薄膜与晶硅的区别(1)

合集下载

晶硅太阳能与薄膜太阳能区别

晶硅太阳能与薄膜太阳能区别

1、晶硅电池:
晶硅电池包括单晶硅和多晶硅,其中多晶硅电池占主导地位,且技术最为成熟。

优势:
晶硅电池的光电转化率更高,国内晶硅电池转化率也已达到了17%到19%。

晶硅电池技术发展得较为成熟,企业不需频繁进行技术改造。

晶硅电池的设备投资较低,国产设备已经可以满足电池片生产线大部分的需求。

晶硅技术的另一优势在于成熟的生产工艺。

目前大部分单晶硅电池片厂商良品率可达98%以上,而多晶硅电池片生产的良品率也在95%以上。

劣势:
产业链工艺复杂,成本大幅度降低的可能不大。

原材料成本波动幅度较大,近年来国际市场上的多晶硅接连上演过山车的行情。

硅产业是一个高污染、高耗能的产业,存在政策调整风险。

2、薄膜电池:
薄膜电池是在玻璃、不锈钢等物质表面附上几微米后的感光材料制成。

优势:薄膜电池用材料少、制造工艺简单、耗能少、可大面积连续生产,并可采用玻璃或不锈钢等低成本材料作为衬底。

薄膜电池现已发展出多种技术路线,其中CIGS(铜铟镓硒)薄膜太阳能技术、柔性薄膜光伏模块技术等已取得阶段性成果,与晶硅电池光电转化率上的差距正在逐渐缩小。

薄膜电池弱光响应较好,因此特别适合应用于沙漠光伏电站。

以薄膜太阳能电池为主要部件的光伏系统,能够很好的实现光伏建筑一体化。

劣势:
薄膜电池的光电转化率偏低,一般只有8%左右。

薄膜电池的设备和技术投资
是晶硅电池的数倍。

薄膜电池组件生产的良率不尽如人意。

非/微晶硅薄膜电池组件的良品率目前只在60%左右。

CIGS电池组主流厂商也只到65%。

晶硅和薄膜组件结构

晶硅和薄膜组件结构

晶硅和薄膜组件结构
晶硅组件是一种太阳能电池组件,由晶硅材料制成。

晶硅材料是一种半导体材料,具有良好的光电转换性能。

晶硅组件的结构包括以下几个部分:
1. 表面玻璃:晶硅组件的顶部覆盖着一层透明的玻璃,用于保护内部的电池芯片。

2. 透明导电膜:在表面玻璃下方,有一层透明导电膜,通常采用氧化锡或氧化铟锡等材料制成,用于收集光电池产生的电流。

3. P-N结:在透明导电膜下方,有一层P-N结,由P型硅和N型硅材料组成。

P型硅材料中的杂质含有三价元素,如硼,使其带正电荷;N型硅材料中的杂质含有五价元素,如磷,使其带负电荷。

P-N结的形成使得晶硅材料具有半导体的特性。

4. 金属电极:在P-N结的两侧,分别连接有金属电极,通常采用铝或银等导电性好的材料制成,用于收集电池产生的电流。

薄膜组件是另一种太阳能电池组件,与晶硅组件相比,薄膜组件的材料更加薄而灵活。

薄膜组件的结构包括以下几个部分:
1. 表面玻璃:薄膜组件的顶部也覆盖着一层透明的玻璃,用于保护内部的薄膜材料。

2. 透明导电膜:在表面玻璃下方,与晶硅组件类似,也有一层透明导电膜,用于收集光电池产生的电流。

3. 薄膜材料:在透明导电膜下方,有一层薄膜材料,通常采用非晶硅、铜铟镓硒(CIGS)或钙钛矿等材料制成。

这些材料具有较高的光电转换效率,同时也具有较高的柔韧性,可以适应不同形状的表面。

4. 金属电极:在薄膜材料的底部,也连接有金属电极,用于收集电池产生的电流。

总体而言,晶硅组件和薄膜组件都是通过光电效应将太阳光转化为电能的装置,它们的结构有些相似,但材料和制备工艺有所不同。

薄膜太阳能电池组件与晶体硅电池组件对比

薄膜太阳能电池组件与晶体硅电池组件对比

薄膜太阳能电池与晶体硅电池特点介绍商用的太阳能电池主要有以下几种类型:单晶硅太阳能电池、多晶硅太阳能 电池和薄膜太阳能电池。

薄膜电池目前常见有:非晶硅电池、碲化镉电池、铜铟 硒电池等。

上述各类型电池主要性能如下表1.1 所示。

表1.1 太阳能电池分类汇总表种 类 电池类型 商用效率实验室效率使用寿命优点单晶硅 14%~17%23% 25 年效率高 技术成熟晶硅电池多晶硅 13%~15%20.3% 25 年 效率较高 技术成熟非晶硅 6%~9% 13% 25 年弱光效应好 成本相对较低碲化镉 8%~10% 15.8% 25 年弱光效应好 成本相对较低薄膜电池铜铟硒 10%~13%15.3% 25 年弱光效应好 成本相对较低单晶硅、多晶硅太阳能电池具有制造技术成熟、产品性能稳定、使用寿命长、光电转化效率相对较高的特点;非晶硅薄膜太阳能电池具有弱光效应好,成本相对于硅太阳能电池较低的优点。

而碲化镉则由于原材料存在较严重的环保回收问题;铜铟硒电池则因原材料稀缺性、成品率低,其规模化生产受到限制。

一、非晶硅薄膜与晶体硅的区别1、非晶硅薄膜组件材料和制造工艺对环境友好,易于形成大规模生产能力;2、非晶硅薄膜组件品种多,用途广;3、非晶硅薄膜组件能更好的配合建筑分格,更能体现建筑美观;4、非晶硅薄膜组件具备弱光发电的性能;5、非晶硅薄膜组件透光性好,透光度可从5%到30%;6、非晶硅薄膜组件高温性能好,高温对发电性能的影响比晶体硅的小很多;7、晶体硅具有“热斑效应”,而阴影对非晶硅的影响很小;8、晶体硅组件光电转换效率较非晶硅薄膜组件稍高;9、晶体硅组件占地面积较非晶硅薄膜组件稍少;二、温度对输出功率的影响1、当工作温度为25℃时,两者均无功率损失;2、随着工作温度的不断上升,晶体硅的实际输出功率会出现大幅度下降,下降幅度约为非晶硅的3 倍;3、高温环境下,非晶硅材料的优势尤为明显。

温度系数(%/℃)组件类别开路电压 短路电流 最大功率 非晶硅 -0.34 0.018 -0.19晶体硅 -0.34 0.065 -0.43 三、弱光环境发电量的测试四、“热斑效应”的影响1、对于晶体硅太阳电池,小遮挡即可引起大功率损失,即“热斑效应”;2、阴影遮挡对于薄膜电池的影响要小得多。

薄膜电池与晶体硅电池比较

薄膜电池与晶体硅电池比较

发电成本高是两大类太阳能电池的共性问题晶硅太阳能电池和薄膜太阳能电池是目前光伏市场的两种要产品,晶硅太阳能电池占据市场主流,约占90%左右的市场份额。

由于多晶硅生产工艺的属性决定了其产业链生产环节,尤其是多晶硅提纯中会存在高能耗、一些技术水平不高的企业甚至存在高污染问题。

而在应用中,晶硅太阳电池由于其温度效应和光谱响应范围窄的影响,使本来较高的光电转换效率大打折扣,从而影响光伏组件实际发电量。

薄膜太阳能电池因没有这些缺点应运而生,其不足在于转换效率相对较低,生产工艺复杂,生产设备昂贵,难以实现规模化生产。

发电成本高是两大类太阳能电池的共性问题。

中科院院士、北京大学物理学院教授甘子钊介绍说,薄膜太阳能电池家族主要包括硅基非晶硅(a-Si)、碲化镉(CdTe)、铜铟镓硒(CIGS)三大类薄膜太阳能电池。

铜铟镓硒薄膜太阳能电池具有生产成本较低、能耗低,污染小、不衰减、弱光性能好等特点,光电转换效率居各种薄膜太阳能电池之首,接近多晶硅太阳能电池,而耗材大大低于晶体硅电池,因此,被国际上称为“下一代非常有前途的新型薄膜太阳能电池”。

此外,该电池具有柔和、均匀的黑色外观,是对外观有较高要求建筑物BIPV应用的理想选择,如大型建筑物的玻璃幕墙等,在现代化高层建筑等领域有潜在的广泛市场。

但CIGS要实现大面积量产,提升效率和良品率,是必须攻克的难题。

河南燕垣光伏能源有限公司总工程师陆真冀具体介绍了CIGS薄膜电池的几大优势,他说,CIGS薄膜电池具有更低廉的发电成本,减少了材料消耗,薄膜电池的生产成本普遍低于晶硅电池;更优越的弱光性能同规模组件,薄膜电池一天的发电量比晶硅电池大约超出10%~20%;更加多样化的用途薄膜电池,可以发展出多用途的产品,比如柔性基底电池等等。

因此,也受到业内不少厂商的广泛关注,但主要都是大面积平板CIGS薄膜电池。

太阳能集电管应运而生CIGS太阳能集电管具有高效、廉价、有自主知识产权、设备能够国产化等一系列优点。

太阳能光伏薄膜组件和晶硅组件在非洲加纳的发电效果对比报告

太阳能光伏薄膜组件和晶硅组件在非洲加纳的发电效果对比报告

薄膜组件和晶硅组件在加纳的发电效果对比报告xxxxxx公司xxxxxxx研究院2023年06月一、项目所在地1.地理位置加纳1000MWp太阳能光伏地面电站位于加纳北部地区Tamale市西南侧36km,Kusawgu一带,场区处于国道Yapei至Tamale北侧,距离Tamale市约36km,距离Yapei市区7km。

场区中心位于西经1°6'39"、北纬9°11'49",场区海拔高度在120~135m 之间,地势平坦。

站址区紧邻Tamale至Yapei国道。

首期装机为150MWp。

2.气候特征加纳属热带气候,分雨季和旱季。

5-10月为雨季,11-4月为旱季。

3-4月气温最高,为23-35℃,最高可达43℃;8-9月较凉爽,为22-27℃,最低纬度15℃左右。

西南部年均降水量是1200-1800mm,北部600-1200mm。

空气湿度较大,保持在90%左右。

3.光照资源加纳是非洲太阳能资源较丰富的国家,太阳总辐射的空间分布总体分布趋势:总体来说,北部年值高于南部,散射辐射比例为北部小于南部。

北部地区年太阳总辐射量为5.3kWh/m2/d,除西部和南部沿海地区年太阳总辐射小于5kWh/m2/d以外,其他地区均在5kWh/m2/d以上。

其中,位于加纳最北部的上东与上西地区辐射量为 5.3-5.6kWh/m2/d,属加纳全国总辐射最多地区,其中上西地区年总量达5.6kWh/m2/d为加纳最高。

布朗阿哈福地区、阿萨帝地区等南部区域日照辐射量为低于5kWh/m2/d,西部个别地区低于4.6kWh/m2/d,尤其阿桑克兰瓜、恩奇一带低至3.1kWh/m2/d,为全国最低值区。

加纳太阳能总辐射及散射空间分布图见下图。

从宏观上看,本项目场址位于北部Tamale地区,在加纳全国境内太阳能资源较为丰富,散射比值较小,仅次于上东与上西地区,具备较大开发价值。

加纳太阳能资源分布图Tamale市位于加纳北部地区,太阳总辐射年总量为6800MJ/m2左右,大部分地区属于“资源很丰富区”。

晶硅组件与薄膜组件在光伏电站应用差异及发电效果对比

晶硅组件与薄膜组件在光伏电站应用差异及发电效果对比

晶硅组件与薄膜组件在光伏电站应用差异及发电效果对比传统能源存储量有限,不能过度开发使用,各国都积极推广可再生能源,希望改变能源结构,其中太阳能成为新能源中的焦点。

本文对光伏电站系统做了简单介绍,并就在电站设计中,对使用的晶硅组件与双结硅基薄膜组件产生的差异做了分析,同时对两种组件产品在发电输出上做了数据比较。

根据分析结果和实例可以看出,晶硅组件和双结硅基薄膜组件产品各具优缺点,需根据实际情况进行选用。

一、引言:传统能源日益紧张,各国都投入更大的人力和物力研究开发新的再生能源。

如何能够更加合理使用能源,提高能源的利用效率变得比以往更加具有现实和长远的意义。

太阳能因其具有资源丰富,分布广泛,绿色环保等优点,成为新能源中的焦点。

如今太阳能一般用作发电,在各国政府推出各种利好政策的激励下,大型地面电站在近几年被大力推广。

如何有效的降低光伏电站的系统建设成本,提高系统发电效率,成为光伏企业考虑的主要方向。

本文主要对传统的多晶硅组件和双结硅基薄膜组件在光伏电站系统中的差异表现进行分析,并对安装在同一地区光伏电站中的晶硅组件和双结硅基薄膜组件的发电数据做了对比。

二、光伏发电系统的工作原理太阳能光伏发电系统有很多类型,这里以太阳能光伏并网大型地面电站发电系统为例进行介绍。

光伏地面电站发电系统简化后如图1所示,由太阳能电池阵列,并网逆变器,并网保护装置,以及连接这些设备的布线及汇流箱,安装在交流侧的电表,升压变压器等构成。

太阳能电池产生直流电,直流电通过并网逆变器转换为交流电后并入电网,可以与电力公司提供的交流电一起使用。

图1 并网型光伏地面电站系统简化图太阳能组件是由数十个太阳能电池单元进行封装构成,太阳能组件阵列是由若干个太阳能电池组件串联及并联连接构成。

光伏系统的容量是由太阳能电池组件的最大输出功率之和来表示的。

系统的输出功率取决于辐射照度和太阳能电池单元的温度。

[1]逆变器的作用是将太阳能组件阵列产生的直流电转换成与电力公司供给的相同电压和频率的交流电。

第三代太阳能技术高聚光HCPV与聚光CPV附股

第三代太阳能技术高聚光HCPV与聚光CPV附股

第三代太阳能技术高聚光HCPV与聚光CPV 附股使用晶硅电池和薄膜电池进行光电转换,分别是第一、第二代太阳能利用技术,均已得到了广泛应用。

利用光学组件将太阳光汇聚后,再进行利用发电的聚光太阳能技术,即高效的CPV系统发电,被认为是太阳能发电未来发展趋势的第三代技术。

与前两代电池相比,CPV采用多结的III-V族化合物电池,具有大光谱吸收、高转换效率等优点。

聚光型太阳能(ConcentratorPhotovoltaic,CPV)是指将汇聚后的太阳光通过高转化效率的太阳能电池直接转换为电能的技术,CPV是聚光太阳能发电技术中最典型的代表。

与晶硅和薄膜型平板式太阳能发电系统相比,CPV因其高转换效率和小得多的半导体材料用量,是最具有发展成为大型支撑电源潜力的太阳能发电方式。

通过简单复制的规模化部署,单一CPV电厂可以轻易达到MW 级规模,未来这一数字甚至有望达到100MW。

HCPV就是高聚光太阳能,高聚光太阳能(HCPV)与聚光(CPV)太阳能技术是通过聚光的方式把一定面积上的太阳光通过聚光系统会聚在一个狭小的区域(焦斑),太阳能电池仅需焦斑面积的大小即可,从而大幅减太阳能电池的用量。

一、CPV系统优势1、CPV系统具有转换率优势和耐高温性能。

硅电池的理论转换效率大概为23%,单结的砷化镓电池理论转换效率可达27%,CPV采用的多结的III-V族电池对光谱进行了更全面的吸收,其理论转换率可超过50%。

即使考虑到聚光和追踪所产生的误差损失,目前的CPV系统转换效率可达25%,高于目前市售晶硅电池17%左右的转换效率。

同时,砷化镓系电池的高温衰减性能强于硅系电池,更适合应用于日照强烈的荒漠地区。

同时,CPV系统的生产过程更加节能环保。

聚光倍数越大,所需的光伏电池面积越小,对高达几百倍的HCPV系统来说,硬币大小的转换电池就可转换碗口面积的光能。

在节省半导体材料用量的同时,降低了太阳能发电系统的生产成本和能耗,使CPV具有更短的能量回收期。

谁是王者——薄膜太阳能电池VS晶硅太阳能电池

谁是王者——薄膜太阳能电池VS晶硅太阳能电池

谁是王者——薄膜太阳能电池VS晶硅太阳能电池在全球⾃然环境不断恶化,化⽯燃料⽇趋减少的情况下,可再⽣能源正变得越来越重要。

普遍认为,太阳能——是最丰富和取之不尽的能源,是⼀种很有前途的能源危机的解决⽅案。

太阳能电池被⽤来吸收太阳能并产⽣电⼒并且避免产⽣环境污染。

⽬前,晶体硅(传统或晶圆为基础的硅)crystalline silicon (conventional or wafer-based Si)太阳能电池占主导地位的太阳能市场的市场份额⼏乎90%。

薄膜为基础的太阳能电池只占约10%的市场份额,但预计将迅速增长。

1、特点:第⼀代太阳能电池,单晶硅(c-Si)或太阳能电池,传统的太阳能电池,是由晶体硅做成的。

晶体硅太阳能电池包括基于单晶硅太阳能电池(单晶硅)和多晶硅(多晶硅)半导体材料。

对于太阳能电池,硅具有许多优点,包括⽆限量,⽆毒性,长期稳定,成熟的⽣产,⾼效率。

晶硅分为单晶硅和多晶硅,两者的实验室转换效率能达到20%以上,量产的话也在18%左右,单晶硅可能到20%;优势是转换效率⾼,单⽚组件容量⼤,同等规模占地⼩。

缺点是⽣产⼯艺较复杂,不能弯曲、重量⼤,弱光性差,⾼温下发电量下降等等。

薄膜转换效率量产6-8%;CIGS铜铟镓硒,实验室20%,量产应该有13%以上,GaAs砷化镓,实验室的⾼效率能达50%,量产能达到20-30%,还有碲化镉电池,基本⽆量产。

所谓薄膜技术就是在真空⾼温的环境下,将可吸收光的元素沉积/溅射在衬底上。

如果衬底是柔性的,那么就可做成柔性太阳能组件。

如果衬底是玻璃的,在制作过程中有⼀道⼯序是激光划刻,可以加密激光化刻的密度,从⽽做成透光组件。

优点⽣产⼯艺简单,弱光性好,组件可以做成透光的。

缺点是能量产的⾮晶硅转换效率差,单⽚组件容量⼩,同等规模占地⼤。

2、市场占有情况我们得从从⽬前的情况来看,尤其是经过了2012-2013的光伏产业低迷期,晶硅电池占据着全球市场90%的份额,薄膜仅仅10%的占有率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优点
缺点
目前产品趋势 每平米装机容量 相同功商业电站 土地成本低的地区(沙漠),节能建 及高土地成本的城市电站 筑及外立面上,曲面建筑 1、电池转化效率高 2、发电性能稳定 3、安装方式简单 4、收益高 1、晶硅电池高能耗的问 题,每瓦太阳能晶硅电池在 一年半的时间所产生的电能 已能够覆盖生产过程消耗的 能量 2、不适合应用于曲面安装 光伏发电主流产品 160W 基本持平 简单 好 1、相同遮蔽面积下功率损失较小 2、有较佳的功率温度系数 3、厚度较晶硅太阳能电池薄 4、照度相同下较晶硅损失功率少 5、可与建材整合性运用 1、薄膜转化效率低,提升电池转化 效率的难度大 2、生产线一次性投入投入大 3、需要的安装面积大 4、稳定性差 光伏发电非主流产品 120W 基本持平 较为麻烦 不好(其不稳定性集中体现在其能量 转换效率随辐照时间的延长而变化, 直到数百或数千小时后才稳定。
薄膜与晶硅的区别
项目
全球市场份额 我国产量 转换效率 系统单瓦造价 使用寿命 厚度 质保
晶硅电池
81% 90% 17%-20% 10元/瓦 25年 180-250um 5年材料及工艺质保,10年 90%/25年80%功率输出质 保,系统整体质保3年
薄膜电池
19% 10% 11% 10元/瓦 25年 400-600nm 1年有限产品质保,10年有限功率质 保不低于91.2%,25年有限功率质保 不低于80.7%,系统整体质保1年
相关文档
最新文档