高中生物遗传题——如何判断基因的位置

合集下载

高中生物遗传题解答难点和策略研究

高中生物遗传题解答难点和策略研究

高中生物遗传题解答难点和策略研究摘要:遗传题丢分是很多学生的共性,很多人做遗传题的时候感觉就是懵懵的状态,遗传题失分也导致了很多人的生物成绩不理想,进而影响到整个高考成绩,有时候可能因为一两个遗传题失分就注定了自己和“985”“211”大学失之交臂,所以正确处理好生物遗传题,就显得十分重要,分析出生物遗传题的解答难点,并且制定出相关的解决策略,举一反三,慢慢的生物遗传题解答就会变得很简单了。

本文主要从生物遗传题解答难点,具体策略和相关案例解析三个部分来写一、生物遗传题解答难点(1)找不到正确的着手点:很多学生在做遗传题的时候,不知道从何处下手,这样进行解题,可能对于题目中的某些小问可以解答出来,但是要想完整的把整个题目都正确的解答出来就十分的困难,因为无法完整的梳理出整个题目的框架,对于那种需要再亲子几代中的运算就显得十分吃力。

(二)没有正确判断出基因的位置在高中生物遗传题解答中有一个重要的环节,那就是判断基因的位置,首先得确定基因是位于常染色体还是性染色体上,这是做遗传题的根本,要是这个判断错误,那么后面所做的基本上就是无用功了,我们通常使用的方法是性状传与性别有关,基因位于性染色体上。

性状遗传与性别无关,基因位于常染色体上。

在大多数遗传题中,个方法是有效的,但是在稍微复杂的题目中,远远不止这么简单,只能通过子代患病的性别比例大致推测出基因的位置,这也就是我们经常所说的有极大可能,而不是说绝对位于什么位置。

因为通过子代反映出来的结果,只能确定有很大概率,这个时候就要仔细分析子代性状,从而确定基因位置,基因位置确定准确,才能保证下面步骤的顺利进行。

(三)并不是所有动物性别的基因型都是 XY性别的基因型并不是都是 XY 型,生物界中的动物基因型大多是是 XY 型,但也有极少数的基因型是 ZW 型,例如鸡还有一些鸟类等,而且在 XY 型中 XX为雌性,XY 为雄性。

但需要注意的是,在 ZW 性别决定系统中,ZZ 为雄性,ZW 为雌性。

基因位置判断方法归纳

基因位置判断方法归纳
两果蝇杂交,后代如上表,分析: ①雌雄中灰身:黑身均为 3:1,与性别无关,位于常染色体; ②雌性全为直毛,雄性中直毛:分差毛=1:1,与性别有关,位于 X 染色体上 ③亲本的基因型:AaXBXb×AaXBY 2.通过显隐性性状在雌雄个体中的表现率判断。 即:常染色体上的基因控制的性状,在雌雄中的表现机会相同;
5.基因在 X、Y 染色体同源区段还是仅位于常染色体上: 设计思路:“纯合隐性雌×纯合显性雄→F1→F2”。结果分析:
①若 F2 雌雄个体中都有显性和隐性个体,则位于 常染色体 上; ②若 F2 雌雄个体中雌性有显性和隐性个体,雄性个体只有显性个体,则位于 XY 同源区段。 三、.其他判断基因位置的方法归纳 1.根据子代性别、性状的数量比分析判断基因的位置:体色(A/a),毛形(B/b)
②若正反交子代雌雄表现型不同,则制该性状的基因在 X 染色体上 。 4.基因在 X、Y 染色体同源区段还是仅位于 X 染色体上:
⑴方法一:用“纯合隐性雌×纯合显性雄”杂交,观察分析 F1(思考 1)的性状。结果结论:
①若子代中 全为显性 ,说明此等位基因位于 X、Y 染色体的同源区段上; ②若子代中 雌性为显性,雄性为隐性 ,说明此等位基因仅位于 X 染色体上。
基因位置判断:
一、基因的位置:
1.细胞质遗传:即叶绿体和线粒体上的基因。特点:母系遗传(即母病孩必病),不遵循基 因的分离定律和自由组合定律。
2.细胞核遗传:位于染色体上,包括常染色体和性染色体;遵循基因的分 离定律和自由组合定律。包括常染色体上和性染色体上。
3.性染色体如右图: 属于 XY 同源区段的是 II ,此位置一对基因(A/a)组成雄性个体的基 因型有:XAYA、XAYa、XaYA、XaYa,雌性的基因型有:XAXA、XAXa、XaXa; 仅属于 X 染色体的是 III ,一对基因(B/b)构成的雌雄个体的基因型分别: 雌:XBXB、XBXb、XbXb;雄:XBY、XbY ;仅属于 Y 染色体的是 Ⅰ ;该区段 无 等位基 因?位于Ⅲ区段的致病基因,能否在体细胞中找到其等位基因?答:能,如雌性个体中。图中

高三生物——基因在染色体的位置判断

高三生物——基因在染色体的位置判断

高三生物——基因在染色体的位置判断1.判断基因位于X 染色体上还是常染色体上(1)若相对性状的显隐性是未知的,且亲本均为纯合子,则用正交和反交的方法。

即:正、反交实验⇒⎩⎪⎨⎪⎧ 若正、反交子代雌、雄表现型相同 ⇒在常染色体上若正、反交子代雌、雄表现型不同 ⇒在X 染色体上说明 ①若正反交结果相同,则相应的控制基因位于常染色体上。

遗传图解如下:②若正反交结果不同,且子代性状表现与性别有关,则相应的控制基因位于X 染色体上。

遗传图解如下:(2)若相对性状的显隐性已知,只需一个杂交组合判断基因的位置,则用隐性雌性个体与显性雄性纯合个体杂交的方法。

即:隐性雌×纯合显性雄⎩⎪⎨⎪⎧ 若子代中雌性全为显性,雄性 全为隐性⇒在X 染色体上若子代中雌性、雄性均为显性 ⇒在常染色体上说明 ①若子代中雄性个体全为隐性性状,雌性个体全为显性性状,则相应的控制基因位于X 染色体上。

遗传图解如图:②若子代中雌雄个体具有相同的性状表现,则相应的控制基因位于常染色体上。

遗传图解如图:2.判断基因只位于X 染色体上还是X 、Y 染色体的同源区段上适用条件:已知性状的显隐性和控制性状的基因在性染色体上。

(1)基本思路一:用“隐性雌×纯合显性雄”进行杂交,观察分析F 1的性状。

即:隐性雌×纯合显性雄⇒⎩⎪⎨⎪⎧若子代所有雄性均为显性性 状⇒位于X 、Y 染色体的同源区段上若子代所有雄性均为隐性性 状⇒仅位于X 染色体上说明 ①若子代全表现为显性性状,则相应的控制基因位于X 、Y 染色体的同源区段。

遗传图解如下: ②若子代中雌性个体全表现为显性性状,雄性个体全表现为隐性性状,则相应的控制基因位于X 、Y 染色体的非同源区段,且仅位于X 染色体上。

遗传图解如下:(2)基本思路二:用“杂合显性雌×纯合显性雄”进行杂交,观察分析F 1的性状。

即:杂合显性雌×纯合显性雄⇒⎩⎪⎨⎪⎧ 若子代中雌雄个体全表现显性性状 ⇒位于X 、Y 染色体的同源区段上若子代中雌性个体全表现显性性状,雄性个体中既有显性性状又有隐性性状 ⇒仅位于X 染色体上3.判断基因位于常染色体上还是X 、Y 染色体同源区段上(1)设计思路:隐性的雌性个体与显性的纯合雄性个体杂交,获得的F 1全表现为显性性状,再选F 1的雌雄个体杂交获得F 2,观察F 2表现型情况。

基因在染色体上位置的判定方法

基因在染色体上位置的判定方法

基因在染色体上位置的判定方法1.遗传连锁法:遗传连锁法是通过观察遗传突变或多性状同时遗传的情况来确定基因在染色体上的位置。

当两个或多个基因在不同的染色体上时,它们可以独立地遗传给子代。

而当两个基因位于同一染色体上时,它们会同时遗传给子代。

通过连锁分析,可以确定基因的相对位置。

2.插入突变法:插入突变法是一种将外源DNA序列插入到已知基因上的方法。

通过这种方式,可以精确定位该基因的位置。

例如,科学家可以将一个反义DNA片段插入到已知基因上,并观察插入突变对基因表达的影响,从而确定该基因在染色体上的位置。

3.染色体映射法:染色体映射法是一种利用特定染色体标记或可识别的DNA序列,将基因定位到染色体特定区域的方法。

例如,通过比较有缺陷染色体的DNA序列与正常染色体的DNA序列之间的差异,可以确定染色体上承载缺陷基因的特定区域。

4.非连锁分析法:非连锁分析法是一种独立于遗传连锁法的方法,用于确定基因在染色体上的位置。

这种方法主要利用单核苷酸多态性(SNP)和微卫星标记等多态性基因标记,通过复杂的数学和统计模型来推断基因在染色体上的位置。

5.相对物理位置法:相对物理位置法是利用不同种群中的同源染色体达成互换片段,通过比较基因重组频率计算出基因的相对物理位置。

这种方法适用于逐渐构建染色体图谱,从而确定基因在染色体上的位置。

总结起来,基因在染色体上位置的判定方法包括遗传连锁法、插入突变法、染色体映射法、非连锁分析法和相对物理位置法。

这些方法的综合应用可以帮助科学家们更准确地确定基因在染色体上的位置,进而深入研究基因功能和与其相关的疾病。

基因在染色体上位置的判定方法(一)

基因在染色体上位置的判定方法(一)

基因在染色体上位置的判定方法(一)概述基因在染色体上的位置是研究基因功能和相互作用的重要基础。

本文将介绍几种常用的方法,用于基因在染色体上位置的判定。

方法一:基因组测序基因组测序是一种高效和精确的方法。

通过对一个生物体的基因组进行测序,并进行比对,可以确定基因的位置。

方法二:FISH技术FISH技术是一种利用探针与靶DNA结合的方法。

将基因组或染色体DNA进行处理,并标记上荧光信号的探针,通过光学显微镜观察荧光染色,从而确定基因在染色体上的位置。

FISH技术不需要DNA序列信息,因此,即使未知基因的序列也能找出其位置。

方法三:比较基因组学比较基因组学是一种通过比较不同物种的通用区域,快速确定已知和未知基因的位置的方法。

比较基因组学基于相同物种间的相似性,大概率的可预测基因在染色体上的位置。

方法四:PCR技术PCR技术是一种利用富含特定序列的引物扩增DNA的方法。

通过PCR扩增,可对目标序列进行定量、精确和高通量测定,从而精确地判定基因在染色体上位置。

结论以上四种方法中,基因组测序和FISH技术是常用的方法,但比较基因组学和PCR技术也有其优点。

在选择方法时,需要考虑到可用的资源、成本和目标研究问题的具体要求。

综合各种方法,可以帮助更好地理解基因组和染色体的特征,为基因定位提供更加可靠的支持。

补充除了以上提到的方法,还有一些其他的方法也能够用于基因在染色体上位置的判定:•SNP芯片:SNP芯片是一种基因芯片,判定基因在染色体上位置的精度高且速度快。

•跨物种比较基因组学:该方法通过比较不同物种基因组之间的共同区域来判定基因的位置。

该方法特别适用于研究进化关系较近的不同物种,例如哺乳动物。

•遗传连锁分析:遗传连锁分析经常用于研究复杂疾病的遗传。

该方法通过分析遗传连锁性极强的单倍体片段,来推断基因在染色体上的位置。

•基因组表情谱分析:该方法用于描述基因在不同时期或治疗后的表达水平变化,以帮助确定基因在染色体上位置。

遗传题如何判断基因的位置

遗传题如何判断基因的位置

遗传题如何判断基因的位置基因是控制生物性状的基本单位,其位置可以有以下几个地方:(1)位于细胞质中还是位于细胞核中;(2)位于细胞核中的核基因又分为以下四种情况:①位于常染色体上还是位于X染色体上;②位于常染色体上还是位于X、Y染色体的同源区段;③位于X、Y染色体上的同源区段还是仅位于X染色体的特有区段上;④控制两相对性状的两对等位基因是一对同源染色体上还是位于非同源染色体上。

一、探究某性状的遗传是细胞质遗传还是细胞核遗传1、正反交法。

判断某对相对性状是细胞核遗传还是细胞质遗传,应该做正交实验和反交实验。

(该法必须为纯合子)(1)若正交与反交的结果,子代的性状都与母本一致,说明属于细胞质遗传。

(2)若正交与反交的结果,子代性状表现相同,与母本无关(表现的都是显性性状),说明属于细胞核遗传。

例1、有人发现了一种受细胞质基因控制的大豆芽黄突变体(其幼苗叶片明显黄化,长大后与正常绿色植株无差异)。

请你以该芽黄突变体和正常绿色植株(均为纯合子)为材料,用杂交实验的方法,验证芽黄性状属于细胞质遗传。

(要求:用遗传图解表示)答案:正交:P 红花♀×白花♂ 反交:P 白花♀×红花♂↓↓F1 F1 若正交与反交产生的F1的性状表现都与母本相同,则该花色的遗传为细胞质遗传。

若正交与反交产生的F1的性状表现与母本无关,表现为红花或白花的一种,则该花色的遗传为细胞核遗传二、判断基因位于x 染色体上还是常染色体上(通常不考虑性染色体的同源区段)1、已知基因的显隐性:选择隐性雌性个体与显性雄性个体进行交配。

①若后代中的所有雌性个体表现出显性性状,所有雄性个体表现出隐性性状,说明该基因位于X染色体上。

②若后代中雌雄个体表现出显性性状或均表现出显隐性性状,说明该基因位于常染色体上。

3、已知雌雄个体均为纯合子:正交和反交,观察后代的表现型是否一致。

①若后代的表现型一致,与性别无关,说明该基因位于常染色体上。

基因位置的确定及遗传实验类试题解题技巧

基因位置的确定及遗传实验类试题解题技巧

基因位置的确定及遗传实验类试题解题技巧巧用逆推法,判断基因位置1.真核细胞基因的三种“位置”(1)主要位置:细胞核内(即染色体上)(2)次要位置:细胞质内(位于线粒体、叶绿体中)→遗传时只能随卵细胞传递,表现出“母系遗传”特点。

2.实验法确认基因的位置(1)判定基因位于细胞核还是细胞质中若有“正交和反交结果相同或不同”的信息则可以判定基因是位于细胞核中还是位于细胞质内;正交、反交结果相同则基因位于细胞核内,正交、反交结果不同且与母本性状相同,则基因位于细胞质中。

(2)在常染色体上还是在X 染色体上 ①已知性状的显隐性②未知性状的显隐性正反交实验-⎩⎪⎨⎪⎧正反交结果一致→基因在常染色体上正反交结果不一致→基因在X 染色体上(3)是位于X 、Y 染色体的同源区段上还是只位于X 染色体上(4)基因位于常染色体还是X 、Y 染色体同源区段 ①设计思路隐性的纯合雌性个体与显性的纯合雄性个体杂交,获得的F 1全表现为显性性状,再选子代中的雌雄个体杂交获得F 2,观察F 2表现型情况。

即:②结果推断⎩⎪⎨⎪⎧a.若F 2雌雄个体中都有显性性状和隐性性状出现,则该基因位于常染色体上b.若F 2中雄性个体全表现为显性性状,雌 性个体中既有显性性状又有隐性性状,则 该基因位于X 、Y 染色体的同源区段上3.数据信息分析法确认基因位置除以上列举的方法外,还可依据子代性别、性状的数量分析确认基因位置:若后代中两种表现型在雌雄个体中比例一致,说明遗传与性别无关,则可确定基因在常染色体上;若后代中两种表现型在雌雄个体中比例不一致,说明遗传与性别有关,则可确定基因在性染色体上。

分析如下:(1)根据表格信息中子代性别、性状的数量比分析推断据表格信息:灰身与黑身的比例,雌蝇中3∶1,雄蝇中也为3∶1,二者相同,故为常染色体遗传。

直毛与分叉毛的比例,雌蝇中4∶0,雄蝇中1∶1,二者不同,故为伴X 遗传。

(2)依据遗传调查所得数据进行推断【典例】(2018·北师大附中期末)大麻是一种雌雄异株的植物,请回答下列问题:(1)在大麻体内,物质B的形成过程如图所示,基因M、m和N、n分别位于两对常染色体上。

例析高中生物基因位置的判定

例析高中生物基因位置的判定

例析高中生物基因位置的判定基因是有遗传效应的DNA片段。

根据DNA在真核细胞中的分布位置,可把基因分为细胞核基因和细胞质基因。

细胞核基因位于染色体上,在有性生殖产生精子或卵时遵循孟德尔遗传定律,使后代出现特殊的性状分离比例。

细胞质基因位于线粒体和叶绿体的基质,由于形成配子时随机分配,不遵循孟德尔定律,表现为母系遗传(子代总是表现出母本的性状的特点。

真核生物的许多性状受细胞核基因控制,根据染色体类型,可以分为常染色体遗传和性染色体遗传。

高中生物遗传学题目中经常涉及基因位置的判定,现分类例析如下:1细胞核遗传和细胞质遗传的判定例题:科学家分离了脉胞菌(真菌的突变品系——poky小菌落,与野生型进行了下列杂交实验:①poky小菌落♀x野生型♂→后代全部为poky小菌落②野生型♀x poky小菌落♂→后代全部为野生型由此可判断决定突变性状的基因位于(A.细胞核中DNAB.质体中的DNAC.细胞质中RNAD.线粒体中DNA解析:此题利用正反交法来判定。

因为子代总是表现出母本的性状,又因为脉胞菌是真菌,没有叶绿体,所以该基因位于线粒体基质中的DNA。

2006年全国卷1理综31题第(2问,也是用正反交法来区别细胞核遗传和细胞质遗传。

2常染色体和性染色体遗传的判定判定是常染色体还是性染色体遗传,一般根据子代某一性状的表现是否存在雌雄表现差异。

如果雌雄表现一致,则常染色体遗传,反之,是性染色体遗传。

如果仅有雄性表现某性状,则一般属伴Y遗传。

例题(2005年高考·全国卷2,部分:已知果蝇中,灰身与黑身为一对相对性状(显性基因用B表示,隐性基因用b表示;直毛与分叉毛为一对相对性状(显性控制灰身与黑身的基因位于___________;控制直毛与分叉毛的基因位于______________ _。

解析:因为子代雌雄均有灰身和黑身,且比例相等,所以,控制体色的基因位于常染色体;而分叉毛只有雄蝇,雌蝇全为直毛,表现明显的性别差异,排除常染色体遗传。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中生物遗传题——如何判断基因的位置基因是控制生物性状的基本单位,其位置可以有以下几个地方:(1)位于细胞质中还是位于细胞核中;(2)位于细胞核中的核基因又分为以下四种情况:①位于常染色体上还是位于X染色体上;②位于常染色体上还是位于X、Y染色体的同源区段;③位于X、Y染色体上的同源区段还是仅位于X染色体的特有区段上;④控制两相对性状的两对等位基因是一对同源染色体上还是位于非同源染色体上。

一、探究某性状的遗传是细胞质遗传还是细胞核遗传1、正反交法。

判断某对相对性状是细胞核遗传还是细胞质遗传,应该做正交实验和反交实验。

(该法必须为纯合子)(1)若正交与反交的结果,子代的性状都与母本一致,说明属于细胞质遗传。

(2)若正交与反交的结果,子代性状表现相同,与母本无关(表现的都是显性性状),说明属于细胞核遗传。

例1、有人发现了一种受细胞质基因控制的大豆芽黄突变体(其幼苗叶片明显黄化,长大后与正常绿色植株无差异)。

请你以该芽黄突变体和正常绿色植株(均为纯合子)为材料,用杂交实验的方法,验证芽黄性状属于细胞质遗传。

(要求:用遗传图解表示)答案:正交:P 红花♀×白花♂反交:P 白花♀×红花♂↓↓F1 F1 若正交与反交产生的F1的性状表现都与母本相同,则该花色的遗传为细胞质遗传。

若正交与反交产生的F1的性状表现与母本无关,表现为红花或白花的一种,则该花色的遗传为细胞核遗传二、判断基因位于x 染色体上还是常染色体上(通常不考虑性染色体的同源区段)1、已知基因的显隐性:选择隐性雌性个体与显性雄性个体进行交配。

①若后代中的所有雌性个体表现出显性性状,所有雄性个体表现出隐性性状,说明该基因位于X染色体上。

②若后代中雌雄个体表现出显性性状或均表现出显隐性性状,说明该基因位于常染色体上。

3、已知雌雄个体均为纯合子:正交和反交,观察后代的表现型是否一致。

①若后代的表现型一致,与性别无关,说明该基因位于常染色体上。

②若后代的表现型不一致,与性别明显相关,说明该基因位于X染色体上。

例3、现有一定数量长翅果蝇和残翅果蝇(均有雌雄),且长翅对残翅为显性。

请设计实验来确定其基因位于x 染色体上还是常染色体上。

写出你的实验设计思路,并对可能的结果进行分析。

方法一:一对残翅雌×长翅雄若子代雌全为长翅,雄全为残翅,这对基因在x 染色体上若子代雌、雄全为长翅,这对基因位于常染色体上若子代雌、雄既长翅又有残翅,这对基因位于常染色体上方法二:多对残翅雌×长翅雄若子代雌全为长翅,雄全为残翅,这对基因在x 染色体上若子代雌、雄既长翅又有残翅,且长翅多于残翅,这对基因位于常染色体上方法三:多对长翅雌×长雄①若残翅只出现在子代雄性个体中,则基因位于X染色体上。

②若残翅同时出现在雌雄性个体中,则基因位于常染色体上。

例4、己知果蝇的直毛与非直毛是一对等位基因。

若实验室有纯合的直毛和非直毛雌、雄果蝇亲本,你能否通过一代杂交试验确定这对等位基因是位于常染色体上还是X染色体上?请说明推导过程。

答案:能。

正交和反交(即直毛×非直毛,非直毛×直毛)。

(1)若正、反交后代性状表现一致,则该等位基因位于常染色体上,(2)若正、反交后代性状表现不一致,则该等位基因位于X染色体上。

三、题目给信息要考虑性染色体的同源区段,判断基因仅位于X染色体特有区段还是在同源区段1、选择隐性雌性个体与纯和显性雄性个体进行交配。

①若后代中的所有雄性个体表现出显性性状,说明该基因位于X、Y 染色体上的同源区段。

②若后代中的所有雄性个体表现出隐性性状,说明该基因仅位于X 染色体上。

例5、科学家研究黑腹果蝇时发现,刚毛基因(B)对截刚毛基因(b)为完全显性。

若这对等位基因存在于X、Y染色体上的同源区段,则刚毛雄果蝇可表示为XBYB或XBYb或XbYB,若仅位于X染色体上,则只能表示为XBY。

现有各种纯种果蝇若干,请利用一次杂交实验来推断这对等位基因是位于X、Y染色体上的同源区段还是仅位于X染色体上,请写出遗传图解,并简要说明推断过程。

答案:用截刚毛的雌果蝇与纯种刚毛雄果蝇杂交,若子代雄果蝇表现为刚毛,则此对基因位于X、Y染色体上的同源区段;若子代雄果蝇表现为截剐毛,则此对基因仅位于X染色体上。

2、选择性杂合雌性个体与纯和显性雄性个体进行交配。

①若子代只有雄性个体中出现隐性性状个体,则基因位于X染色体的特有区段。

②若子代中没有出现隐性性状个体,则基因位于X、Y染色体的同源区段。

例6、野生型果蝇(纯合体)的眼形是圆眼,某遗传学家在研究中偶然发现一只棒眼雄果蝇,他想探究果蝇眼形的遗传方式,设计了下图(左)实验。

雄果蝇染色体的模式图及性染色体放大图如下(右)。

分析回答:(1)由F1可知,果蝇眼形的是显性性状。

(2)若F2中圆眼:棒眼≈3:1,且雌、雄果蝇个体中均有圆眼、棒眼,则控制圆眼、棒眼的基因位于染色体上。

(3)若F2中圆眼:棒眼≈3:1,但仅在雄果蝇中有棒眼,则控制圆眼、棒眼的基因有可能位于,也有可能位于。

(4)请从野生型、F1、F2中选择合适的个体,一次杂交,设计方案,对上述(3)中的问题作出判断。

实验步骤:①;②。

预期结果与结论:①;②。

答案:(1)圆眼(2)常(3)(顺序可颠倒)X染色体的II区段X 和Y染色体的I区段(4)实验步骤:①用F1中圆眼雌果蝇与野生型圆眼雄果蝇交配②观察子代眼形情况结果与结论:①若只有雄果蝇中出现棒眼个体,则圆、棒眼基因位于X染色体的特有区段II②若子代中没有棒眼果蝇出现,则圆、棒眼基因位于X、Y染色体的同源区段I四、如何判断基因位于X和Y的同源区,还是位于常染色体上选择隐性雌性个体与纯和显性雄性个体进行交配,得到F1,让F1雌雄个体自由交配得到F2。

(1)若F2中只有雌性个体中出现隐性性状,则说明该基因位于X、Y染色体上的同源区段。

(2)若后代中的雌雄个体均出现隐性性状,说明该基因仅位于常染色体上。

例7、果蝇的性染色体X和Y有非同源区和同源区。

非同源区上的X 和Y片段上无等位基因或相同基因;同源区上的X和Y片段上有等位基因或相同基因。

棒眼(E)对圆眼(e)为显性,现有足够的纯合雌、雄棒眼果蝇和纯合雌、雄圆眼果蝇个体,请用杂交实验的方法推断这对基因是位于X和Y的同源区,还是位于常染色体上,还是仅位于X的非同源区。

写出你的实验方法、推断过程和相应遗传图解。

将纯合的圆眼雌蝇与纯合的棒眼雄蝇杂交,得到足够的F1个体,观察分析F1性状。

其遗传图解如下:五、探究控制某两对相对性状的两对等位基因是否位于一对同源染色体上方法:具有相对性状的亲本杂交得F1,F1自交(动物让雌、雄个体自由交配)得F2。

(1)若F2出现四种性状,其性状分离比为9∶3∶3∶1,符合基因的自由组合定律,说明控制某两个性状的两对等位基因不是位于一对同源染色体上(即位于两对同源染色体上)。

(2)若F2性性状分离比不是9∶3∶3∶1,则可能是位于一对同源染色体上。

例8、实验室中现有一批未交配过的纯种长翅灰体和残翅黑檀体的果蝇。

已知长翅和残翅这对相对性状受一对位于第Ⅱ号同源染色体上的等位基因控制。

现欲利用以上两种果蝇研究有关果蝇灰体与黑檀体性状的遗传特点(说明:控制果蝇灰体和黑檀体的基因在常染色体上,所有果蝇均能正常繁殖存活)。

请设计一套杂交方案,研究控制果蝇灰体、黑檀体的等位基因是否也位于第Ⅱ号同源染色体上,并作出判断。

答案:(1)杂交方案:长翅灰体×残翅黑檀体→F1F2 (2)推断及结论:如果F2出现四种性状,且性状分离比为9∶3∶3∶1,说明符合基因的自由组合定律,因此控制灰体、黑檀体的这对等位基因不是位于第二号同源染色体上。

反之,则可能是位于第二号同源染色体上。

6.基因是否位于某条缺失染色体上.果蝇的灰体(E)对黑檀体(e)为显性;灰体纯合果蝇与黑檀体果蝇杂交,在后代群体中出现了一只黑檀体果蝇。

出现该黑檀体果蝇的原因可能是亲本果蝇在产生配子过程中发生了基因突变或染色体片段缺失。

现有基因型为EE、Ee和ee的果蝇可供选择,请完成下列实验步骤及结果预测,以探究其原因。

(注:一对同源染色体都缺失相同片段时胚胎致死;各型配子活力相同)实验步骤:①用该黑檀体果蝇与基因型为________的果蝇杂交,获得F1;②F1自由交配,观察、统计F2表现型及比例。

结果预测:Ⅰ.如果F2表现型及比例为____________ ,则为基因突变;Ⅱ.如果F2表现型及比例为__________ __,则为染色体片段缺失。

答案:①EE ②灰体:黑檀体=3:1 灰体:黑檀体=4:17.基因是否易位到一对同源染色体上.玉米糯性与非糯性、甜粒与非甜粒为两对相对性状。

一般情况下,用纯合非糯非甜粒与糯性甜粒两种亲本进行杂交时, F 1 表现为非糯非甜粒, F 2 有 4 种表现型,其数量比为 9∶3∶3∶1 。

若重复该杂交实验时,偶然发现一个杂交组合,其 F 1 仍表现为非糯非甜粒,但某一 F 1 植株自交,产生的 F 2 只有非糯非甜粒和糯性甜粒两种表现型。

对这一杂交结果的解释,理论上最合理的是(A)A .发生了染色体易位B .染色体组数目整倍增加C .基因中碱基对发生了缺失D .基因中碱基对发生了增减8.判断外源基因是否整合到宿主染色体上.实验者利用基因工程技术将某抗旱植株的抗旱基因R成功转入到一抗旱能力弱的植株品种的染色体上,并得到下图所示的三种类型。

下列说法中不正确的是(A)A.若自交产生的后代中高抗旱性植株所占比例为75%,则目的基因的整合位点属于图中的Ⅲ类型B.Ⅰ和Ⅱ杂交产生的后代中高抗旱性植株所占比例为100%C.Ⅱ和Ⅲ杂交产生的后代中高抗旱性植株所占比例为7/8D.Ⅰ和Ⅲ杂交产生的后代中高抗旱性植株所占比例为100%。

相关文档
最新文档