6.2立方根教学设计教学导案

合集下载

人教版数学七年级下册6.2立方根教学设计

人教版数学七年级下册6.2立方根教学设计
-已知一个立方体的体积为64立方厘米,求其边长。
2.能力提升题:
-计算√27、√64、√125的值,并说明它们分别对应哪个整数的立方。
-如果一个立方体的体积是1000立方厘米,求其表面积。
3.实践应用题:
-生活中有哪些物体的体积可以用立方根来表示?请举例说明。
-利用立方根的概念,设计一个实际问题的解决方案,并解释其原理。
2.提高题:计算带分数的立方根,如√2.5、√4.5等。
3.应用题:解决实际问题,如已知一个立方体的体积,求其边长。
4.拓展题:研究立方根的性质,如证明一个数的立方根唯一性。
(五)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学内容,并进行以下归纳:
1.立方根的定义:一个数的立方根,就是使得这个数等于其立方的那个数。
(二)过程与方法
1.通过引入生活中的实际例子,激发学生学习立方根的兴趣,引导学生主动探究立方根的性质和计算方法。
2.采用小组合作、讨论交流等形式,培养学生独立思考、合作解决问题的能力。
3.设计丰富的练习题,巩固学生对立方根知识的掌握,提高学生的运算速度和准确率。
4.引导学生运用类比、联想等方法,将立方根与已学的平方根、算术平方根等知识进行联系,形成知识体系。
1.请举例说明立方根在生活中的应用。
2.请思考立方根与平方根的联系和区别。
3.如何计算一个数的立方根?请给出具体步骤。
要求学生在规定时间内进行讨论,并选派代表进行汇报。我在此过程中进行巡回指导,解答学生的疑问。
(四)课堂练习
在课堂练习环节,我会设计以下四类题目,帮助学生巩固所学知识:
1.基础题:计算简单立方根,如√8、√27等。
4.拓展探究题:
-研究立方根的性质,例如:证明一个数的立方根唯一性,讨论立方根的有界性。

人教版七年级下册6.2立方根教学设计 (2)

人教版七年级下册6.2立方根教学设计 (2)

人教版七年级下册6.2立方根教学设计教学目标
1.理解立方根的概念,掌握求解立方根的方法。

2.运用立方根解决实际问题。

3.激发学生对立方根的兴趣,并提高他们的数学思维能力和解决问题的
能力。

教学内容
1.立方根的概念。

2.立方根的计算方法。

3.立方根在实际问题中的应用。

教学重难点
•立方根的概念和计算方法。

•立方根在实际问题中的应用。

教学方法
•演示法
•讲授法
•实践探究法
教学过程
Step 1 引入
通过引入一个问题引起学生对立方根的兴趣,如:小明家的房屋体积为27000立方米,问房屋的边长是多少米?
Step 2 概念讲解
讲解立方根的概念,引导学生理解,如:如果一个数的立方等于另一个数,那
么这个数就是另一个数的立方根。

Step 3 计算方法
讲解立方根的计算方法,如:开立方的方法、乘法公式法等,让学生学会如何
求解立方根。

Step 4 实践探究
结合实际问题,让学生自己动手尝试解决问题,如:一个球的体积为5000立
方厘米,问球的半径是多少?
Step 5 课堂练习
让学生在课堂上进行练习,加深对立方根的理解和掌握。

教学评价及展望
1.通过学生的实际操作和探究,对立方根的概念和计算方法有了更深入
的了解和掌握。

2.通过课堂练习,学生的应用能力和解决问题的能力得到了提高。

3.未来,可以结合更多的实际问题,帮助学生更好地理解和应用立方根。

七年级数学下册(人教版)6.2立方根教学设计

七年级数学下册(人教版)6.2立方根教学设计
七年级数学下册(人教版)6.2立方根教学设计
一、教学目标
(一)知识与技能
1.理解立方根的概念,掌握立方根的表示方法,能正确书写立方根的数学符号。
2.学会使用计算器或手算求解简单正整数的立方根,并掌握其基本性质。
3.能够运用立方根解决实际问题,如体积、密度等计算,以及日常生活中的一些问题。
4.通过立方根的学习,加深对整数、平方根概念的理解,形成完整的数系概念。
6.联系实际,学以致用:设计一些与生活密切相关的实际问题,让学生运用立方根知识进行解决,增强学生的数学应用意识。
7.情感教育,全面发展:在教学过程中,关注学生的情感态度,通过鼓励、赞扬等方式,培养学生的自信心和面对挑战的勇气。
四、教学内容与过程
(一)导入新课
在课堂的开始,我将以一个简单的数学魔术作为导入,激发学生的好奇心。我会拿出一个立方体模型,并告诉学生这个立方体的体积是8立方厘米,然后提问:“同学们,你们知道这个立方体的边长是多少厘米吗?”通过这个问题,引导学生思考立方体边长与体积之间的关系。
2.立方根的计算,特别是非整数的立方根计算,是本章节的难点。学生需要掌握计算方法和技巧,并能应用于解决实际问题。
-教学设想:设计不同难度的计算题,从简单的整数立方根计算开始,逐步过渡到小数和分数的立方根计算。通过示例演示和练习,帮助学生掌握计算方法。
3.立方根与平方根的关系及应用是另一个重点。学生需要理解两者之间的联系,并能灵活运用。
(三)学生小组讨论
在讲授完新知后,我会组织学生进行小组讨论。每个小组都会得到几个立方根的计算题,包括整数、小数和分数的立方根。我会要求学生在小组内共同探讨解题方法,并尝试找出立方根计算的规律。
在这个过程中,我会巡回指导,解答学生的疑问,并引导学生发现立方根与平方根的关系。此外,我还会鼓励学生分享自己的解题心得,以促进小组间的交流与学习。

人教版数学七年级下册6.2《立方根》教学设计

人教版数学七年级下册6.2《立方根》教学设计

人教版数学七年级下册6.2《立方根》教学设计一. 教材分析人教版数学七年级下册6.2《立方根》是初中数学中重要的一部分,主要让学生了解立方根的概念,掌握求立方根的方法,并能够应用立方根解决实际问题。

本节内容在学生的数学知识体系中起到了承上启下的作用,为后续学习四次根式等知识打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数、实数等知识,对数的概念有一定的了解。

但学生对立方根的概念和求法还比较陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对负数的立方根存在疑惑,需要通过具体例子进行解释和引导。

三. 教学目标1.了解立方根的概念,掌握求立方根的方法。

2.能够应用立方根解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.立方根的概念和求法。

2.负数的立方根的理解。

3.应用立方根解决实际问题。

五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等,通过引导、讲解、实践、讨论等方式,帮助学生理解和掌握立方根的知识。

六. 教学准备1.PPT课件。

2.练习题和实际问题。

3.教学工具,如黑板、粉笔等。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如“一个正方体的体积是27立方米,求这个正方体的棱长。

”引导学生思考和讨论,引出立方根的概念。

2.呈现(15分钟)讲解立方根的定义,通过PPT展示立方根的图像,让学生直观地理解立方根的概念。

同时,讲解如何求一个数的立方根,以及负数的立方根。

3.操练(15分钟)让学生进行一些立方根的练习题,巩固所学知识。

练习题包括求一个数的立方根,以及判断一个数的立方根的正负等。

4.巩固(10分钟)通过一些实际问题,让学生应用立方根的知识解决问题,巩固所学内容。

如“一个立方体的体积是-8立方米,求这个立方体的棱长。

”5.拓展(10分钟)讲解立方根在实际生活中的应用,如计算物质的体积、求解方程等。

引导学生思考和讨论,培养学生的数学思维能力。

人教版数学七年级下6.2《立方根》同步教学设计

人教版数学七年级下6.2《立方根》同步教学设计
2.部分学生对计算器的依赖性较强,可能会影响立方根的手工计算能力。教师应引导学生合理使用计算器,注重培养运算技巧。
3.学生在解决实际问题时,可能难以将立方根知识与其他数学知识相结合。教师应通过丰富多样的教学活动,帮助学生建立知识间的联系,提高解决问题的能力。
4.学生的学习兴趣和动机对立方根的学习效果有重要影响。教师应关注学生的情感需求,激发学生的学习兴趣,提高学习积极性。
2.知识传授,重点突破
-使用直观教具,如立方体模型,帮助学生建立立方根的直观形象。
-通过数学推导,引导学生理解立方根的性质,并掌握计算方法。
-对计算过程中常见的错误进行归纳和讲解,帮助学生规避误区。
3.实践应用,难点攻克
-设计具有挑战性的练习题,让学生在解决问题中深化对立方根的理解。
-结合实际问题,如科学实验中的密度计算,指导学生运用立方根知识,提高应用能力。
人教版数学七年级下6.2《立方根》同步教学设计
一、教学目标
(一)知识与技能
1.理解立方根的概念,知道立方根与平方根的区别与联系,能够准确地区分和运用。
2.学会计算立方根,掌握利用计算器求解立方根的方法,提高解题速度和准确性。
3.能够运用立方根解决实际问题,如体积、密度等计算,培养学以致用的能力。
4.掌握立方根的性质,如正数的立方根为正数,负数的立方根为负数,0的立方根为0等,并能灵活运用。
-立方根性质的推导和证明。
-立方根计算过程中的错误理解和操作。
-将立方根知识应用于解决实际问题。
(二)教学设想
针对上述重难点,我提出以下教学设想:
1.创设情境,引入新课
-通过生活实例,如体积的计算,让学生感受到立方根的实际意义。
-利用数学问题,如求解一个立方体的体积,激发学生对立方根的好奇心和探究欲望。

人教版七年级下册数学教案设计:6.2立方根

人教版七年级下册数学教案设计:6.2立方根






1.问题: 有多大呢?
2.怎样利用计算器来求一个数的立方根?
3.例:求-5的立方根(保留三个有效数字)
小组内个人展示先学成果,相互交流,明确答案。
对疑难问题,小组内共同讨论完成。
提出质疑,组长解答。




教师指导学生归纳总结,并适时点拨、评价。
1.用递缩法求大致范围。
2.用计算器求数的立方根的步骤及方法:输入 → 被开方数 → = → 根据显示写出立方根.
过程与方法:能用有理数估计一个无理数的大致范围,使学生形成估算的意识.
情感态度与价值观:培养学生的估算能力。
重点
用有理数估计一个无理的大致范围。
教具
三角板
难点
用有理数估计一个无理的大致范围。
学具
三角尺
教师活动
学生活动





教师抽查学生的前置性作业的完成情况,并听取各小组组长的汇报。
学生展示前置性作业,小组长批改,并向老师汇报作业中存在的问题。
课时教案
课题
6.2立方根(1)
第1课时
教学目标
知识与技能:了解立方根的概念,初步学会用根号表示一个数的立方根.
过程与方法:了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.
情感态度与价值观:让学生体会一个数的立方根的惟一性.
重点
立方根的概念和求法。
教具
三角板
难点
立方根与平方根的区别。
学具
三角尺




练习:
P51 1
小结:
本节课你有何收获?
学生独立完成练习,小组长批改,小组内纠正。

教学设计3:6.2 立方根

教学设计3:6.2 立方根

6.2 立方根一.教学目标知识与技能目标1.了解立方根的概念,会用根号表示一个数的立方根.2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.过程与方法目标1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.情感与态度目标:1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.2.学生通过对实际问题的解决,体会数学的实用价值.教学重点立方根的概念及计算.教学难点立方根的求法,立方根与平方根的联系及区别.二、教法学法教学方法:类比法.三、教学过程创设问题情境:内容:一个正方体的体积为8,那么它的棱长是多少啊?如果是64呢?是x呢?(通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,有很快将问题归结为如何确定一个数,从而顺利引入新课.)复习引入、类比学习内容:问题:(1)什么叫一个数a 的平方根?如何用符号表示数a (a ≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?学习新知:一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根( 也 叫做三次方根).如:2是8的立方根,的立是--273,0是0的立方根.(学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于学生类比学习法学习立方根知识.)应用新知:1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?(1)001.0 3=)( ; (2)64273=-)( ; (3)0 3=)(. 答案:(1)0.1;(2)34 ; (3)02议一议: (1)正数有几个立方根?(1个)(2)0有几个立方根(1个)(3)负数呢?(1个)3.想一想:(1) 每个数a 都只有一个立方根,记为“3a ”,读作“三次根号a ”.例如x 3=7时,x 是7的立方根,即37=x ;与数的平方根的表示比较,数的立方根中根号前没有“±”符号,但根指数3不能省略.(2)正数的立方根是正数;0的立方根是0;负数的立方根是负数.(3)求一个数a 的立方根的运算叫做开立方(extrction of cubic root ) , 其中a 叫做被开方数.开立方与立方互为逆运算.巩固练习:例1求下列各数的立方根:(1)27-;(2)1258 ; (3)833 ; (4)216.0 ; (5)5-. 解:(1)因为2733=-)(-,所以27-的立方根是3-,即3273=--; (2)因为1258523=⎪⎭⎫ ⎝⎛,所以1258的立方根是52,即5212583=; (3)因为833827233==)(,所以833的立方根是23,即238333=; (4)因为216.06.03=)(,所以216.0的立方根是6.0,即6.0216.03=;(5)5-的立方根是35-. 例2 求下列各式的值:(1);83- (2);064.03 (3)31258-; (4)()339. 解:(1)38-=()2233-=-; (2)3064.0=()4.04.033=; (3)31258-=525233-=⎪⎭⎫ ⎝⎛-; (4)()339=9. 随堂练习1.求下列各数的立方根:().1656464125.03333333 ;;-;;- 答案:0.5;-4;-4;5;162.通过上面的计算结果,你发现了什么规律?想一想: (1)3a 表示a 的立方根,那么()33a 等于什么?33a 呢?(a ) (2)3a -与3a -有何关系?(相等)课时小结:内容:1.了解立方根的概念,会用三次根号表示一个数的立方根,能用立方运算求一个数的立方根.2.在学习中应注意以下5点:(1)符号3a 中根指数“3”不能省略;(2)对于立方根,被开方数没有限制,正数、零、负数都有一个立方根;(3)平方根和立方根的区别:正数有两个平方根,但只有一个立方根;负数没有平方根,但却有一个立方根;(4)灵活运用公式:(3a )3=a , a a 33,3a -=3a -;(5)立方与开立方也互为逆运算.我们也可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根.作业布置习题6.2。

(新人教版)数学七年级下册:6.2《立方根》教案(3份)

(新人教版)数学七年级下册:6.2《立方根》教案(3份)

《立方根》教案一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a”表示,读作“三次根号a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.(四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0 引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0.让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?.练一练:抢答1.判断下列说法是否正确,并说明理由.(1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0(6)互为相反数的两个数的立方根也互为相反数.例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测计算:(六)归纳小结:学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗?教师概括:相同点: (1)0的平方根、立方根都有一个是0(2)平方根、立方根都是开方的结果.不同点: (1)定义不同.(2)个数不同.(3)表示方法不同.(4)被开方数的取值范围不同.(七)布置作业827-+《立方根》教案教学目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、让学生体会一个数的立方根的唯一性.4、分清一个数的立方根与平方根的区别.教学重点:立方根的概念和求法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 教学重点/难点
教学重点: 立方根的概念. 教学难点: 1.正确理解立方根的概念. 2.会求一个数的立方根. 3.区分立方根与平方根的不同之处.
3. 教学用具 4. 标签
教学过程
Ⅰ.新课导入
Ⅱ.新课讲解
1.请大家先回忆平方根的定义.下面大家能不能再根据平方根的写法来类推立方根的记 法呢?
课堂小结
6.2-立方根-教学设计-教案
———————————————————————————————— 作者: ———————————————————————————————— 日期:
教学准备
1. 教学目标
(一)教学知识点 1.了解立方根的概念,会用根号表示一个数的立方根. 2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算. 3.了解立方根的性质. 4.区分立方根与平方根的不同. (二)能力训练要求 1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思 想. 2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非. (三)情感与价值观要求 当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的 知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯, 能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点 训练学生根的性质.
3.
开立方的定义.平方根与立方根的区别与联系.
5.会求一个数的立方根
课后习题
习题 2.5.
相关文档
最新文档