立方根优秀教案
立方根教学教案5篇

立方根教学教案5篇Cube root teaching plan立方根教学教案5篇前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。
便于学习和使用,本文档下载后内容可按需编辑修改及打印。
本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:61立方根范文实用版2、篇章2:6.3去括号范文3、篇章3:63去括号范文4、篇章4:§11具有相反意义量范文(最新版)5、篇章5:题:52图形变化样本篇章1:61立方根范文实用版课型:新授学习目标:1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算。
3.了解立方根的性质,区分立方根与平方根的不同。
4.体会类比,化归思想学习重点:立方根的概念.,求某些数的立方根。
学习难点;了解立方根的性质,区分立方根与平方根的不同。
学习过程:一、学习准备1、上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根。
若x3=a,则x叫a的什么呢?完成下面填空。
33 = ()()3 = 27(-3)3= ()()3 = -27()3= ()()3 =()3 =()()3 =03 =()()3 = 02、左边算式已知底数、指数求幂,右边算式已知幂、指数求底数一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也叫做a的三次方根。
即如果X3=a,那么叫做的立方根。
请按照第7页的举例你再举两个例子说明:叫做开立方,立方与互为逆运算4、观察上面两组算式,归纳一个数的立方根的性质是:正数有一个立方根,零有一个立方根;负数立方根。
交流:(1)的立方根是什么?(2)0.001的立方根是什么?(3)0的立方根是什么?(4)-729的立方根是什么?5、立方根的表示方法一个正数a有一个立方根,.正数a的立方根,记作“ ”负数a的立方根,记作“ ”吗?如果X3=a,那么X= ,其中符号“ ”读作三次根号,a 叫做被开方数这里的a表示什么样的数? a是任意数二、合作探究1、阅读课本第7页例题4,按例题格式求其立方根。
立方根教案人教版

立方根教案人教版第一章:立方根的概念引入教学目标:1. 让学生理解立方根的概念。
2. 让学生学会使用立方根的性质进行简单的计算。
教学内容:1. 引入立方根的概念,通过实际例子让学生感受立方根的意义。
2. 讲解立方根的性质,如正数的立方根是正数,负数的立方根是负数等。
教学步骤:1. 引入立方根的概念,让学生举例说明。
2. 讲解立方根的性质,让学生进行实际计算。
教学练习:1. 让学生进行一些简单的立方根计算练习。
第二章:立方根的计算方法教学目标:1. 让学生掌握立方根的计算方法。
2. 让学生能够熟练运用立方根的计算方法解决实际问题。
教学内容:1. 讲解立方根的计算方法,如用立方公式进行计算。
2. 讲解如何运用立方根的计算方法解决实际问题。
教学步骤:1. 讲解立方根的计算方法,让学生进行实际计算。
2. 讲解如何运用立方根的计算方法解决实际问题,让学生举例说明。
教学练习:1. 让学生进行一些立方根的计算练习。
2. 让学生运用立方根的计算方法解决一些实际问题。
第三章:立方根的应用教学目标:1. 让学生理解立方根在日常生活中的应用。
2. 让学生能够运用立方根解决实际问题。
教学内容:1. 讲解立方根在日常生活中的应用,如计算物体的体积等。
2. 讲解如何运用立方根解决实际问题。
教学步骤:1. 讲解立方根在日常生活中的应用,让学生举例说明。
2. 讲解如何运用立方根解决实际问题,让学生进行实际操作。
教学练习:1. 让学生运用立方根解决一些实际问题。
2. 让学生进行一些与立方根相关的应用题练习。
第四章:立方根的综合练习教学目标:1. 让学生巩固立方根的知识。
2. 让学生能够灵活运用立方根解决实际问题。
教学内容:1. 进行立方根的综合练习,包括计算题和应用题。
教学步骤:1. 给学生发放练习题,让学生独立完成。
2. 对学生的练习进行讲解和指导。
教学练习:1. 让学生完成一些立方根的综合练习题。
第五章:立方根的拓展知识教学目标:1. 让学生了解立方根的拓展知识。
《立方根》优质教案#(精选.)

6.2 立方根教案一个正数有一个正的立方根 0有一个立方根,是它本身 一个负数有一个负的立方根 任何数都有唯一的立方根 因为()30=,所以8的立方根是( )因为()38=-,所以-8的立方根是( ) 因为3827⎛⎫=- ⎪⎝⎭,所以827-的立方根是( )归纳:一个数a 的立方根,记作3a ,读作:“三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。
例如:327表示27的立方根,3273=;327-表示27-的立方根,3273-=-.3.探究2: 因为338____,8____,-=-=所以38- = 38- ;因为3327____,27____-=-=,所以327- = 327-。
学生独立完成学生归纳总结,教师补充.学生阅读让学生观察归纳,得出结论.三.【巩固运用】: 例.求下列各式的值:(1)364= (2) 318-= (3)32764-=你会用计算器计算(精确到0.001):3333...,0.000216,0.216,216,216000,...你发现了什么规律? 利用以上规律探究下列问题:已知3100≈ 4.6417…, 求3330.1,0.0001,100000的近似值(精确到0.001) 四.【反思总结】: 1、这节课我最大的收获是:2、我还需解决的问题有:五.【达标测试】: 同步学习:达标测试探究规律让学生板演,纠错.类比平方根进行研究.学生独立完成在同步学习中.教师关注学生的完成情况并适时指导.最新文件仅供参考已改成word文本。
方便更改。
3.3立方根教学设计5篇范文

3.3立方根教学设计5篇范文第一篇:3.3立方根教学设计[教学设计]3.3 立方根乐清市白象镇中屠勤秧● 教材与学生的认知起点分析“立方根”是浙教版七年级上册第三章“实数”中的第三小节,它是在学生知道了无理数、算术平方根、平方根、开平方运算的概念基础上学习的。
教材从实际问题引入立方根的概念,说明学习数的立方根的意义。
通过具体数的计算,让学生体会,一个数的立方根的唯一性。
虽然这一节在实数一节之后,但仍起着加深对实数的认识的作用。
在实数范围内进行开立方的运算,无论从认知的角度,还是从表述的角度,都较为方便。
● 教学目标知识与技能:了解立方根的概念,会用根号表示一个数的立方根,并能用立方根运算求某些数的立方根教学思考:创设问题情境,学生进一步发展对数学知识的抽象概括力。
解决问题:通过学生的积极参与培养学生独立思考的能力,提高数学表达和运算能力。
情感态度与价值观:在参与数学学习活动中,不断培养合作交流的良好习惯。
● 教学重点本节重点是立方根的意义、性质。
● 教学难点本节难点是立方根的求法,立方根与平方根的联系及区别。
● 教学过程一、创设情境电脑显示一个魔方师:你们喜欢玩魔方吗?这是由8个同样大小的单位立方体组成的魔方,这8个小立方体可以重新排列,组成魔方表面的各种不同的美丽图案。
现在要做一个体积为8cm3的立方体魔方,它的棱要取多少长?你是怎么知道的?生:思考后回答。
设计意图:从熟悉的事物引入立方根概念,说明学习立方根的意义。
师:体积为27 cm3和体积为1000 cm3的立方体的棱又是要取多少长呢?生:思考、讨论后回答。
电脑演示:()3=8 ()3=27 ()3=1000 设计意图:为概念引入作准备并渗透从个别到一般的规律。
二、讲授新课师:让学生在平方根基础上试述立方根概念。
设计意图:渗透学生的类比思想和语言表达能力。
师(总结):一般地,一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做a的三次方根),记做3a。
《立方根》优质教案

《立方根》优质教案教案内容:一、教学内容本节课的教学内容选自人教版初中数学八年级上册第6章第3节《立方根》。
本节课主要内容包括:立方根的定义,立方根的性质,立方根的运算方法,以及立方根在实际问题中的应用。
二、教学目标1. 理解立方根的概念,掌握立方根的性质和运算方法。
2. 能够运用立方根解决实际问题。
3. 培养学生的逻辑思维能力和创新精神。
三、教学难点与重点1. 立方根的概念和性质。
2. 立方根的运算方法。
3. 立方根在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:笔记本、尺子、圆规、三角板、计算器。
五、教学过程1. 实践情景引入:教师展示一个正方体模型,引导学生观察正方体的特征,并提出问题:“正方体的体积是多少?”学生通过观察和思考,可以得出正方体的体积是边长的三次方。
2. 立方根的定义:教师引导学生思考:“如果我们知道一个数的立方是另一个数,那么我们如何求出这个数呢?”学生通过讨论和思考,可以得出这个数就是原数的立方根。
教师给出立方根的定义,并解释立方根的性质。
3. 立方根的运算方法:4. 立方根在实际问题中的应用:教师提出一个实际问题:“一个正方体的体积是27立方米,求这个正方体的边长。
”学生运用立方根的知识,解决问题并得出答案。
六、板书设计1. 立方根的定义。
2. 立方根的性质。
3. 立方根的运算方法。
4. 立方根在实际问题中的应用。
七、作业设计1. 题目:已知一个数的立方是27,求这个数。
答案:3。
2. 题目:已知一个正方体的体积是64立方米,求这个正方体的边长。
答案:4米。
八、课后反思及拓展延伸1. 课后反思:教师反思本节课的教学效果,是否达成了教学目标,学生是否掌握了立方根的知识,哪些学生需要进一步辅导。
2. 拓展延伸:教师提出一个拓展问题:“立方根在实际生活中有哪些应用?”引导学生思考和讨论,进一步巩固立方根的知识。
重点和难点解析一、立方根的概念和性质1. 立方根的定义:教师在讲解立方根的定义时,应强调“立方根”就是一个数乘以自身两次后得到的结果。
2024年《立方根》优质教案

2024年《立方根》优质教案一、教学内容本节课选自2024年教材《数学》七年级下册第十章第一节“立方根”。
具体内容包括:1. 立方根的定义及性质;2. 立方根的计算方法;3. 立方根在实际问题中的应用。
二、教学目标1. 知识与技能:理解立方根的定义,掌握立方根的计算方法,能解决实际问题;2. 过程与方法:通过实例分析,培养学生运用立方根解决实际问题的能力;3. 情感、态度与价值观:培养学生对数学的兴趣,提高数学素养。
三、教学难点与重点教学难点:立方根的计算方法,特别是非整数的立方根;教学重点:立方根的定义,计算方法及其应用。
四、教具与学具准备教具:立方体模型,多媒体教学设备;学具:计算器,草稿纸,笔。
五、教学过程1. 实践情景引入(1)展示立方体模型,引导学生观察其特征,提出问题:如何计算立方体的体积?(2)通过计算立方体的体积,引出立方根的概念。
2. 例题讲解(1)讲解立方根的定义及性质;(2)举例讲解立方根的计算方法,如:2的立方根,8的立方根等;(3)讲解立方根在实际问题中的应用。
3. 随堂练习(2)解决实际问题,如:一个立方体的体积是64立方厘米,求它的棱长。
4. 知识拓展(1)介绍立方根在科学、生活中的应用;(2)探讨立方根与平方根的关系。
六、板书设计1. 立方根的定义及性质;2. 立方根的计算方法;3. 立方根在实际问题中的应用;4. 立方根与平方根的关系。
七、作业设计1. 作业题目:(2)一个立方体的体积是216立方厘米,求它的棱长;(3)比较两个数的大小:2的立方根与3的立方根。
2. 答案:(1)3,2,5;(2)6厘米;(3)2的立方根小于3的立方根。
八、课后反思及拓展延伸1. 反思:本节课学生对立方根的概念及计算方法掌握情况,对实际问题的解决能力;2. 拓展延伸:探讨立方根的估算方法,如:牛顿迭代法等。
重点和难点解析1. 教学难点:立方根的计算方法,特别是非整数的立方根;2. 例题讲解:立方根在实际问题中的应用;3. 知识拓展:立方根与平方根的关系;4. 作业设计:比较两个数的大小,如2的立方根与3的立方根。
《立方根》教学设计优秀4篇

《立方根》教学设计优秀4篇作为一名专为他人授业解惑的人民教师,总不可避免地需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
那么教学设计应该怎么写才合适呢?下面是勤劳的编辑帮家人们找到的《立方根》教学设计优秀4篇,欢迎参考阅读,希望大家能够喜欢。
《立方根》教学设计篇一一、教材分析《立方根》是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》第三节、本节内容安排了1个学时完成、主要是通过对立方根与平方根的比较与归类,探索立方根的概念、计算和简单性质、因此,除了具体的知识技能(如知道一个数的立方根的意义,会用根号表示一个数的立方根,掌握立方根运算,掌握求一个数的立方根的方法和技巧)外,还需要昂学生感受类比的思想方法,为今后的学习打下基础、二、学情分析在学习了平方根概念的基础上学习立方根的概念,学生比较容易接受,因此教学重点放在立方根具有先进性(实数范围内)的讨论上、在学生对数的立方根概念及个数的先进性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题、三、目标分析教学目标知识与技能目标1、了解立方根的概念,会用根号表示一个数的立方根、2、会用立方运算求一个数的立方根,了解开立方与立方互为逆运算、3、了解立方根的性质、4、区分立方根与平方根的不同、过程与方法目标1、经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略、2、在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想、3、通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识、情感与态度目标:1、在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神、2、学生通过对实际问题的解决,体会数学的实用价值、教学重点立方根的概念及计算、教学难点立方根的求法,立方根与平方根的联系及区别、四、教法学法1、教学方法:类比法、2、课前准备:教具:教材,软件Microsoft PowerPoint 2002,电脑、学具:教材,练习本、五、教学过程本节课设计了七个教学环节:一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究、一环节:创设问题情境:内容:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢?(球的体积公式为v=R,R为球的半径)提问:怎样求出半径R?学完本节知识后,相信你会有一个满意的答案、有关体积的。
七年级数学上册《立方根》教案、教学设计

3.性质探究:引导学生观察、发现立方根的性质,如正数的立方根是正数,负数的立方根是负数,0的立方根是0等。
4.运算方法:讲解计算立方根的方法,包括手算和计算器计算,让学生熟练掌握运算技巧。
5.应用举例:结合实际问题,让学生运用立方根知识解决问题,巩固所学。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握立方根的定义及其性质,能够准确地计算立方根。
2.将立方根应用于解决实际问题,培养学生的数学建模和问题解决能力。
3.消除平方根与立方根之间的混淆,提高学生的运算准确性和速度。
(二)教学设想
1.利用生活实例和数学故事导入新课,激发学生的学习兴趣和探究欲望。例如,通过讲述“阿基米德和国王下棋”的故事,让学生了解立方根在古代数学中的应用,从而引出立方根的概念。
七年级数学上册《立方根》教案、教学设计
一、教学目标
(一)知识与技能
1.理解立方根的概念,掌握立方根的定义和性质,能够准确找出一个数的立方根。
2.学会使用计算器计算立方根,提高运算速度和准确性。
3.能够解决实际问题中涉及立方根的问题,如体积、密度等,培养将数学知识应用于实际生活中的能力。
(二)过程与方法
二、学情分析
七年级学生正处于青春期,思维活跃,好奇心强,具备一定的数学基础和逻辑思维能力。在学习《立方根》这一章节之前,他们已经掌握了实数的概念、平方根的性质等基础知识,为本章节的学习奠定了基础。然而,由于立方根的概念较为抽象,学生可能会在理解上存在困难,需要通过具体实例和形象化的教学手段帮助他们构建概念。
-教学策略:情境教学法,激发学生的好奇心和求知欲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“三为主”课堂七年级(下)数学导学案
课题:6.1立方根
教学思路(纠错栏)学习目标:1.了解立方根的概念,会用根号表示一个数的立方根。
2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运
算.
3.会用计算器求一个数的立方根.
学习重点:立方根的意义及其表示方法.
预设难点:立方根与平方根的区别.
☆预习导航☆
一、链接:
1.如果x2=a,那么x与a的关系是什么?x等于什么?
2.计算:
23=______ ;(-2)3=______; 0.53=_____;(-0.5)3=______;(
2
3
)3=_____;
-(
2
3
)3•=_____ ; 03=______.
3.【归纳】:(1)正数的立方是正数;
(2)0的立方是0;
(3)负数的立方是负数.
二、导读:
阅读教材相关内容你会很容易解决上述问题.
1.同学们讨论以下问题:
(1) 27的立方根是什么?(2)-27的立方根是什么?
(3)0的立方根是什么?
2.根据以上题目的答案,回答以下问题:
(1)正数有几个立方根? (2)0有几个立方根?
(3)负数有几个立方根?
3.从以上问题中你发现了什么?
☆合作探究☆
1.求下列各数的立方根:
(1)64 (2)-125 (3)-0.008
教学思路 (纠错栏)
2.求下列各式中的x : (1)8x 3 -81 = 0 ; (2)(2x )3 + 729 = 0 . 4.知识拓展: (1)计算:38-= ;-38= . (2)由(1)的计算结果,猜想3a -与-(3a )的关系是什么? (3)(3a )表示 的立方根,那么(3a )3 = ;33a = . 5.【归纳】对于任意数a ,有: 3a - = ; (3a )3 = ; 33a = . ☆ 达标检测 ☆ 1. (4分)求下列各数的立方根: (1)—64 (2)278 (3)0.125 (4)64 2. (6分)求下列各式的值: (1)3216- (2)-3001.0- (3)-38
33。