《平方根》典型例题及练习

《平方根》典型例题及练习

平方根练习题

1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),算术平方根

2、平方根的性质:(1)一个正数有 个平方根,它们 (2)0的平方根

是 ;(3) 没有平方根. 3、重要公式: (1)=2

)(

a (2){==a a 2

4、平方表:

5.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.

6.一个正方体的棱长扩大3倍,则它的体积扩大_____________.

7.若一个数的立方根等于数的算术平方根,则这个数是_____________.

8. 0的立方根是___________.(-1)2005的立方根是______________.1827

26

的立方根是________.

例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0;

④ 0.01是0.1的算术平方根;

⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、

36的平方根是( )

A 、6

B 、6±

C 、 6

D 、 6±

例3、下列各式中,哪些有意义? (1)

5 (2)2- (3)4- (4)

2

)3(- (5)

310-

例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .1

2+a D .12+±

a

强化训练 一、选择题

1.下列说法中正确的是( ) A .9的平方根是3 B

4

2

2. 4的平方的倒数的算术平方根是( ) A .4 B .18

C .-14

D .14

3.下列结论正确的是( )

A 6)6(2-=--

B 9)3(2=-

C 16)16(2±=-

D 25

1625162

=?

??

? ?

?-- 4.以下语句及写成式子正确的是( )

A 、7是49的算术平方根,即749±=

B 、

7是2

)7(-的平方根,即

7)7(2=-

C 、7±是49的平方根,

即7

49=± D 、7±是49的平方根,即749±=

5.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;

(4)9的平方根是3,其中正确的有( ) A .3个 B .2个

C .1个

D .4个

6.下列说法正确的是( )

A .任何数的平方根都有两个

B .只有正数才有平方根

C .一个正数的平方根的平方仍是这个数

D .2a 的平方根是a ±

7.下列叙述中正确的是( )

A .(-11)2的算术平方根是±11

B .大于零而小于1的数的

算术平方根比原数大

C .大于零而小于1的数的平方根比原数大

D .任何一个非负数的平方

根都是非负数 8.

36的平方根是( )

A 、6

B 、6±

C 、 6

D 、 6±

9.当≥m 0时,

m 表示( )

A .m 的平方根

B .一个有理数

C .m 的算术平方根

D .一个正数

10.用数学式子表示“16

9的平方根是4

3±”应是( )

A .

43169±= B .4

3169±=± C .43169= D .43169-=-

11.算术平方根等于它本身的数是( )

A 、 1和0

B 、0

C 、1

D 、 1±和0 12.

2

)5(-的平方根是( )

A 、 5±

B 、 5

C 、5-

D 、5±

13.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是

( ) A .a B .

a

- C .

2

a - D .

3

a

14.若a 、b 为实数,且47

112

2++-+-=

a a a

b ,则b a +的值为( )

A .1± B. 4 C. 3或5 D. 5

15.若9,422==b a ,且0

2

)8(-= , 2)8(= 。

2.9的算术平方根是 ,

16

的算术平方根是 ;2

10-的算术平方根是 ,

0)5(-的平方根是 ;

3.化简:=-2)3(π 。 4.当_______x 时,

x

-11有意义; 当________x 时,式子

2

1

--x x 有意义; 5.若14+a 有意义,则a 能取的最小整数为______________.

6. 2.676=,26.76=,则a 的值等于 , 7.若

2

2-a 与|b +2|是互为相反数,则(a -b )2=______.

8.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 三.利用平方根解下列方程.

(1) (2x-1)2-169=0; (2)4(3x+1)2-1=0;

四.取值范围的运用

(1).当x 1

1x +在实数范围内有意义?

(2那么x 取值范围是( )

A 、x ≤2 B. x <2 C. x ≥2 D. x >2

(3)已知,求x y

的值.

五.实数非负性的应用

1.已知2

+|b2-10|=0,求a+b的值.

2b

a

2.已知:=0,求实数a, b的值。

3.已知的整数部分为a,小数部分为b,求a2-b2的值.

4.若,则________;若,则________。

5.若x为一个两位整数,则的取值范围是________。

6.若的整数部分是,则其小数部分用表示为________。

7.探究题,若;,则

________,________,________,________。

8.解答题

(1)当x取何值时,有意义?

(2)求使有意义的x的值的范围。(3),求。

追击和相遇问题典型例题

【学习目标】 1、掌握追及及相遇问题的特点 2、能熟练解决追及及相遇问题 追及问题 1、追及问题中两者速度大小与两者距离变化的关系。 甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。若甲的速度小于乙的速度,则两者之间的距离。若一段时间内两者速度相等,则两者之间的距离。 2、追及问题的特征及处理方法: “追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种: 初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度相等,即v甲=v乙。 ⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。 判断方法是:假定速度相等,从位置关系判断。 ①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。 ②若甲乙速度相等时,甲的位置在乙的前方,则追上,并会有两次相遇 ③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。 解决问题时要注意二者是否同时出发,是否从同一地点出发。 ⑶匀减速运动的物体甲追赶同向的匀速运动的物体已时,情形跟⑵类似。 判断方法是:假定速度相等,从位置关系判断。

①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。 ②若甲乙速度相等时,甲的位置在乙的前方,则追上,并会有两次相遇 ③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。 解决问题时要注意二者是否同时出发,是否从同一地点出发。 3、分析追及问题的注意点: ⑴要抓住一个条件,两个关系: ①一个条件是两物体的速度满足的临界条件,如 两物体距离最大、最小,恰好追上或恰好追不上等。 ②两个关系是时间关系和位移关系, 通过画草图找两物体的位移关系是解题的突破口。 ⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。 ⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v-t图象的应用。 二、相遇 ⑴同向运动的两物体的相遇问题即追及问题,分析同上。 ⑵相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。 【典型例题】 1.在十字路口,汽车以的加速度从停车线启动做匀加速运动,恰好有一辆自行车以的速度匀速驶过停车线与汽车同方向行驶,求: 什么时候它们相距最远?最远距离是多少?

2018四边形特殊四边形经典习题(附答案)

2018年暑假作业精编《四边形》 第一部分 基础题 1.如图,在平行四边形ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边 于点E ,且AE =3,则AB 的长为( )A .4 B .3 C . 2 5 D .2 2.如图所示,如果 ABCD 的对角线AC ,BD 相交于点O ,?那么图中的全等三角形共有( ) A .1对 B .2对 C .3对 D .4对 3.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ) A . ∠3=∠4 B . ∠1=∠2 C . ∠D =∠DCE D . ∠D +∠ACD =180° 4.如图,△ABC 中,AB =AC =10,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE , 则△CDE 的周长为( ) A.20 B.12 C.14 D.13 5.如果三角形的两条边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是( ) A.6 B.8 C.10 D.12 6.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,已知BC =10,则DE 的长为( ) A .3 B .4 C .5 D .6 7.矩形各内角的平分线围成一个( ) A .平行四边形 B .正方形 C .矩形 D .菱形 8.下列命题中正确的是( ) A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是矩形

C .对角线相等的平行四边形是矩形 D .对角线互相垂直的平行四边形是矩形 9.下列命题中错误的是( ) A .对角线相等的平行四边形是矩形 B .对角线互相垂直的矩形是正方形 C .对角线互相平分的菱形是正方形 D .对角线平分一组对角的矩形是正方形 10.下列命题中,错误的是( ) A .矩形的对角线互相平分且相等 B .对角线互相垂直的四边形是菱形 C .三角形的三条角平分线相交于一点,并且这点到三条边的距离相等 D .到一条线段两个端点距离相等的点在这条线段的垂直平分线上 11.在菱形ABCD 中,∠ABC =60o,AC =4,则BD 的长为 . 12.若点O 为□ABCD 的对角线AC 与BD 交点,且AO +BO =11cm ,则AC +BD = cm . 13.在平行四边形ABCD 中, ∠A =40o,则∠B = o. 14.如图, 四边形 ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是___________ ____.(只需写出一个) 15. 如图, 口ABCD 中,AE ⊥ BD 于 E .∠EAC =30°,AE =3 则AC 的长等于 16.如图, ABCD 中,DB =DC ,∠C =70°,AE ⊥BD 于E ,则∠DAE =_____度. 17.如图,在□ABCD 中,∠A =120°,则∠D =_ _°. 18. 顺次连接菱形四边中点所得四边形是_________. 19.20. 已知菱形的两对角线长分别为6和8,则菱形的面积为

典型练习题word版

一、单项选择题(每小题3分,共60分) 电视剧《闯关东》中的场景:“主人公朱开山为了避免所种的庄稼遭受霜冻危害, 在深秋的夜晚带领全家人及长工们在田间地头点燃了柴草……”结合大气受热过程示意图 回答1~2题。 1.关于图中a、b、c所代表的内容叙述正确的是( ) A.a代表大气的直接热源 B.a、b、c所代表的辐射波长的大小关系是a

A.a B.b C.c D.d 4.3月2日丙地气温最高,原因是( ) A.太阳辐射强 B.大气削弱作用弱 C.受暖气团影响 D.大气逆辐射强 下图是半球近地面风带分布示意图,读图回答5~6题。 5.图中a处的盛行风向是( ) A.东北风 B.西北风 C.东南风 D.西南风 6.图中b处的气候特征是( ) A.炎热干燥 B.高温多雨 C.温和干燥 D.温和湿润 2008年热带风暴“凤凰”于7月25日下午在西北太平洋洋面上生成,后加强为强台风,在福建登陆,有14省(市)受到不同程度影响。据此回答7~8题。 7.影响我国的台风最可能生成于下图所示地区中的( ) 8.台风“凤凰”的移动路径不可能是下图中的( )

幂函数经典例题

例1、下列结论中,正确的是( ) A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限 C.当幂指数α取1,3,1 2 时,幂函数y=xα是增函数 D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数 解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数. 答案C 例2、已知幂函数f(x)=(t3-t+1)x 1 5 (7+3t-2t2) (t∈Z)是偶函数且在(0,+ ∞)上为增函数,求实数t的值. 分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设p q (|p|、|q|互 质),当q为偶数时,p必为奇数,y=x p q 是非奇非偶函数;当q是奇数时,y= x p q 的奇偶性与p的值相对应. 解∵f(x)是幂函数,∴t3-t+1=1, ∴t=-1,1或0. 当t=0时,f(x)=x 7 5 是奇函数; 当t=-1时,f(x)=x 2 5 是偶函数; 当t=1时,f(x)=x 8 5 是偶函数,且 2 5 和 8 5 都大于0,在(0,+∞)上为增函数.

故t =1且f (x )=x 85或t =-1且f (x )=x 2 5 . 点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件 t ∈Z 给予足够的重视. 例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( ) A .-11 D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0x 1 3,求x 的取值范围. 错解 由于x 2 ≥0,x 1 3∈R ,则由x 2>x 1 3 ,可得x ∈R . 错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α 在 α>1和0<α<1两种情况下图象的分布. 正解 作出函数y=x2和y=3 1x 的图象(如右图所示),易得x<0或x>1. 例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )

(完整版)追及与相遇问题(含答案)

追及与相遇问题 1、追及与相遇的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 2、理清两大关系: 时间关系、位移关系。 3、巧用一个条件: 两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 4、三种典型类型 (1)同地出发,初速度为零的匀加速直线运动A 追赶同方向的匀速直线运动B ①当 B A v v =时,A 、B 距离最大; ②当两者位移相等时, A 追上B ,且有B A v v 2= (2)异地出发,匀速直线运动B 追赶前方同方向的初速度为零的匀加速直线运动A 判断B A v v =的时刻,A 、B 的位置情况 ①若B 在A 后面,则B 永远追不上A ,此时AB 距离最小 ②若AB 在同一处,则B 恰能追上A ③若B 在A 前,则B 能追上A ,并相遇两次 (3)异地出发,匀减速直线运动A 追赶同方向匀速直线运动B ①当B A v v =时,A 恰好追上B ,则A 、B 相遇一次,也是避免相撞刚好追上的临界条件; ②当B A v v =时,A 未追上B ,则A 、B 永不相遇,此时两者间有最小距离; ③当B A v v >时,A 已追上B ,则A 、B 相遇两次,且之后当两者速度相等时,两者间有最大距离。 5、解追及与相遇问题的思路 (1)根据对两物体的运动过程分析,画出物体运动示意图 (2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中 (3)由运动示意图找出两物体位移间的关联方程 (4)联立方程求解 注意:仔细审题,充分挖掘题目中的隐含条件,同时注意t v -图象的应用 【典型习题】 【例1】在十字路口,汽车以0.5m/s 2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s 的速度匀速驶过停车线与汽车同方向行驶,求: (1)汽车追上自行车之前,什么时候它们相距最远?最远距离是多少? (2)在什么地方汽车追上自行车?追到时汽车的速度是多大?

初中八年级数学经典四边形习题60道(附答案)

赵老师 经典四边形习题50道(附答案) 1.已知:在矩形ABCD 中,AE ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。 2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60?,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。 3、已知:在等腰梯形ABCD 中,AB ∥DC , AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。 4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线 交BE 于F ,求证:F 是BE 的中点。 5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60?,梯形的周长是 20cm, 求:AB 的长。 6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。 7、已知:梯形ABCD 的对角线的交点为E _ D _ C _B _ C _ A _ B _ A _ B _ E _A _ B

赵老师 若在平行边的一边BC 的延长线上取一点F , 使S ABC ?=S EBF ?,求证:DF ∥AC 。 8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H , 求证:AH 与正方形的边长相等。 9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE , AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。 10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。 11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。 12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、 DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。 13、在正方形ABCD 的边CD 上任取一点E , _B _ C _B _ F _ B _ C _ F _ C _ D _ B _ F _ F _ G _ B _A _ E

指对幂函数经典练习题

高一数学期末复习幂函数、指数函数和对数函数 1、若函数x a a a y ?+-=)33(2是指数函数,则有 ( ) A 、21==a a 或 B 、1=a C 、2=a D 、10≠>a a 且 2、下列所给出的函数中,是幂函数的是 ( ) A .3x y -= B .3-=x y C .32x y = D .13-=x y 3、1.指数式b c =a (b >0,b ≠1)所对应的对数式是 ( ) A .log c a =b B .log c b =a C .log a b =c D .log b a =c 4、若210,5100==b a ,则b a +2= ( ) A 、0 B 、1 C 、2 D 、3 5、若0≠xy ,那么等式y xy y x 2432-=成立的条件是 ( ) A 、0,0>>y x B 、0,0<>y x C 、0,0>x 时,函数x a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.

高中物理追击和相遇问题专题带答案

专题:直线运动中的追击和相遇问题 一、相遇和追击问题的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 二、 解相遇和追击问题的关键 画出物体运动的情景图,理清三大关系 (1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系: 两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 三、追击、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解. 说明:追击问题中常用的临界条件: ⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上, 否则就不能追上. 四、典型例题分析: (一).匀加速运动追匀速运动的情况(开始时v 1< v 2):v 1< v 2时,两者距离变大;v 1= v 2时, 两者距离最大;v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。 【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求: (1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少? 答案:(1) 2s 6m (2)12m/s (二).匀速运动追匀加速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次;③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例2】一个步行者以6m/s 的最大速率跑步去追赶被红灯阻停的公共汽车,当他距离公共汽车25m 时,绿灯亮了,汽车以1m/s 2的加速度匀加速启动前进,问:人能否追上汽车?若能追上,则追车过程中人共跑了多少距离?若不能追上,人和车最近距离为多少? 答案:不能追上 7m (三).匀减速运动追匀速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1 x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例3】汽车正以10m/s 的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s 2的匀减速运动,汽车恰好不碰上自

四边形经典试题50题及答案

经典四边形习题50道(附答案) 1.已知:在矩形ABCD中,AE?BD于E, ∠DAE=3∠BAE ,求:∠EAC的度数。 2.已知:直角梯形ABCD中,BC=CD=a 且∠BCD=60?,E、F分别为梯形的腰AB、 DC的中点,求:EF的长。 3、已知:在等腰梯形ABCD中,AB∥DC, AD=BC,E、F分别为AD、BC的中点,BD 平分∠ABC交EF于G,EG=18,GF=10 求:等腰梯形ABCD的周长。 4、已知:梯形ABCD中,AB∥CD,以AD, AC为邻边作平行四边形ACED,DC延长线 交BE于F,求证:F是BE的中点。 5、已知:梯形ABCD中,AB∥CD,AC?CB, AC平分∠A,又∠B=60?,梯形的周长是 20cm, 求:AB的长。 6、从平行四边形四边形ABCD的各顶点作对角线的垂线AE、BF、CG、DH,垂足分别是E、F、G、H,求证:EF∥GH。 7、已知:梯形ABCD的对角线的交点为E 若在平行边的一边BC的延长线上取一点F, _B_C _A_B _A_B _E _A _B _B _B

使S ABC ?=S EBF ?,求证:DF ∥AC 。 8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H , 求证:AH 与正方形的边长相等。 9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE , AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。 10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。 11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。 12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于 E ,AE 、DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。 13、在正方形ABCD 的边CD 上任取一点E , 延长BC 到F ,使CF=CE , 求证:BE?DF _C _B _F _B _C _F _C _D _B _F _ F _G _B _D _A _E

初中数学专题典型例题训练

第一讲:实数与代数专题典型例题讲解 一实数 1. 例:在14-和15 -之间,请写出两个有理数: . 2. 有理数2 2 3 1 2, (2), 2, 2 ---- 按从小到大的顺序排列是( ) A .322122< (2) 2-<--<-, B . 223 12< (2) 22 -<--<- C . 22312< (2) 22-<--<-, D . 232 12< 2(2)2 -<--<- 3. 将一刻度尺如图所示放在数轴上 (数轴的单位长度是1CM ),刻度尺上的“0cm ”和 “15cm ”分别对应数轴上的-3.6和x ,则( ) A .9<x <10; B .10<x <11; C .11<x <12; D .12<x <13; 4. 下列说法正确的是( ) A .互为相反数的两个数一定不相等; B .互为倒数的两个数一定不相等; C .互为相反数的两个数的绝对值相等; D .互为倒数的两个数的绝对值相等; 5. 若3x -和7x -是某个实数的平方根,则x = . 6. 若函数()f x 、()g x 满足()()0f x g x +=,当2()f x x x =-+,则函数()g x 的最小值为: 7. 有理数A 、B 、C 在数轴上的位置如图所示,则式子|A |+|B |+|A +B |+|B -C |化简结果为.[ ]. .A .2A +3B -C...B .3B -C..C .B +C....D .C -- 8. 若|A -2|=2-A ,求A 的取值范围。 9. 已知:|x -2|+x -2=0,.求:(1)x +2的最大值; 10. 单项式3x y π - 的系数是_______,次数是_____。 11. 如果21 13 m n a b +--与5 4a b 的同类项,则M =_____,N =_________。 12. 如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心, 3为半径作圆弧.若图中阴影部分的面积分为S 1、S 2.则S 1-S 2= . 13. 以Rt △ACB 两条直角边为直径向外作半圆,如图,其面积分别为1S 和2S ,若△ABC 的面积为S ,则12,S S 与S 的关系为 . 14. 若2 2(3)16x m x +-+是完全平方式,则m 的值为: . 15. 若m 2+m -1=0,求m 3+2m 2+2015的值. 16. 若0,0,x xy <<则15y x x y -+---=

幂函数知识点及典型题

幂函数 知识点 一、幂函数的定义 一般地,形如y x α =(R x ∈)的函数称为幂孙函数,其中x 是自变量,α是常数.如1 12 3 4 ,,y x y x y x -===等 都是幂函数 二、幂函数的图像 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±± 的图像和性质,列表如下. ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22 a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点. 三、幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 四、解题方法总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =α x ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象 限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 典型题 类型一、求函数解析式 例1.已知幂函数2 223 (1)m m y m m x --=--,当(0)x ∈+, ∞时为减函数,则幂函数y =__________. 类型二、比较幂函数值大小 例2.比较下列各组数的大小. (1)4 3 3.14 -与43 π - (2)35 (- 与35 (- (3)比较0.5 0.8 ,0.5 0.9,0.5 0.9 -的大小 类型三、求参数的范围

初一数学追及问题和相遇问题列方程的技巧

初一数学追及问题和相遇问题列方程的技巧行程问题 在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。此类问题一般分为四类:一、相遇问题;二、追及问题;三、相离问题;四、过桥问题等。 行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。 相遇问题 两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。这类问题即为相遇问题。 相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间 基本公式有: 两地距离=速度和×相遇时间 相遇时间=两地距离÷速度和 速度和=两地距离÷相遇时间 二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有: 第二次相遇时走的路程是第一次相遇时走的路程的两倍。 相遇问题的核心是“速度和”问题。利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。 相离问题

两个运动着的动体,从同一地点相背而行。若干时间后,间隔一定的距离,求这段距离的问题,叫做相离问题。它与相遇问题类似,只是运动的方向有所改变。 解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。 基本公式有: 两地距离=速度和×相离时间 相离时间=两地距离÷速度和 速度和=两地距离÷相离时间 相遇(相离)问题的基本数量关系: 速度和×相遇(相离)时间=相遇(相离)路程 在相遇(相离)问题和追及问题中,必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。 追及问题 两个运动着的物体从不同的地点出发,同向运动。慢的在前,快的在后,经过若干时间,快的追上慢的。有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题。 解答这类问题要找出两个运动物体之间的距离和速度之差,从而求出追及时间。解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。 基本公式有: 追及(或领先)的路程÷速度差=追及时间 速度差×追及时间=追及(或领先)的路程 追及(或领先)的路程÷追及时间=速度差 要正确解答有关“行程问题”,必须弄清物体运动的具体情况。如:运动的方向(相向、相背、同向),出发的时间(同时、不同时),出发的地点(同地、不同地)、运动的路线(封闭、不封闭),运动的结果(相遇、相距多少、追及)常用公式: 行程问题基本恒等关系式:速度×时间=路程,即S=vt. 行程问题基本比例关系式:路程一定的情况下,速度和时间成反比;

(完整)初中数学经典四边形习题50道(附答案)

经典四边形习题 50道(附答案) 1.已知:在矩形ABCD 中,A E ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。 2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60度,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。 3、已知:在等腰梯形ABCD 中,AB ∥DC , AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。 4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线 交BE 于F ,求证:F 是BE 的中点。 5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60度,梯形的周长是 20cm, 求:AB 的长。 6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。 7、已知:梯形ABCD 的对角线的交点为E _ D _ C _B _ C _ A _ B _ A _ B _ E _A _ B

若在平行边的一边BC 的延长线上取一点F , 使S ABC ?=S EBF ?,求证:DF ∥AC 。 8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H , 求证:AH 与正方形的边长相等。 9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE , AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。 10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。 11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。 12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、 DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。 13、在正方形ABCD 的边CD 上任取一点E , _B _ C _B _ F _ B _ C _ F _ C _ D _ B _ F _ F _ G _ B _A _ E

平移典型例题及练习含答案

平移 一、知识点复习 知识点1:平移的定义: 在平面内,一个图形沿某个方向移动一定的距离,这种图形的变换叫做平移。 知识点2:平移的要素 1.平移的方向:原图上的点指向它的对应点的射线方向; 2.平移的距离:连接原图与平移后图形上的一对对应点的线段的长度。 知识点3:平移的性质 1.性质 (1)平移只改变图形的位置,不改变图形的形状和大小。 (2)平移后的图形与原图形上对应点连成的线段, ①数量关系是相等 . ②位置关系是平行或在同一条直线上。 2.判断一组图形能不能通过平移得到的方法 (1)看对应点连线是否平行或在同一条直线上;

(2)看它的形状、大小是否发生变化,位置的变化是否由平移产生。 ★★★特别注意: 平移是由平移的方向和距离决定的,平移必须指明平移的方向和距离; 平移是在平面内,整个图形沿着某一直线平行移动的过程,原图上的每个点都沿同一方向移动相同的距离;平移的距离不能为0; 平移的方向是任意的,但就一次平移而言,只能有一个方向,一次平移完成后可以改变方向进行下一次平移。 二、典型例题 题型1:生活中平移现象 【例题1】(2017春?乌海期末)下列运动属于平移的是() A.荡秋千 B.推开教室的门 C.风筝在空中随风飘动 D.急刹车时,汽车在地面上的滑动【例题2】:(2016春?淮安期中)下列现象:①电梯的升降运动,②飞机在地面上沿直线滑行,③风车的转动,④冷水加热过程中气泡的上升.其中属于平移的是() A.①② B.①③ C.②③ D.③④ 题型2:平移的性质 【例题4】:(2016春?沧州期末)在下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC 在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC在平移过程中,对应边中点所连线段的长等于平移的距离;⑤△ABC在平移过程中,面积不变,其中正确的有() A.①②③④ B.①②③④⑤ C.①②③⑤ D.①③④⑤ 题型3:与平移有关的计算

幂函数的典型例题.doc

经典例题透析 类型一、求函数解析式 例1.已知幕函数y = (nr-m-])x,,,2-2m~3,当xw(0, + 8)时为减函数,则幕函数y二___________________ . 解析:由于丁 =(加2—血—1)#宀2心为幕函数, 所以m2— \ = \,解得m = 2 ,或m = —\. 当ni = 2时,nr -2m-3 = -3 , y = x~3在(0, + 8)上为减函数; 当m = -l时,/7?2-2m-3 = 0, y = %° =1(x^0)在(0, + ?)上为常数函数,不合题意,舍去. 故所求幕函数为y = x-3. 总结升华:求慕函数的解析式,一般用待定系数法,弄明白需函数的定义是关键. 类型二、比较幕函数值大小 例2.比较下列各组数的大小. 4 4 _ 3 _ 3 (1)3」4万与兀了;(2)(-近门与(-73)^. 4 4_4 解:⑴由于幕函数y = ?亍(x>0)单调递减且3」4 <龙,???3.14万 > 兀了. _3 (2)由于y =兀5这个幕函数是奇函数.???f (-x) =-f (x) —_ 3 _ 3 _ 3 _ 3 _ _因此,(一血门二一(血)V,(―巧)V =—(內)V ,而y = (x>0)单调递减,且血 3 3 3 3 3 3 ???(血戸 >"门即(一血门v( 总结升华. (1)各题中的两个数都是“同指数”的幕,因此可看作是同一个幕函数的两个不同的函数值,从而可根据幕函数的单调性做出判断. (2)题(2)中,我们是利用幕函数的奇偶性,先把底数化为正数的幕解决的问题.当然,若直接利用x<0 上幕函数的单调性解决问题也是可以的. 举一反三 【变式一】比较O.805, O.905, 0.9皿的大小. 思路点拨:先利用幕函数)=兀"的增减性比较0?8°5与0.9°"的大小,再根据幕函数的图象比较0.9°"与0.9七5的大小. 解:y = x Q-5^.(0, + oo)上单调递增,且0.8 v 0.9 , .?,0.805 <0.905. 作出函数y = X05与歹=兀七5在第一象限内的图彖, 易知0.严< 0.9心.

追击相遇问题专题总结(完整资料).doc

此文档下载后即可编辑 追及相遇问题专题总结 一、 解相遇和追及问题的关键 (1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系:两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 二、追及问题中常用的临界条件: 1、速度小者追速度大者,追上前两个物体速度相等时,有最大距离; 2、速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上: (1)当两者速度相等时,若追者仍没有追上被追者,则永远追不上,此时两者之间有最小距离。 (2)若两者速度相等时恰能追上,这是两者避免碰撞的临界条件。 (3)若追者追上被追者时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,即会相遇两次。 二、图像法:画出v t -图象。

1、速度小者追速度大者(一定追 上) 追击与相遇问题专项典型例题分析 (一).匀加速运动追匀速运动的情况(开始时v1< v2):v1< v2时,两者距离变大;v 时, 2 两者距离最大;v1>v2时,两者距离变小,相遇时满足x1= x2+Δx,全程只相 遇(即追上)一次。 【例1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长

时间两者相距最远?此时距离是多少?(2)小汽车什么时候追上自行车,此时小汽车的速度是多少? 【针对练习】一辆执勤的警车停在公路边,当警员发现从他旁边驶过的货车(以8m/s的速度匀速行驶)有违章行为时,决定前去追赶,经2.5s将警车发动起来,以2m/s2的加速度匀加速追赶。求:①发现后经多长时间能追上违章货车?②追上前,两车最大间距是多少? (二).匀速运动追匀加速运动的情况(开始时v1> v2):v1> v2时,两者距离变小;v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例2】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车后方相距20m的地方以6m/s的速度匀速行驶,则自行车能否追上汽车?若追不上,两车间的最小间距是多少?

次函数与幂函数典型例题

二次函数与幂函数 1.求二次函数的解析式. 2.求二次函数的值域与最值. 3.利用幂函数的图象和性质分析解决有关问题. 【复习指导】 本节复习时,应从“数”与“形”两个角度来把握二次函数和幂函数的图象和性质,重点解决二次函数在闭区间上的最值问题,此类问题经常与其它知识结合命题,应注重分类讨论思想与数形结合思想的综合应用. 基础梳理 1.二次函数的基本知识 (1)函数f (x )=ax 2+bx +c (a ≠0)叫做二次函数,它的定义域是R . (2)二次函数f (x )=ax 2+bx +c (a ≠0)的图象是一条抛物线,对称轴方程为x = -b 2a ,顶点坐标是? ?? ?? -b 2a , 4ac -b 2 4a . ①当a >0时,抛物线开口向上,函数在? ????-∞,-b 2a 上递减,在?????? -b 2a ,+∞上递增,当x =-b 2a 时,f (x )min =4ac -b 2 4a ; ②当a <0时,抛物线开口向下,函数在? ????-∞,-b 2a 上递增,在?????? -b 2a ,+∞上递减,当x =-b 2a 时,f (x )max =4ac -b 2 4a . ③二次函数f (x )=ax 2+bx +c (a ≠0)当Δ=b 2-4ac >0时,图象与x 轴有两个交点M 1(x 1,0)、M 2(x 2,0),|M 1M 2|=|x 1-x 2|=Δ |a | . (3)二次函数的解析式的三种形式: ①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -m )2+h (a ≠0); ③两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.幂函数

中考数学平行四边形-经典压轴题附答案解析

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.(问题情景)利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一. 例如:张老师给小聪提出这样一个问题: 如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少? 小聪的计算思路是: 根据题意得:S△ABC=1 2 BC?AD= 1 2 AB?CE. 从而得2AD=CE,∴ 1 2 AD CE 请运用上述材料中所积累的经验和方法解决下列问题: (1)(类比探究) 如图2,在?ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF, 求证:BO平分角AOC. (2)(探究延伸) 如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PA?PB=2AB. (3)(迁移应用) 如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B, AB=34,BC=2,AC=26,又已知M、N分别为AE、BE的中点,连接DM、CN.求 △DEM与△CEN的周长之和. 【答案】(1)见解析;(2)见解析;(3)34 【解析】 分析:(1)、根据平行四边形的性质得出△ABF和△BCE的面积相等,过点B作OG⊥AF于

G,OH⊥CE于H,从而得出AF=CE,然后证明△BOG和△BOH全等,从而得出 ∠BOG=∠BOH,即角平分线;(2)、过点P作PG⊥n于G,交m于F,根据平行线的性质得出△CPF和△DPG全等,延长BP交AC于E,证明△CPE和△DPB全等,根据等积法得出 AB=AP×PB,从而得出答案;(3)、,延长AD,BC交于点G,过点A作AF⊥BC于F,设CF=x,根据Rt△ABF和Rt△ACF的勾股定理得出x的值,根据等积法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,从而得出两个三角形的周长之和. 同理:EM+EN=AB 详解:证明:(1)如图2,∵四边形ABCD是平行四边形, ∴S△ABF=S?ABCD,S△BCE=S?ABCD,∴S△ABF=S△BCE, 过点B作OG⊥AF于G,OH⊥CE于H,∴S△ABF=AF×BG,S△BCE=CE×BH, ∴AF×BG=CE×BH,即:AF×BG=CE×BH,∵AF=CE,∴BG=BH, 在Rt△BOG和Rt△BOH中,,∴Rt△BOG≌Rt△BOH,∴∠BOG=∠BOH, ∴OB平分∠AOC, (2)如图3,过点P作PG⊥n于G,交m于F,∵m∥n,∴PF⊥AC, ∴∠CFP=∠BGP=90°,∵点P是CD中点, 在△CPF和△DPG中,,∴△CPF≌△DPG,∴PF=PG=FG=2, 延长BP交AC于E,∵m∥n,∴∠ECP=∠BDP,∴CP=DP, 在△CPE和△DPB中,,∴△CPE≌△DPB,∴PE=PB, ∵∠APB=90°,∴AE=AB,∴S△APE=S△APB, ∵S△APE=AE×PF=AE=AB,S△APB=AP×PB, ∴AB=AP×PB,即:PA?PB=2AB; (3)如图4,延长AD,BC交于点G,∵∠BAD=∠B, ∴AG=BG,过点A作AF⊥BC于F, 设CF=x(x>0),∴BF=BC+CF=x+2,在Rt△ABF中,AB=, 根据勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2,在Rt△ACF中,AC=, 根据勾股定理得,AF2=AC2﹣CF2=26﹣x2, ∴34﹣(x+2)2=26﹣x2,∴x=﹣1(舍)或x=1,∴AF==5, 连接EG,∵S△ABG=BG×AF=S△AEG+S△BEG=AG×DE+BG×CE=BG(DE+CE),

相关文档
最新文档