初中数学公式定理大集合_(详细)-初三全

合集下载

(完整版)初中数学几何公式大全

(完整版)初中数学几何公式大全

(完整版)初中数学几何公式大全直线和角度1. 同位角相等定理:若两条直线被一条横切,同位角相等。

同位角相等定理:若两条直线被一条横切,同位角相等。

2. 内错角相等定理:若两条直线被一条横切,内错角相等。

内错角相等定理:若两条直线被一条横切,内错角相等。

3. 同位角内错角互补定理:若两条直线被一条横切,同位角和内错角互为补角(和为180度)。

同位角内错角互补定理:若两条直线被一条横切,同位角和内错角互为补角(和为180度)。

4. 平行线定理:若一条直线与另外两条直线分别平行,则这两条直线也平行。

平行线定理:若一条直线与另外两条直线分别平行,则这两条直线也平行。

5. 直角定理:若两条直线相交且所成的角为直角,则这两条直线相互垂直。

直角定理:若两条直线相交且所成的角为直角,则这两条直线相互垂直。

线段1. 线段中点定理:若一条线段的中点同时是另一条线段的中点,则这两条线段等长。

线段中点定理:若一条线段的中点同时是另一条线段的中点,则这两条线段等长。

2. 线段延长定理:若一条线段的延长线上有一个点,与线段的两个端点分别构成等长线段,则这两个线段等长。

线段延长定理:若一条线段的延长线上有一个点,与线段的两个端点分别构成等长线段,则这两个线段等长。

三角形1. 三角形内角和定理:一个三角形的内角和为180度。

三角形内角和定理:一个三角形的内角和为180度。

2. 等腰三角形定理:若一条三角形的两条边等长,则这两条边所对的两个角也相等。

等腰三角形定理:若一条三角形的两条边等长,则这两条边所对的两个角也相等。

3. 全等三角形定理:若两个三角形的对应边和对应角分别相等,则这两个三角形全等。

全等三角形定理:若两个三角形的对应边和对应角分别相等,则这两个三角形全等。

4. 直角三角形定理:若一个三角形有一个直角,则它的斜边的平方等于两个直角边的平方和。

直角三角形定理:若一个三角形有一个直角,则它的斜边的平方等于两个直角边的平方和。

初中数学定理公式定律大全

初中数学定理公式定律大全

初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。

-分配率:a×(b+c)=a×b+a×c。

-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。

-幂的乘法:(a^m)×(a^n)=a^(m+n)。

2.平方根公式-设a≥0,则√a×√a=a。

-若a≥0,则√(a^2)=a。

3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。

- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。

4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。

-三角形内角和定理:一个三角形的内角之和等于180°。

-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。

5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。

-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。

-三角形内角和定理:一个三角形的内角之和等于180°。

-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。

6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。

-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。

-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。

-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。

-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。

7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。

-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。

-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。

(完整版)初一到初三数学必记重要公式定理汇总(大全)

(完整版)初一到初三数学必记重要公式定理汇总(大全)

初中数学定理公式大全1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公义经过直线外一点,有且只有一条直线与这条直线平行8、若是两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论 1 直角三角形的两个锐角互余19、推论 2 三角形的一个外角等于和它不相邻的两个内角的和20、推论 3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公义 (SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公义 (ASA) 有两角和它们的夹边对应相等的两个三角形全等24、推论 (AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公义 (SSS)有三边对应相等的两个三角形全等26、斜边、直角边公义(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理 1 在角的均分线上的点到这个角的两边的距离相等28、定理 2 到一个角的两边的距离相同的点,在这个角的均分线上29、角的均分线是到角的两边距离相等的所有点的会集30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边同等角 )31、推论 1 等腰三角形顶角的均分线均分底边并且垂直于底边32、等腰三角形的顶角均分线、底边上的中线和底边上的高互相重合33、推论 3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判判定理若是一个三角形有两个角相等,那么这两个角所对的边也相等(等角同等边 )35、推论 1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,若是一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直均分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直均分线上41、线段的垂直均分线可看作和线段两端点距离相等的所有点的会集42、定理 1 关于某条直线对称的两个图形是全等形43、定理 2 若是两个图形关于某直线对称,那么对称轴是对应点连线的垂直均分线44、定理 3 两个图形关于某直线对称,若是它们的对应线段或延长线订交,那么交点在对称轴上45、逆定理若是两个图形的对应点连线被同一条直线垂直均分,那么这两个图形关于这条直线对称46 、勾股定理直角三角形两直角a、 b 的平方和、等于斜 c 的平方,即 a2+b2=c247 、勾股定理的逆定理若是三角形的三a、 b、 c 有关系 a2+b2=c2,那么个三角形是直角三角形48 、定理四形的内角和等于360°49 、四形的外角和等于360°50 、多形内角和定理n 形的内角的和等于(n-2) ×180°51 、推任意多的外角和等于360°52 、平行四形性定理 1 平行四形的角相等53 、平行四形性定理 2 平行四形的相等54 、推在两条平行的平行段相等55 、平行四形性定理 3 平行四形的角互相均分56 、平行四形判判定理 1 两角分相等的四形是平行四形57 、平行四形判判定理 2 两分相等的四形是平行四形58 、平行四形判判定理 3 角互相均分的四形是平行四形59 、平行四形判判定理 4 一平行相等的四形是平行四形60 、矩形性定理 1 矩形的四个角都是直角61 、矩形性定理 2 矩形的角相等62 、矩形判判定理 1 有三个角是直角的四形是矩形63 、矩形判判定理 2 角相等的平行四形是矩形64 、菱形性定理 1 菱形的四条都相等65 、菱形性定理 2 菱形的角互相垂直,并且每一条角均分一角66 、菱形面 =角乘的一半,即 S=(a×b) ÷267 、菱形判判定理 1 四都相等的四形是菱形68 、菱形判判定理 2 角互相垂直的平行四形是菱形69 、正方形性定理 1 正方形的四个角都是直角,四条都相等70 、正方形性定理 2 正方形的两条角相等,并且互相垂直均分,每条角均分一角71 、定理 1 关于中心称的两个形是全等的72 、定理 2 关于中心称的两个形,称点都称中心,并且被称中心均分73 、逆定理若是两个形的点都某一点,并且被一点均分,那么两个形关于一点称74 、等腰梯形性定理等腰梯形在同一底上的两个角相等75 、等腰梯形的两条角相等76 、等腰梯形判判定理在同一底上的两个角相等的梯形是等腰梯形77 、角相等的梯形是等腰梯形78 、平行均分段定理若是一平行在一条直上截得的段相等,那么在其他直上截得的段也相等79 、推 1 梯形一腰的中点与底平行的直,必均分另一腰80 、推 2 三角形一的中点与另一平行的直,必均分第三81 、三角形中位定理三角形的中位平行于第三,并且等于它的一半82 、梯形中位定理梯形的中位平行于两底,并且等于两底和的一半L=(a+b) ÷2S=L×h83 、 (1)比率的基本性:若是 a:b=c:d,那么 ad=bc若是 ad=bc,那么 a:b=c:d84 、 (2)合比性:若是 a/b=c/d,那么 (a ±b)/b=(c ±d)/d85 、 (3)等比性:若是 a/b=c/d= ⋯=m/n(b+d+⋯+n≠0),那么 (a+c+ ⋯+m)/(b+d+ ⋯+n)=a/b86 、平行分段成比率定理三条平行截两条直,所得的段成比率87 、推论平行于三角形一边的直线截其他两边(或两边的延长线 ),所得的对应线段成比率88 、定理若是一条直线截三角形的两边(或两边的延长线 )所得的对应线段成比率,那么这条直线平行于三角形的第三边89 、平行于三角形的一边,并且和其他两边订交的直线,所截得的三角形的三边与原三角形三边对应成比率90 、定理平行于三角形一边的直线和其他两边(或两边的延长线 )订交,所构成的三角形与原三角形相似91 、相似三角形判判定理 1 两角对应相等,两三角形相似(ASA)92 、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 、判判定理 2 两边对应成比率且夹角相等,两三角形相似(SAS)94 、判判定理 3 三边对应成比率,两三角形相似(SSS)95 、定理若是一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比率,那么这两个直角三角形相似96、性质定理 1 相似三角形对应高的比,对应中线的比与对应角均分线的比都等于相似比97、性质定理 2 相似三角形周长的比等于相似比98、性质定理 3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的会集102、圆的内部可以看作是圆心的距离小于半径的点的会集103、圆的外面可以看作是圆心的距离大于半径的点的会集104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直均分线107、到已知角的两边距离相等的点的轨迹,是这个角的均分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同素来线上的三点确定一个圆。

(完整版)初中数学常用公式和定理大全

(完整版)初中数学常用公式和定理大全

初中数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=242b b aca-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =222121.....nx xx xx xn标准差:方差的算术平方根.数据1x 、2x ……, n x 的标准差s ,则s =222121.....nx xx xx xn一组数据的方差越大,这组数据的波动越大,越不稳定。

初中数学公式定理大全

初中数学公式定理大全

初中数学公式定理大全
一、比例
1、比例定义:两个量的比值称为比例。

2、反比例定理:如果两个数中,一个数的倒数与另一个数成正比,则称这两个数成反比。

3、比例的乘法定理:如果两个比例的乘积等于1,则称这两个比例互相等数。

4、比例的加法定理:若两个比例的和为1,则称这两个比例是相等数。

5、三比例定理:若有三个比例a:b:c,他们的和为1,那么
a+b:b+c:c+a=1
二、平行线定理
1、平行线定义:两条直线不相交,且均与同一平行线相平行,则称这两条直线相平行。

2、平行线分割叉定理:若有两条平行线与另一直线相交,则这两条射线所成的四边形的面积是相等的。

3、垂直平分线定理:若有一条直线与另一条直线相垂直,则这二条直线的中垂线所成的四边形的面积是相等的。

4、向量平分定理:若有两条向量,它们的和所成的新向量与该向量成反比,则称这两条向量相平分。

三、三角形定理
1、三角形定义:三点不共线时,连接这三点构成的图形称为三角形。

2、勾股定理:在直角三角形中,斜边的平方等于两条直角边的平方和。

3、相似三角形定理:若两个三角形的各边按比例相等,则称这两个
三角形是相似的。

4、三角形的中线定理:在直角三角形中。

初中数学各种公式(完整版)

初中数学各种公式(完整版)

初中数学各种公式(完整版) 初中数学公式大全1.乘法与因式分解① $(a+b)(a-b)=a^2-b^2$② $(a\pm b)^2=a^2\pm 2ab+b^2$③ $(a+b)(a^2-ab+b^2)=a^3+b^3$④ $(a-b)(a^2+ab+b^2)=a^3-b^3$a^2+b^2=(a+b)^2-2ab$a-b)^2=(a+b)^2-4ab$2.幂的运算性质① $a^1=a$⑥ $a^{-n}=\frac{1}{a^n}$② $a^{\frac{1}{n}}=\sqrt[n]{a}$③ $(a^m)^n=a^{mn}$④ $a^m\times a^n=a^{m+n}$⑤ $\frac{a^m}{a^n}=a^{m-n}$⑦ $a^0=1(a\neq 0)$特别地:$a^{\frac{1}{2}}=\sqrt{a}$3.二次根式① $\sqrt{a^2}=a(a\geq 0)$② $|\pm a|=|a|$③ $\sqrt{ab}=\sqrt{a}\sqrt{b}$④ $\sqrt{a+b}=\sqrt{a}\sqrt{b}(\text{其中}a>0,b\geq 0)$4.三角不等式a|-|b|\leq |a\pm b|\leq |a|+|b|(\text{定理})$;加强条件:$||a|-|b||\leq |a\pm b|\leq |a|+|b|$也成立,这个不等式也可称为向量的三角不等式(其中$a$,$b$分别为向量$a$和向量$b$);a+b|\leq |a|+|b|$;$|a-b|\leq |a|+|b|$;$|a|\leq b\iff -b\leq a\leq b$;a-b|\geq |a|-|b|$;$-|a|\leq a\leq |a|$;5.某些数列前$n$项之和1+2+3+4+5+6+7+8+9+\cdots+n=\frac{n(n+1)}{2}$;1+3+5+7+9+11+13+15+\cdots+(2n-1)=n^2$;2+4+6+8+10+12+14+\cdots+(2n)=n(n+1)$;1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+\cdots+n^2=\frac{n(n +1)(2n+1)}{6}$;1^3+2^3+3^3+4^3+5^3+6^3+\cdots+n^3=\frac{n^2(n+1)^2} {4}$;1\times 2+2\times 3+3\times 4+4\times 5+5\times 6+6\times 7+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}$;6.一元二次方程对于方程:$ax^2+bx+c=0$:①求根公式是$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$,其中$\Delta=b^2-4ac$叫做根的判别式。

初中数学公式定理大集合

初中数学公式定理大集合

初中数学公式定理大集合初中数学是学习数学的基础阶段,其中有许多重要的公式和定理需要掌握。

下面是初中数学公式定理的大集合,详细介绍了每个公式和定理的内容和应用。

希望对你的学习有所帮助。

一、整式的加减乘除法1.加法和减法法则(a+b)+c=a+(b+c)a+b=b+aa+0=aa+(-a)=02.乘法法则a×(b+c)=a×b+a×ca×b=b×aa×1=aa×0=03.除法法则(a+b)÷c=a÷c+b÷c(a×b)÷c=a÷c×b二、一元一次方程与不等式1.方程的定义和性质方程是两个代数式(通常是整式)相等的等式。

方程的解是使方程成立的未知量的值。

2.一元一次方程的解法使用解方程的基本性质,如变量移项,合并同类项,因式分解等来求解。

3.一元一次不等式的解法根据不等式的性质,如加减乘除规则,应用代数方法求解。

4.绝对值不等式的解法根据绝对值的性质,将绝对值不等式转化为条件不等式来求解。

三、一元二次方程与不等式1.一元二次方程的定义和性质形如ax² + bx + c = 0的方程称为一元二次方程。

一元二次方程可以有0、1或2个实数根。

2.一元二次方程的求根公式一元二次方程ax² + bx + c = 0的解是x = (-b ± √(b² - 4ac)) / (2a)。

3.一元二次不等式的解法将不等式转化为二次方程,然后解方程来求解。

四、平面图形的面积和体积1.三角形的面积公式三角形的面积等于底乘以高的一半,即S = 1/2bh。

2.长方形的面积公式长方形的面积等于长度乘以宽度,即S = lw。

3.正方形的面积公式正方形的面积等于边长的平方,即S=a²。

4.梯形的面积公式梯形的面积等于上底加下底乘以高的一半,即S=(a+b)h/25.圆的面积公式圆的面积等于半径的平方乘以π,即S=πr²。

七到九年级数学公式和定理

七到九年级数学公式和定理

七到九年级数学公式和定理在七到九年级的数学学习中,我们需要掌握许多基础的数学公式和定理,这些内容不仅是我们日后学习数学的基础,也是我们理解数学世界的基石。

一、代数公式1. 分配律:a(b+c)=ab+ac2. 结合律:a+(b+c)=(a+b)+c3. 交换律:a+b=b+a4. 同类项合并:ax+bx=(a+b)x5. 因式分解:ab+ac=a(b+c)6. 平方公式:(a+b)=a+2ab+b7. 差平方公式:a-b=(a+b)(a-b)8. 两个平方差:a-b=(a+b)(a-b)9. 一次方程:ax+b=c10. 二次方程:ax+bx+c=0二、几何公式和定理1. 直角三角形勾股定理:c=a+b2. 等腰三角形定理:两底角相等3. 等边三角形定理:三个内角相等4. 相似三角形定理:对应角相等5. 圆的面积和周长公式:S=πr;L=2πr6. 直线平行定理:同侧内角相等,同侧外角相等7. 三角形内角和定理:三角形内角和为180°8. 三角形外角和定理:三角形外角和等于其余两个内角的和三、概率公式和定理1. 事件的概率:P(A)=n(A)/n(S)2. 加法原理:P(A∪B)=P(A)+P(B)-P(A∩B)3. 乘法原理:P(A∩B)=P(A)×P(B|A)4. 条件概率:P(B|A)=P(A∩B)/P(A)5. 独立事件:P(A∩B)=P(A)×P(B)6. 全概率公式:P(B)=P(A)P(B|A)+P(A)P(B|A)+...+P(A)P(B|A)以上是七到九年级数学公式和定理的部分内容,通过掌握这些基础知识,我们可以更好地理解和应用数学知识。

同时,我们也需要不断地练习和巩固,才能真正地掌握这些公式和定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数考点一、实数的概念及分类1、实数的分类正整数整数零有理数负整数正实数实数分数实数零负实数无理数(无限不循环小数)2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值1、相反数一个实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个正数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a0)0a aa2;注意a 的双重非负性:-a (a <0)a3、立方根如果一个数的立方等于a ,那么这个数就叫做 a 的立方根(或 a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法把一个数写做na 10的形式,其中1||10a ,n 是整数,这种记数法叫做科学记数法。

考点五、实数大小的比较1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a 、b 是实数,,b aba,0b a bab a b a 0(3)求商比较法:设a 、b 是两正实数,;1;1;1b aba b aba b a ba (4)绝对值比较法:设a 、b 是两负实数,则b aba 。

(5)平方法:设a 、b 是两负实数,则b aba 22。

考点六、实数的运算1、加法交换律a b b a 2、加法结合律)()(c bac b a 3、乘法交换律ba ab4、乘法结合律)()(bc a c ab5、乘法对加法的分配律acabc ba )(6、实数的运算顺序先算乘方开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

代数式考点一、整式的有关概念1、代数式用运算符号把数或表示数的字母连接而成的运算式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314,这种表示就是错误的,应写成b a 2313。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235是6次单项式。

考点二、多项式1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、添(去)括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数n m aaanm nm),(都是正整数)(n m a a m nnm )()(都是正整数n b a ab nnn22))((bab a b a 2222)(bab ab a 2222)(bab ab a 0()1(0)a a11()(0)a aa 整式的除法:)0,,(an m aaanm nm都是正整数注意:(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

(3)计算时要注意符号,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)),0(1);0(10为正整数p a aaa app(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

考点三、因式分解1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

2、因式分解的常用方法(1)提公因式法:)(c b a ac ab (2)运用公式法:))((22b a b a ba 222)(2b a b ab a222)(2b a bab a3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。

(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止。

考点四、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成BA 的形式,如果B 中含有字母,式子BA 就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则;;bc ad cd ba dc ba bd ac dc ba );()(为整数n ba bann n;cba cb ca bdbcad dc ba 考点五、二次根式1、二次根式式子)0(aa 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。

2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

4、二次根式的性质(1))0()(2a a a )0(aa (2)aa 2)0(aa (3))0,0(b a b a ab (4)(0,0)a a ab bb5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

方程(组)考点一、一元一次方程的概念1、方程含有未知数的等式叫做方程。

2、方程的解能使方程两边相等的未知数的值叫做方程的解。

3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0bax叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。

考点二、一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式)0(02ac bx ax,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

考点三、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x2)(的一元二次方程。

根据平方根的定义可知,a x是b 的平方根,当0b 时,b a x ,b a x ,当b<0时,方程没有实数根。

2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式222)(2b a bab a ,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b xbbx x。

3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02a c bx ax 的求根公式:)04(2422acbaacb bx4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

考点四、一元二次方程根的判别式根的判别式一元二次方程)0(02acbx ax 中,ac b42叫做一元二次方程)0(02a cbx ax 的根的判别式,通常用“”来表示,即acb 42考点六、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。

2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

相关文档
最新文档