立方根教案
《立方根》教案教学

《立方根》教案教学教案教学:立方根教学目标:1.知识目标:能够理解和运用立方根的概念,掌握立方根的计算方法;2.能力目标:能够在给定的问题中运用立方根解决实际问题;3.情感目标:培养学生的数学思维、逻辑思维和解决问题的能力。
教学重点:1.立方根的概念;2.立方根的计算方法。
教学难点:1.立方根的计算方法的运用;2.立方根在实际问题中的应用。
教学准备:1.已经准备好的教案;2.课件、教具等教学辅助工具;3.学生的练习册、作业本等。
教学过程:第一步:导入新知识(5分钟)1.利用课件向学生展示一个长方体,引导学生思考立方体的特点;2.提问:什么是立方体?学生回答后,教师给出定义并强调长方体的3个边长是相等的;3.提问:若一个长方体的体积为8,你能否求出它的边长?为什么?学生回答后,教师引出立方根的概念。
第二步:讲解立方根的概念(10分钟)1.向学生解释立方根的定义:一个数的立方根是指这个数的立方等于这个数本身;2.通过课件和实际例子向学生展示立方根的概念,让学生能够理解立方根这个概念的意义。
第三步:讲解立方根的计算方法(15分钟)1.向学生讲解求立方根的基本原理:通过试探和逼近的方法求出一个数的立方根;2.提醒学生立方根的符号是∛;3.让学生通过课件上的示例,理解如何使用计算器来计算立方根;4.引导学生掌握手工计算立方根的方法,例如牛顿法等。
第四步:练习与巩固(20分钟)1.让学生在练习册上完成针对立方根计算方法的练习题,帮助他们巩固所学知识;2.检查学生的答案,解答学生在练习中遇到的问题。
第五步:应用与拓展(20分钟)1.给学生一些关于立方根的实际问题,引导学生通过运用立方根解决实际问题;2.引导学生思考立方根在其他领域的应用,例如建筑、科学等。
第六步:总结与反馈(10分钟)1.让学生简要总结本节课所学内容,再次强调立方根的概念和计算方法;2.随堂测试:出一道与立方根相关的问题,检查学生对所学知识的掌握程度;3.给学生布置相关的课后作业,巩固和拓展所学知识。
立方根教案人教版

立方根教案人教版章节一:立方根的概念引入教学目标:1. 让学生理解立方根的定义。
2. 让学生能够运用立方根的概念解决实际问题。
教学内容:1. 引出立方根的概念,通过实际例子让学生感受立方根的存在。
2. 讲解立方根的性质,如正数的立方根是正数,负数的立方根是负数等。
教学步骤:1. 引入立方根的概念,让学生举例说明。
2. 通过实际问题,让学生运用立方根的概念解决。
章节二:立方根的计算方法教学目标:1. 让学生掌握计算立方根的方法。
2. 让学生能够运用立方根的计算方法解决实际问题。
教学内容:1. 讲解立方根的计算方法,如分数的立方根、小数的立方根等。
2. 通过实际问题,让学生运用立方根的计算方法解决。
教学步骤:1. 讲解立方根的计算方法,让学生进行实际操作。
2. 通过实际问题,让学生运用立方根的计算方法解决。
章节三:立方根的应用教学目标:1. 让学生了解立方根在实际问题中的应用。
2. 让学生能够运用立方根解决实际问题。
教学内容:1. 通过实际问题,让学生了解立方根的应用,如计算物体的体积、计算立方体的表面积等。
2. 讲解立方根在实际问题中的应用方法。
教学步骤:1. 通过实际问题,让学生了解立方根的应用。
2. 讲解立方根在实际问题中的应用方法,让学生进行实际操作。
章节四:立方根的综合训练教学目标:1. 让学生巩固立方根的概念和计算方法。
2. 让学生能够运用立方根解决实际问题。
教学内容:1. 通过练习题,让学生巩固立方根的概念和计算方法。
2. 通过实际问题,让学生运用立方根解决实际问题。
教学步骤:1. 让学生进行立方根的概念和计算方法的练习。
2. 通过实际问题,让学生运用立方根解决实际问题。
章节五:立方根的拓展学习教学目标:1. 让学生了解立方根的拓展知识。
2. 让学生能够运用立方根的拓展知识解决实际问题。
教学内容:1. 讲解立方根的拓展知识,如立方根的运算规律、立方根与平方根的关系等。
2. 通过实际问题,让学生运用立方根的拓展知识解决实际问题。
立方根数学教案

立方根数学教案标题:立方根数学教案一、教学目标:1. 理解立方根的定义,掌握立方根的基本性质。
2. 能够正确计算一个数的立方根,解决与立方根有关的实际问题。
3. 培养学生的逻辑思维能力和空间想象能力。
二、教学重点和难点:重点:理解立方根的定义,掌握立方根的基本性质。
难点:理解和运用立方根的概念解决实际问题。
三、教学过程:1. 引入新课教师可以通过生活中的实例引入新课,比如“一个正方体的体积为27立方米,求其边长是多少?”这样的问题可以引导学生思考并引出立方根的概念。
2. 新课讲解(1)定义:如果一个数的立方等于a,那么这个数就叫做a的立方根,记作$\sqrt[3]{a}$。
(2)基本性质:①正数有一个正的立方根;②负数有一个负的立方根;③零的立方根是零。
3. 练习巩固通过一系列的练习题,让学生熟悉立方根的计算方法,并掌握如何用立方根解决问题。
例如:“求-8的立方根”,“已知一个正方体的体积为64立方米,求其边长”。
4. 课堂小结回顾本节课学习的主要内容,强调立方根的定义和基本性质,以及如何计算立方根。
5. 作业布置设计一些与立方根相关的题目作为课后作业,以便学生进一步理解和掌握所学知识。
四、教学反思:在教学过程中,要注意引导学生主动思考,提高他们的逻辑思维能力和空间想象能力。
同时,要注重理论联系实际,让学生在解决实际问题的过程中加深对立方根的理解。
五、拓展阅读:对于有兴趣的学生,可以推荐他们阅读一些关于立方根的扩展知识,如立方根的历史、应用等,以拓宽他们的视野。
六、教学评估:通过课堂练习、课后作业和测验等方式,对学生的学习情况进行评估,了解他们对立方根的理解程度和应用能力。
《立方根》优质教案

《立方根》优质教案教案内容:一、教学内容本节课的教学内容选自人教版初中数学八年级上册第6章第3节《立方根》。
本节课主要内容包括:立方根的定义,立方根的性质,立方根的运算方法,以及立方根在实际问题中的应用。
二、教学目标1. 理解立方根的概念,掌握立方根的性质和运算方法。
2. 能够运用立方根解决实际问题。
3. 培养学生的逻辑思维能力和创新精神。
三、教学难点与重点1. 立方根的概念和性质。
2. 立方根的运算方法。
3. 立方根在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:笔记本、尺子、圆规、三角板、计算器。
五、教学过程1. 实践情景引入:教师展示一个正方体模型,引导学生观察正方体的特征,并提出问题:“正方体的体积是多少?”学生通过观察和思考,可以得出正方体的体积是边长的三次方。
2. 立方根的定义:教师引导学生思考:“如果我们知道一个数的立方是另一个数,那么我们如何求出这个数呢?”学生通过讨论和思考,可以得出这个数就是原数的立方根。
教师给出立方根的定义,并解释立方根的性质。
3. 立方根的运算方法:4. 立方根在实际问题中的应用:教师提出一个实际问题:“一个正方体的体积是27立方米,求这个正方体的边长。
”学生运用立方根的知识,解决问题并得出答案。
六、板书设计1. 立方根的定义。
2. 立方根的性质。
3. 立方根的运算方法。
4. 立方根在实际问题中的应用。
七、作业设计1. 题目:已知一个数的立方是27,求这个数。
答案:3。
2. 题目:已知一个正方体的体积是64立方米,求这个正方体的边长。
答案:4米。
八、课后反思及拓展延伸1. 课后反思:教师反思本节课的教学效果,是否达成了教学目标,学生是否掌握了立方根的知识,哪些学生需要进一步辅导。
2. 拓展延伸:教师提出一个拓展问题:“立方根在实际生活中有哪些应用?”引导学生思考和讨论,进一步巩固立方根的知识。
重点和难点解析一、立方根的概念和性质1. 立方根的定义:教师在讲解立方根的定义时,应强调“立方根”就是一个数乘以自身两次后得到的结果。
2024年《立方根》优质教案

2024年《立方根》优质教案一、教学内容本节课选自2024年教材《数学》七年级下册第十章第一节“立方根”。
具体内容包括:1. 立方根的定义及性质;2. 立方根的计算方法;3. 立方根在实际问题中的应用。
二、教学目标1. 知识与技能:理解立方根的定义,掌握立方根的计算方法,能解决实际问题;2. 过程与方法:通过实例分析,培养学生运用立方根解决实际问题的能力;3. 情感、态度与价值观:培养学生对数学的兴趣,提高数学素养。
三、教学难点与重点教学难点:立方根的计算方法,特别是非整数的立方根;教学重点:立方根的定义,计算方法及其应用。
四、教具与学具准备教具:立方体模型,多媒体教学设备;学具:计算器,草稿纸,笔。
五、教学过程1. 实践情景引入(1)展示立方体模型,引导学生观察其特征,提出问题:如何计算立方体的体积?(2)通过计算立方体的体积,引出立方根的概念。
2. 例题讲解(1)讲解立方根的定义及性质;(2)举例讲解立方根的计算方法,如:2的立方根,8的立方根等;(3)讲解立方根在实际问题中的应用。
3. 随堂练习(2)解决实际问题,如:一个立方体的体积是64立方厘米,求它的棱长。
4. 知识拓展(1)介绍立方根在科学、生活中的应用;(2)探讨立方根与平方根的关系。
六、板书设计1. 立方根的定义及性质;2. 立方根的计算方法;3. 立方根在实际问题中的应用;4. 立方根与平方根的关系。
七、作业设计1. 作业题目:(2)一个立方体的体积是216立方厘米,求它的棱长;(3)比较两个数的大小:2的立方根与3的立方根。
2. 答案:(1)3,2,5;(2)6厘米;(3)2的立方根小于3的立方根。
八、课后反思及拓展延伸1. 反思:本节课学生对立方根的概念及计算方法掌握情况,对实际问题的解决能力;2. 拓展延伸:探讨立方根的估算方法,如:牛顿迭代法等。
重点和难点解析1. 教学难点:立方根的计算方法,特别是非整数的立方根;2. 例题讲解:立方根在实际问题中的应用;3. 知识拓展:立方根与平方根的关系;4. 作业设计:比较两个数的大小,如2的立方根与3的立方根。
数学《立方根》教案

数学《立方根》教案一、教学内容本节课的教学内容选自人教版小学数学五年级下册第117页“立方根”。
学生将通过本节课的学习,掌握立方根的概念,学会用立方根解决实际问题。
二、教学目标1. 学生能够理解立方根的概念,掌握求一个数的立方根的方法。
2. 学生能够运用立方根解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作精神。
三、教学难点与重点重点:立方根的概念和求一个数的立方根的方法。
难点:运用立方根解决实际问题。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:练习本、尺子、圆规。
五、教学过程1. 实践情景引入:教师通过多媒体课件展示一个正方体,引导学生观察正方体的特征,并提出问题:“正方体的体积是多少?”学生通过观察和思考,得出正方体的体积是边长的三次方。
2. 例题讲解:教师通过讲解正方体的体积,引导学生思考:“如何求一个数的立方根?”学生通过讨论和思考,得出求一个数的立方根的方法:将这个数分解成三个相同的因数,即为这个数的立方根。
3. 随堂练习:教师出示一些练习题,让学生独立完成,检查学生对立方根的理解和掌握程度。
4. 应用拓展:教师通过出示一些实际问题,让学生运用立方根解决,如:“一个正方体的体积是64立方米,求这个正方体的边长。
”学生通过运用立方根解决问题,提高解决问题的能力。
六、板书设计立方根:正方体的体积 = 边长× 边长× 边长求一个数的立方根:将这个数分解成三个相同的因数七、作业设计1. 请用立方根的知识,解释一下为什么冰激凌在冷冻过程中会膨胀。
答案:冰激凌在冷冻过程中会膨胀,是因为冰激凌的体积是冰激凌温度三次方的函数,当温度降低时,体积增大。
2. 一个正方体的体积是27立方米,求这个正方体的边长。
答案:这个正方体的边长是3米。
八、课后反思及拓展延伸本节课通过正方体的体积引入立方根的概念,通过讲解和练习,让学生掌握立方根的知识。
在教学过程中,要注意引导学生观察和思考,培养学生的逻辑思维能力。
第9讲-立方根(教案)

4.增强数学运算能力:通过立方根的计算练习,提高学生对数学运算的熟练度和准确性,培养严谨的数学计算习惯。
5.激发数学探究精神:鼓励学生在学习过程中积极思考、探索立方根的奥秘,发展学生的创新意识和探究精神。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与立方根相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用立方根计算不同边长立方体的体积。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“立方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-举例:一个立方体的体积是64立方厘米,求其边长。
2.教学难点
估算,这是学生容易感到困难的地方。
-举例:估算15的立方根,在2和3之间,学生需要掌握估算的方法和技巧。
-立方根与平方根的区别和联系:学生容易混淆平方根和立方根的概念,需要明确它们的区别和联系。
在教学过程中,教师应针对以上重点和难点内容,采用直观演示、实例讲解、互动提问、小组讨论等多种教学方法,帮助学生透彻理解立方根的概念、性质和计算方法,并能将其应用于实际问题中,从而有效突破教学难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《立方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的立方根的情况?”(如:计算一个立方体的体积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索立方根的奥秘。
八年级数学下册《立方根》教案、教学设计

(一)教学重难点
1.重点:立方根的概念、性质和计算方法,以及立方根在实际问题中的应用。
2.难点:立方根的估算方法,以及如何运用立方根解决实际问题。
(二)教学设想
1.教学方法:
(1)采用启发式教学,引导学生通过观察、类比、归纳等方法,发现立方根的性质和计算方法。
(2)运用实际问题,激发学生的学习兴趣,培养学生的应用意识。
(三)学生小组讨论
1.教学活动设计:教师组织学生进行小组讨论,让学生在合作交流中掌握立方根的计算方法。
-教师给出计算立方根的例子,如计算∛8。
-学生分组讨论,尝试不同的计算方法,如直接开方、估算等。
-每个小组派代表分享计算方法,其他小组进行评价、补充。
2.教学目标:通过学生小组讨论,培养学生合作交流的能力,提高学生计算立方根的技能。
-教师提问:“同学们,我们之前学习了平方根,那么你们知道立方根吗?它有什么作用呢?”
-学生回答,教师总结。
2.教学目标:通过导入新课,使学生认识到立方根在实际生活中的应用,激发学生学习立方根的兴趣。
(二)讲授新知
1.教学活动设计:教师通过讲解立方根的定义、表示方法和性质,引导学生理解立方根的含义,并学会运用立方根进行计算。
-探究:立方根在生活中的应用,例如在建筑、制造等领域。
4.小组合作题:
-小组讨论:比较平方根和立方根的性质、计算方法等,总结它们的异同点。
-小组分享:每个小组整理讨论成果,并向全班同学分享。
作业要求:
1.学生独立完成基础巩固题和实际应用题,巩固立方根的计算方法和性质。
2.学生在完成拓展思考题时,要注重思考过程,可查阅资料或与同学讨论,培养解决问题的能力。
二、学情分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2 立方根
汶上县第一实验中学高爱芹
教学目标:
知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质。
(2)会用根号表示一个数的立方根。
(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性。
能力目标:培养学生的理解能力和运算能力.
情感目标:体会立方根与平方根的区别与联系.
教学重点:本节重点是立方根的意义、性质。
教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别。
教学过程:
一、复习知识,引入新课
1、请同学们回忆一下,平方根是如何定义的?
2、平方根有哪些性质?
【设计意图】通过复习,增强学生的记忆同时为立方根概念和性质的学习作铺垫。
二、自主探究
1.多媒体展示立方体并提问,让学生思考。
问题:要制作一个容积为27cm3的正方体形状模型,它的棱长要取多少?你是怎么知道的?
思考:(1)什么数的立方等于-8?
(2)如果问题中正方体的体积为5cm 3,正方体的边长又该是多少?
【设计意图】学生已有了平方根概念的经验,对于立方根的得出,教师只需适当提示学生,学生就能正确得出正方体的边长。
2.你能否由平方根的定义说出立方根的定义呢?
让学生在平方根基础上试述立方根概念。
【设计意图】渗透学生的类比思想和语言表达能力。
用数学式表示为:一般地,一个数x 的立方等于a ,即a x =3,那么这个数x 就叫做a 的立方根(也叫做a 的三次方根),记做3a 。
如:823=,则2叫做8的立方根,即283=;()823-=-,则2-是8-的立方根,即283-=-。
其中a 是被开方数,3是根指数,符号3读做“三次根号”。
针对前面几个例子,由学生说出27和5的立方根,并分别指明它们的被开方数和根指数。
让学生举例再说明。
求一个数的立方根的运算,叫做开立方。
开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求。
【设计意图】巩固学生对概念的理解,并让学生了解开立方与立方互为逆运算。
3.多媒体展示问题,引导学生探究。
根据立方根的意义填空,看看正数、0和负数的立方根各有什么特点。
因为23=8,所以8的立方根是( )
因为( )3=0.125,所以0.125的立方根是( ) 因为( )3=0,所以0的立方根是( )
因为( )3=-8,所以-8的立方根是( )
因为( )3=278-,所以27
8-的立方根是( ) 学生在练习本上完成计算,然后举手回答,完成填空后,请学生探讨正数、0、负数的立方根各有什么特点。
学生之间相互讨论、交流,一段时间后请学生发表意见。
4.肯定学生的表现,总结立方根的性质:
(1)正数有一个正的立方根。
(2)负数有一个负的立方根。
(3)0的立方根还是0。
【设计意图】通过探究,让学生感受到一个数的立方根的唯一性,在小组合作交流中发展自主探索知识的能力。
5.讨论:你能归纳出平方根和立方根的异同点吗?
请学生回答,然后归纳、总结学生的答案。
多媒体展示表格:
【设计意图】利用表格的形式让学生对比观察平方根和立方根的性质,加深对知识的记忆,更有利于知识的掌握。
6.多媒体展示问题,引导学生探究。
因为38-=___,38-=___,所以38-___38-; 因为327-=___,327-=___,所以327-___327-。
你能从上述问题中总结出互为相反数的两个数a 与-a 的立方根的关系吗?
学生回答:互为相反数的数的立方根也互为相反数。
肯定学生的表现,总结:3a -=3a -;
7. 多媒体展示例题,让学生尝试完成。
求下列各式的值:
(1)364 (2)3125- (3)364
27- 让学生先在练习本上完成,教师巡视指导后与学生一起解答。
【设计意图】通过练习进一步加深对立方根的认识,同时提高对立方根知识的应用能力。
三、应用提高
1.计算:
2.求下列各式中的x 值:
(1)(2x -1)3=125 (2)x 3-3=27171
; (3)4x 2-49=0 (4)(x+1)2=5.
【设计意图】学生已经能够解平方根的方程,对于立方根的方程,教师引导学生解平方根的方法,先试着完成解题过程后再由教师讲解,锻炼学生的解题能力。
四、课堂总结
学生概括:1、通过本节课的学习你获得了那些知识?
2、你能总结出平方根和立方根的异同点吗?
教师概括:
相同点:(1)0的平方根、立方根都有一个是0
(2)平方根、立方根都是开方的结果。
不同点:(1)定义不同。
(2)个数不同。
(3)表示方法不同。
(4)被开方数的取值范围不同。
五、布置作业:
必做题:习题6.2第3题第5题
选做题:习题6.2第9题
《6.2立方根》评课记录
这个学期,我校教科室开展教研活动,本次教研活动是以“四环学案导学”为主题,以打造“创新教学模式,构建高效课堂”为目的,对高爱芹老师执教的立方根进行了分层次分板块的评课。
一、创设生活情境,激起学生学习数学的欲望。
数学知识来源于生活,并最终服务于生活,强调数学与生活的密切联系,是新课程理念的一个重要部分。
高老师利用生活中常见的问
题引入新课,让学生体会到数学就在身边,感受到数学的趣味和作用,领略到数学的无穷魅力,从而唤起学生亲近数学,激起学生主动探究数学知识欲望。
二、关注学生的学习过程,让学生体验数学的乐趣。
新课程的一个重要理念就是为让学生在学习过程中去体验数学
和经历数学。
高老师在立方根的概念教学上采用类比平方根的概念,从而起到了很好的作用,使学生明确平方根与立方根概念的旁通点,更能让学生进一步感受到“类比联想是数学学习中的一种重要的思想方法”。
高老师的“你能知道哪些数的立方根,请说一说?”,然后通过学生的多次举例,能让学生更好的理解立方根概念的内涵。
学生能更好的经历知识产生的过程和学习过程,体验到了学数学的乐趣。
三、引导学生主动参与学习,培养了学生自主探究能力
心理学家认为,学习应是学生主动的学习,教学过程是学生主动地认知、探求、实践乃至人格形成的过程。
高老师在“探讨平方根与立方根的异同点”时,却没有及时作讲解或点评,而是采用由学生逐步发现法发现问题,能让不同的学生都有所表现,体现了不同的人都有所收获,培养了学生自主参与能力,体现学习数学的价值所在。
总之,本人认为这是一节出色的数学概念课,体现了以学生为主体,巧妙设计情境,给学生足够的思考的时间和空间,激发学生的参与意识,为学生主动学习提供开放的活动环境。
从而进一步证明我校实施的“四环学案导学”教学模式收到很好的效果。
《6.2立方根》教学反思
本节课在教学方法上主要应用了“教师导学、分组交流、全班展示、总结提升”四个教学环节,在实际教学中主要采用“四环学案导学”教学模式。
一、教材地位
《6.2立方根》七年级数学下学期第六章《实数》第二节《立方根》第一课时的内容。
立方根(1)的内容,是在学习了算术平方根、平方根的有关概念的基础上提出来的。
本节从内容上看与上一节平方根的内容基本平行,主要研究立方根的概念和求法;从知识的展开顺序上看也基本相同,本节也是先从具体的计算出发归纳给出立方根的概念,然后讨论立方与开立方的互逆关系,研究立方根的特征。
二、好的地方
1、本节课,我能很顺利的完成本节课的教学,驾驭整个课堂,使用一些激励性的语言,把整个课堂调动的比较活跃,学生回答问题的积极性比较高,能到前面展示自己,并且表现的很好,得到成功的体验,这也给学生树立了自信心,对后面的学习更加积极,也更想表现自己。
2、本节课的课容量很大,在引导学生类比平方根的概念的基础上,通过实际问题的引入,让学生归纳出立方根的概念;通过两个探
究,得到立方根的性质。
在学生掌握立方根的概念和性质的基础上做了大量的练习,并完成了书中的课后练习。
3、通过我在课堂上的观察、了解,通过学生做练习的表现和做题情况,知道学生对本节课的掌握还是不错的,达到了预定的教学目标。
4、教学中我对探究2的要求规定了三点:先读出下列各式,说明表示的意义,再求值。
既锻炼了学生的语言,又强化了立方根的概念,最后完成求值,完成解答。
从中也是给学生渗透一种学习方法,强化读题的重要性,要明确题意,才能求解。
三、不足之处
1、教学中我总是以我的意识为转移,课堂上按着我设计好的路线行驶,不能发挥学生学习的主动性,不能把学生放出去,总是攥在自己的手里。
我觉得学生应该会的、容易的就少讲,觉得不好理解的就多讲,应该根据学生的实际情况来定,把学生放出去,掌控好他们,最后再收回来。
2、教学中我受自己的意识影响,缺少原理性的东西,缺少对定义的挖掘,有些地方没有抓住定义去进一步解释,缺少让学生思考,去想的时间过程,让学生知道本质的东西有利于学生理解。
四、感受与思考
1、学生预习习惯的养成,学习方法的培育,是培养自学能力的有效途径。
2、学生理解的效果,取决于教师根据学生的经验,作出的恰当的启发引导,以及学生参与学习过程的程度,包含主动性、过程性。
3、课堂难度和速度往往以中游学生为标尺,如何培养优生、帮助后进生?怎样去操作?。