n为正数时,右移n;当n为负数时,左 移n。 (3)相乘:将h(n-k)和x(k)的 对应取样值相乘。 (4)相加:把所有的乘积累加 起来,即得y(n)。
第一章 时域离散信号和时域离散系统
内容提要
离散时间信号和离散时间系统的基本概念 –序列的表示法和基本类型 –用卷积和表示的线性非移变系统 –讨论系统的稳定性和因果性问题 –线性常系数差分方程 –介绍描述系统的几个重要方式
离散时间信号的傅里叶变换和系统的频率响应 模拟信号的离散化
–讨论了模拟信号、取样信号和离散时间信号(数字 序列)的频谱之间的关系

根据线性系统的叠加性质 y(n) x(m)T[ (n m)] m
根据时不变性质:T[ (n m)] h(n m)

y(n) x(m)h(n m) x(n) h(n) m=-
(1.3.7)
通常把式(1.3.7)称为离散卷积或线性卷积。这一关系常用符 号“*”表示,即:
y(n n0 ) T[kx(n n0 )], 是移不变系统 (2) y(n) nx(n), 即y(n n0 ) (n n0 )x(n n0 ) 而T[x(n n0 )] nx(n n0 ) y(n n0 ),不是移不变系统
1.3.3 线性时不变系统及输入与输出的关系 既满足叠加原理,又满足非移变条件的系统,被称为线性 非移变系统。这类系统的一个重要特性,是它的输入与输 出序列之间存在着线性卷积关系。
§1. 2 时域离散信号

离散时间信号处理 概述及解释说明

离散时间信号处理 概述及解释说明

离散时间信号处理概述及解释说明1. 引言1.1 概述离散时间信号处理是一门重要的信号处理领域,它涉及到对离散时间信号进行采样、分析、变换和滤波等处理操作。

相比于连续时间信号处理,离散时间信号处理更适用于数字系统和实际应用中的数字信号。

离散时间信号处理技术在现代通信、音频、图像和视频等领域得到广泛应用。

通过研究离散时间信号处理方法和算法,可以提高数据传输质量、优化压缩算法、改善音频和图像效果以及实现其他相关应用。

1.2 文章结构本文将从以下几个方面介绍离散时间信号处理的基本概念、常用方法以及在实际应用领域中的技术应用:- 第2部分:离散时间信号处理的基本概念。

我们将讨论信号与系统的概念,并比较离散时间信号与连续时间信号之间的区别。

此外,我们还将探讨离散时间系统的性质和特点。

- 第3部分:常用的离散时间信号处理方法。

我们将了解采样和重建过程的原理,并介绍常见的离散时间信号变换和频域分析方法。

此外,我们还将探讨数字滤波器的设计与应用。

- 第4部分:实际应用领域中的离散时间信号处理技术。

我们将以语音信号处理、图像处理与压缩算法以及音频信号编辑与效果处理为例,阐述离散时间信号处理在不同领域中的应用技术。

- 第5部分:结论。

我们将对全文进行总结回顾,并展望离散时间信号处理未来发展的趋势。

1.3 目的本文旨在提供一个关于离散时间信号处理的概述及解释说明,使读者对该领域有一个全面而清晰的认识。

通过阅读本文,读者可了解离散时间信号处理的基本概念、常用方法和实际应用情况,并对该领域未来的发展趋势有所预测。

同时,本文也可作为进一步学习和研究离散时间信号处理的起点。

2. 离散时间信号处理的基本概念2.1 信号与系统在离散时间信号处理中,信号指的是随时间变化的电压、电流或其他物理量的函数。

系统则是对输入信号进行处理或转换的设备、算法或方法。

离散时间信号处理旨在通过对输入信号的分析和处理,实现对输出信号的控制和调整。

2.2 离散时间信号和连续时间信号的区别离散时间信号是在一系列取样时间点上定义的,只能在这些点上取值。

信号分析与处理第3章离散时间信号的分析_1-44

信号分析与处理第3章离散时间信号的分析_1-44

X (z) x(n)zn x(n)(re j )n [x(n)r n ]e j n
x
x
x
只有当 x(n)rn 符合绝对可和的收敛条件,即
x(n)r n
x=
时,x(n) 的 z 变换才有意义。对序列 x(n) ,其 z 变换 X (z)收
敛的所有 z 的集合称为 X (z)的收敛域,简记为 ROC
X (z) x(n)zn x(0) x(1)z1 x(2)z2 x0
上式是序列 x(n) 的单边 z 变换。
n<0 时样点均为零的序列称为因果序列,对因果序 列,其双边 z 变换与单边 z 变换相同。
单边 z 变换定义式表明,序列的单边 z 变换是复变 量 z 的负幂级数,该级数的系数即是序列 x(n) 本身。
1、 周期单位冲激串的傅里叶变换
周期单位冲激串,如图(a)所示。该函数在研
究信号的采样问题中经常用到,称为狄拉克梳状函数
或理想采样函数,用数学公式表示为
p(t) (t nT ) n
在 2.3 节中已得到,其傅里叶级数为 p(t) 1 ejkt
T k
上式表明,周期单位冲激串的傅里叶级数中,只包 含位于 0,0 ,20 ,…,k0 ,…处的频率分量, 每个频率分量的大小相等且都等于 1 。
两者进行相乘,如图(c) 所示,相乘结果 xS (t) x(t) p(t) 称为 x(t) 的采样信号(sampled signal),如 图(d)所示。xS (t) 中各分量的冲激强度构成的序列为 x(t) 的样本 x(n) 。
设采样间隔为TS ,采样角频率S
2
f
2 TS
。由采
样过程,有
xS (t) x(t) p(t)
为书写方便,对序列 x(n) 取 z 变换和对 X (z)取逆 z 变换常常记为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散时间信号及系统的DTFT
离散时间信号及系统的z变换
DFT的表达式
连续时间信号机系统的Fourier变换
时域-系统的因果性及稳定性P21、P32、P48 z域-系统的因果性及稳定性P110
抽样时间信号的频域表示P142
抽样离散信号与原连续信号的时域关系P150
连续信号、采样时间信号与离散信号的频谱关系P157
DTFT的对称性质P56
DTFT的理论及性质P59
DTFT变换对P62
DTFT与原连续信号的频谱关系P147
离散Fourier级数DFS性质P550
DFT性质P576
线性循环卷积P576
重叠保留法、相加法P582
窗函数效应P698
时间依赖Fourier变换P714 Decimation in Time P640、P645 Decimation in Frequency P649、P651
z-Transform变换对P104
z-Transform性质P126
LTI的典型单位冲激响应P31
LTI的特征函数及特征根P40、P46 全通系统P274
最小相位系统P280
线性相位系统P291
线性相位系统与最小相位系统的关系P308
FIR滤波器窗函数P469
FIR滤波器最佳逼近P486
降采样频谱P168、P170 升采样频谱P172、P174
随机信号理论Appendix-A 随机信号的自协方差及自相关序列的时域频域性质P65
平稳随机信号的Fourier分析P723
AD噪声分析P193
数字滤波器中的舍入误差噪声P391
有限字长效应P370
系数量化误差P377
FFT有限寄存器长效应P661
极限循环P415。

相关文档
最新文档