吉林省数学高中会考真题精选文档
吉林省普通高中2019-2020学年数学1月学业水平考试试卷

吉林省普通高中2019-2020学年数学1月学业水平考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2017高二下·陕西期末) 已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A . 1B . 2C . 3D . 42. (2分) (2018高一上·大石桥期末) 已知 , ,则用表示为()A .B .C .D .3. (2分) (2019高一上·新丰期中) 函数的图象是()A .B .C .D .4. (2分)复数满足,则复数z的实部与虚部之差为()A . -2B . 2C . 1D . 05. (2分)函数和的递增区间依次是()A . (-∞,0],(-∞,1]B . (-∞,0],[1,+∞)C . [0,+∞),(-∞,1]D . [0,+∞),[1,+∞)6. (2分)将一圆的六个等分点分成两组相间的三点﹐它们所构成的两个正三角形扣除内部六条线段后可以形成一正六角星﹐如图所示的正六角星是以原点O为中心﹐其中﹐分别为原点O到两个顶点的向量﹒若将原点O到正六角星12个顶点的向量﹐都写成为a+b的形式﹐则a+b的最大值为()A . 2B . 3C . 4D . 57. (2分) (2019高二上·荔湾期末) 某学校共有教师120人,老教师、中年教师、青年教师的比例为,其中青年男教师24人. 现用分层抽样的方式从该校教师中选出一个30人的样本,则被选出的青年女教师的人数为()A . 12B . 6C . 4D . 38. (2分) (2018高二上·广州期中) 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A .B .C .D .9. (2分)设变量x,y满足,则x+2y的最大值和最小值分别为()A . 1,-1B . 2,-2C . 1,-2D . 2,-110. (2分)在四面体中,点为棱的中点. 设, ,,那么向量用基底可表示为()A .B .C .D .11. (2分) (2020高二上·深圳期末) 如图,正方体中,、分别是边和的中点,则和所成的角是()A . 30°B . 60°C . 45°D . 120°12. (2分) (2018高三上·大连期末) 已知=(4,-2),=(cosα,sinα) 且a→⊥b→ ,则为()A .B .C .D .13. (2分)若抛物线的准线方程为x=﹣7,则抛物线的标准方程为()A .B .C .D .14. (2分) (2019高一上·安平月考) 若,则()A .B .C .D .15. (2分) (2016高二上·曲周期中) 设等比数列{an}中,前n项之和为Sn ,已知S3=8,S6=7,则a7+a8+a9=()A . -B .C .D .二、填空题 (共4题;共4分)16. (1分) (2017高三上·常州开学考) 在平面直角坐标系xOy中,双曲线 =1与抛物线y2=﹣12x 有相同的焦点,则双曲线的两条渐近线的方程为________.17. (1分) (2016高一下·珠海期末) 已知tanx=2,则 =________.18. (1分) (2019高二下·上海期末) 高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A的概率分别为、、,这三门科目考试成绩的结果互不影响,则这位考生至少得1个A的概率为________19. (1分) (2020高一下·吉林期末) 已知圆点则过点M的圆的切线方程为________.三、解答题 (共2题;共20分)20. (10分) (2019高一下·包头期中) 已知公差不为零的等差数列{an}满足:,且是与的等比中项.(1)求数列{an}的通项公式;(2)设数列{bn}满足,求数列{bn}的前n项和Sn .21. (10分) (2018高一上·湘东月考) 如图1所示,在直角梯形中,,,,,,.将沿折起,使得点在平面的正投影恰好落在边上,得到几何体,如图2所示.(1)求证:;(2)求点到平面的距离.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共4题;共4分)16-1、17-1、18-1、19-1、三、解答题 (共2题;共20分)20-1、20-2、21-1、21-2、。
2017年7月吉林省普通高中学业水平考试数学试题(含答案)

2017年7月吉林省普通高中学业考试(真题)数学试题本试题分为第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分,共4页。
全卷满分120分,答题时间为100分钟。
考试结束后,将本试题和答题卡一并交回。
注意事项:1.考生要认真检查试题(卡)有无漏印、破损或缺页,若有,及时申请更换,否则责任自负。
2.答题前,考生先将自己的姓名、考籍号、科考号和考生座位序号填写清楚,将条形码准确粘贴到“考生信息条形码粘贴区”。
3.答题时,考生在答题卡上的指定区域内作答,在草稿纸、试题上答题无效。
参考公式:样本数据12,,,n x x x 的标准差=s 其中x 为样本平均数。
柱体体积公式:=V Sh ,其中S 为底面面积,h 为高。
锥体体积公式:13=V Sh ,其中S 为底面面积,h 为高。
球的表面积、体积公式:2344,3ππ==S R V R ,其中R 为球的径。
第I 卷(选择题共50分)一、选择题(本大题共15小题,每小题的四个选项中只有一项是正确的,第1-10小题每小题3分,第11-15小题每小题4分,共50分) 1.已知集合A ={3,4,5},集合B ={-1,3,4},则A ∪B =A .{3,4}B .{-1,5}C .{-1,3,4,5}D .∞2.cos120°=A .32B .-32C .12D .-123.已知向量a =(1,-1),b =(-2,3),则a +3b =A .(-5,8)B .(8,-5)C .(7,-7)D .(-7,7)4.函数log 25+log 215=A .0B .-1C .12D .15.某几何体的三视图如图所示,则该几何体的体积为A .43πB .83πC .433πD .833π6.右图是6种食品所含热量值的茎叶图,则这6种食品所含热量值的平均数和众数分别为A .85和83B .85和85C .83和85D .83和92 7.函数f (x )=2|x |的图像为A B C D8.已知正实数a ,b 满足ab =4,则a +b 的最小值为A .2B .4C .1D .229.等比数列{a n }的前n 项和为S n ,若首项a 1=1,公比q =2,则S 4=A .7B .15C .16D .3110.已知直线l 过点(-3,4),且与直线x -3y +2=0垂直,则直线l 的方程为A .x -3y +15=0B .x -3y -15=0C .3x +y -5=0D .3x +y +5=07 5 8 5 3 5 9 0 2xyO(第6题图)xy O1xyO1xyO正视图侧视图俯视图(第5题图)4 4。
2021年吉林省普通高中学业水平考试数学试题(word版含答案)

2021年吉林省普通高中学业水平考试数学试题一、选择题:(本大题共15小题,每小题的四个选项中,只有一项是正确的,第1—10小题每小题3分,第11—15小题4分,共50分)1. 已知集合A={-1,0,1,2},B={-2,1,2}则A B=( ) A{1} B.{2} C.{1,2} D.{-2,0,1,2}.2.函数5()log (1)f x x =-的定义域是( )A. (,1)(1,)-∞+∞B.[0,1)C.[1,)+∞D.(1,)+∞3函数f(x)=⎩⎨⎧ x +1,x ≤1-x +3,x>1,则f(f(4))=( )A. 0B. -2C. 2D. 64.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是() A. B. C. D.5.的值为( )A. B. C. D. 6.已知直线l 过点(0,7),且与直线y=-4x+2平行,则直线l 的方程为( )A.y=-4x-7B.y=4x-7C.y=-4x+7D.y=4x+77.已知向量若,则实数x 的值为( )A.-2B.2C.-1D.1314151614cos 4sin ππ2122422),1,(),2,1(-==x b a b a ⊥8.已知函数f(x)的图像是连续不断的,且有如下对应值表: x 1 2 3 4 5 f(x) -4 -2 1 4 7 在下列区间中,函数f(x)必有零点的区间为 ( )A.(1,2)B.(2,3)C.(3,4)D. (4,5)9.已知直线l :y=x+1和圆C :x 2+y 2=1,则直线l 和圆C 的位置关系为( )A.相交B.相切C.相离D.不能确定10.下列函数中,在区间(0,+)上为增函数的是( )A. B.y=log 3x C. D.y=cosx11..下列结论正确的是( )A .平行于同一个平面的两条直线平行B .一条直线与一个平面平行,它就和这个平面内的任意一条直线平行C .与两个相交平面的交线平行的直线,必平行于这两个平面D .平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行 12. 已知一组数据如图所示,则这组数据的中位数是( )A.27.5B. 28.5C. 27D. 2813. )的最小值是(则若)2(),0,2(x x x +-∈A. 2-B. 23- C. 1- D. 21-14. 偶函数)(x f 在区间[]1,2--上单调递减,则函数)(x f 在区间[]2,1上( )A. 单调递增,且有最小值)1(fB. 单调递增,且有最大值)1(fC. 单调递减,且有最小值)2(fD. 单调递减,且有最大值)2(f∞x y )31(=x y 1=。
2021年12月吉林省普通高中学业水平合格性考试数学真题试卷含详解

2021年12月吉林省普通高中学业水平合格性考试数学试卷一、选择题(本大题共15小题,每小题的四个选项中只有一项是正确的,第1—10小题每小题3分,第11—15小题每小题4分,共50分)1.设集合{}1,2A =,{}2,3,4B =,则A B = ()A.{}1,2,3,4 B.{}1,2 C.{}2,3,4 D.{}22.若()()()1i 23i i ,a b a b ++-=+∈R ,其中i 是虚数单位,则,a b 的值分别等于()A.3,2a b ==B.1,4a b =-= C.3,2a b ==- D.3,2a b =-=3.已知4sin 5α=,且α为第二象限角,则cos α的值为()A.45 B.45-C.35D.35-4.不等式()20x x -<的解集是()A.()(),02,-∞+∞B.()0,2C.()(),20,-∞-⋃+∞ D.()2,0-5.已知向量()1,a m = ,()1,2b =- ,若a b ⊥,则实数m 等于()A.12B.12-C.-2D.26.设x ,R y ∈,则“1x >”是“0x >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.在空间,下列命题正确的是()A.平行于同一平面的两条直线平行B.平行于同一直线的两个平面平行C.垂直于同一平面的两条直线平行D.垂直于同一平面的两个平面平行8.下列函数中,与y x =是同一个函数的是()A.2y = B.u =C.y =D.2n m n=9.有一组数据,将其从小到大排序如下:157,159,160,161,163,165,168,170,171,173.则这组数据的第75百分位数是()A.165B.168C.170D.17110.已知函数()21,02,0x x f x x x ⎧+≤=⎨>⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()A.2B.52-C.54D.1-11.函数()lg 3f x x x =+-的零点所在区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)12.在ABC 中,π3A =,BC =,AC =,则角B 为()A.π6 B.π4 C.π3 D.π213.若一个正方体的顶点都在球面上,它的棱长为1,则这个球的表面积是()A.3π2 B.3π4C.3πD.12π14.已知3log 2a =,4log 2b =,5log 2c =,则()A.c b a>> B.c a b>> C.b a c>> D.a b c>>15.在ABC 中,点D 在BC 边上,2BD DC = ,则AD =()A.2133AB AC +B.1233AB AC +C.1122AB AC +D.1344AB AC +二、填空题(本大题共4小题,每小题4分,共16分)16.若0x >,则4x x+的最小值为________________.17.某校高二年级有男生510名,女生490名,若用分层随机抽样的方法从高二年级学生中抽取一个容量为200的样本,则女生应抽取___________名.18.已知1sin 23α=-,则2πcos 4α⎛⎫- ⎪⎝⎭的值为___________.19.根据某地不同身高的未成年男性的体重平均值,建立了能够近似地反映该地未成年男性平均体重y (单位:kg )与身高x (单位:cm )的函数关系:2 1.02x y =⨯,如果体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地一名身高为175cm ,体重为78kg 的未成年男性的体重状况为___________.(填“偏胖”或“正常”或“偏瘦”,参考数据:351.022≈)三、解答题(本大题共4小题,第20、21小题每小题8分,第22、23小题每小题9分,共34分,解答应写出文字说明、证明过程或演算步骤)20.已知函数()sin 2cos 2f x x x =+.(1)求函数()f x 的最小正周期;(2)求函数()f x 的最大值及取得最大值时自变量x 的集合.21.一个盒子中装有5支圆珠笔,其中3支为一等品(记为1A ,2A ,3A ),2支为二等品(记为1B ,2B ),从中随机抽取2支进行检测.(1)写出这个试验的样本空间Ω;(2)求抽取的2支圆珠笔都是一等品的概率.22.如图,三棱柱111ABC A B C -中,1AA ⊥平面ABC ,AB =3,AC =4,BC =5.(1)求证:AB ⊥平面11ACC A ;(2)若异面直线1BB 与1AC 所成的角为30°,求三棱柱111ABC A B C -的体积.23.已知函数2()31xf x a =+-.(1)根据函数单调性的定义证明函数()f x 在区间(),0∞-上单调递减;(2)若函数()f x 是奇函数,求实数a 的值.2021年12月吉林省普通高中学业水平合格性考试数学试卷一、选择题(本大题共15小题,每小题的四个选项中只有一项是正确的,第1—10小题每小题3分,第11—15小题每小题4分,共50分)1.设集合{}1,2A =,{}2,3,4B =,则A B = ()A.{}1,2,3,4 B.{}1,2 C.{}2,3,4 D.{}2【答案】D【分析】利用集合交集的定义求解即可.【详解】因为{}1,2A =,{}2,3,4B =,所以{2}A B = ,故选:D2.若()()()1i 23i i ,a b a b ++-=+∈R ,其中i 是虚数单位,则,a b 的值分别等于()A.3,2a b ==B.1,4a b =-= C.3,2a b ==- D.3,2a b =-=【答案】C【分析】将等式合并计算结果,求出,a b 即可.【详解】解:由题知()()1i 23i 32i i a b ++-=-=+,,a b ∈R ,3,2a b ∴==-.故选:C 3.已知4sin 5α=,且α为第二象限角,则cos α的值为()A.45 B.45-C.35D.35-【答案】D【分析】直接根据同角三角函数关系得到答案.【详解】α为第二象限角,则3cos 5α===-.故选:D4.不等式()20x x -<的解集是()A.()(),02,-∞+∞B.()0,2C.()(),20,-∞-⋃+∞ D.()2,0-【答案】B【分析】根据一元二次不等式的解法计算可得.【详解】解:由()20x x -<,解得02x <<,所以不等式的解集为()0,2.故选:B5.已知向量()1,a m = ,()1,2b =- ,若a b ⊥,则实数m 等于()A.12B.12-C.-2D.2【答案】A【分析】根据向量垂直列方程,化简求得m 的值.【详解】由于a b ⊥,所以1120,2a b m m ⋅=-+== .故选:A6.设x ,R y ∈,则“1x >”是“0x >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【分析】根据充分条件和必要条件的定义即可判断,进而可得正确选项.【详解】若1x >可以得出0x >,但0x >得不出1x >,所以“1x >”是“0x >”的充分不必要条件,故选:A7.在空间,下列命题正确的是()A.平行于同一平面的两条直线平行B.平行于同一直线的两个平面平行C.垂直于同一平面的两条直线平行D.垂直于同一平面的两个平面平行【答案】C【分析】A.利用两直线的位置关系判断;B.利用两平面的位置关系判断;C.利用线面垂直的性质定理判断;D.利用两平面的位置关系判断.【详解】A.平行于同一平面的两条直线平行、相交或异面,故错误;B.平行于同一直线的两个平面平行或相交,故错误;C.由线面垂直的性质定理知:垂直于同一平面的两条直线平行,故正确;D.垂直于同一平面的两个平面平行或相交,故错误;故选:C8.下列函数中,与y x =是同一个函数的是()A.2y = B.u =C.y =D.2n m n=【答案】B【分析】根据函数的概念,结合函数的定义域与对应法则,逐项分析即得.【详解】对于A ,函数[)20,y x x ==∈+∞,,与函数R y x x =∈,的定义域不同,不是同一个函数;对于B ,函数R u v v ==∈,,与函数R y x x =∈,的定义域相同,对应关系也相同,是同一个函数;对于C ,函数R s t t ==∈,,与函数R y x x =∈,的对应关系不同,不是同一个函数;对于D ,函数()()2,00,n m n n n==∈-∞⋃+∞,,与函数R y x x =∈,的定义域不同,不是同一个函数.故选:B.9.有一组数据,将其从小到大排序如下:157,159,160,161,163,165,168,170,171,173.则这组数据的第75百分位数是()A.165B.168C.170D.171【答案】C【分析】根据百分位数的定义求解即可.【详解】因为1075%7.5⨯=,所以这组数据的第75百分位数是第8个数170,故选:C.10.已知函数()21,02,0x x f x x x ⎧+≤=⎨>⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()A.2B.52-C.54D.1-【答案】A【分析】根据分段函数解析式求得正确答案.【详解】()112121222f f f f ⎛⎫⎛⎫⎛⎫=⨯==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A11.函数()lg 3f x x x =+-的零点所在区间为()A.(0,1) B.(1,2)C.(2,3)D.(3,4)【答案】C【分析】首先判断函数的单调性,再根据零点存在性定理判断即可;【详解】解:因为lg y x =与3y x =-在定义域上单调递增,所以()lg 3f x x x =+-在定义域()0,∞+上单调递增,又()1lg11320f =+-=-<,()2lg 2231lg 20f =+-=-+<,()3lg 333lg 30f =+-=>,即()()230f f ⋅<,所以()f x 的零点位于()2,3内;故选:C12.在ABC 中,π3A =,BC =,AC =,则角B 为()A.π6 B.π4 C.π3 D.π2【答案】B【分析】利用正弦定理求得正确答案.【详解】由正弦定理得=sin sin BC AC A B,即sin 32B =,解得sin B =由于BC AC >,所以π3B <为锐角,所以π4B =.故选:B13.若一个正方体的顶点都在球面上,它的棱长为1,则这个球的表面积是() A.3π2B.3π4C.3πD.12π【答案】C【分析】先求得球的半径,进而求得球的表面积.,所以球的直径322R R ==,所以球的表面积为24π3πR =.故选:C14.已知3log 2a =,4log 2b =,5log 2c =,则()A.c b a >>B.c a b >>C.b a c>> D.a b c>>【答案】D【分析】根据对数函数在同一坐标系中作函数245log ,log ,log y x y x y x ===的图象,结合图象即可比较函数值大小.【详解】解:如下图,作函数245log ,log ,log y x y x y x ===的图象由图可知,当2x =时,345log 2log 2log 2>>,即a b c >>.故选:D.15.在ABC 中,点D 在BC 边上,2BD DC = ,则AD =()A.2133AB AC +B.1233AB AC +C.1122AB AC +D.1344AB AC +【答案】B【分析】根据平面向量的线性运算求得正确答案.【详解】23AD AB BD AB BC=+=+()212333AB AC AB AB AC =+-=+ .故选:B二、填空题(本大题共4小题,每小题4分,共16分)16.若0x >,则4x x+的最小值为________________.【答案】4【分析】利用基本不等式求得最小值.【详解】40,4x x x >+≥=,当且仅当4,2x x x==时等号成立.故答案为:417.某校高二年级有男生510名,女生490名,若用分层随机抽样的方法从高二年级学生中抽取一个容量为200的样本,则女生应抽取___________名.【答案】98【分析】根据分层抽样的定义,计算男女生比例,即可计算求解.【详解】由已知得,男生与女生的比例为:51:49,根据分层抽样的定义,女生应该抽取的人数为:4920098100⨯=(人)故答案为:9818.已知1sin 23α=-,则2πcos 4α⎛⎫- ⎪⎝⎭的值为___________.【答案】13【分析】根据余弦的二倍角公式即可求解.【详解】由于2ππ22c cos os 124αα⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭,所以22π1π1sin 22cos 1cos 4343ααα⎛⎫⎛⎫=--=-⇒-= ⎪ ⎪⎝⎭⎝⎭,故答案为:1319.根据某地不同身高的未成年男性的体重平均值,建立了能够近似地反映该地未成年男性平均体重y (单位:kg )与身高x (单位:cm )的函数关系:2 1.02x y =⨯,如果体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地一名身高为175cm ,体重为78kg 的未成年男性的体重状况为___________.(填“偏胖”或“正常”或“偏瘦”,参考数据:351.022≈)【答案】偏胖【分析】根据题意得到身高为175cm 的未成年男性平均体重,然后得到平均体重的1.2倍,最后比较大小即可.【详解】由题意得身高为175cm 的未成年男性平均体重为()51753521.022 1.0264⨯=⨯≈kg ,而641.276.878⨯=<,所以该男性体重偏胖.故答案为:偏胖.三、解答题(本大题共4小题,第20、21小题每小题8分,第22、23小题每小题9分,共34分,解答应写出文字说明、证明过程或演算步骤)20.已知函数()sin 2cos 2f x x x =+.(1)求函数()f x 的最小正周期;(2)求函数()f x 的最大值及取得最大值时自变量x 的集合.【答案】(1)π(2)()f x ,此时自变量x 的集合为π|π,Z 8x x k k ⎧⎫=+∈⎨⎬⎩⎭.【分析】(1)利用辅助角公式化简()f x 的解析式,然后根据三角函数最小正周期的求法求得正确答案.(2)根据三角函数最值的求法求得正确答案.【小问1详解】()πsin 2cos 224x x x f x ⎛⎫=+=+ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==.【小问2详解】由(1)得()π24f x x ⎛⎫=+ ⎪⎝⎭,所以当()πππ22π,πZ 428x k x k k +=+=+∈时,()f x 取得最大值,此时自变量x 的集合为π|π,Z 8x x k k ⎧⎫=+∈⎨⎬⎩⎭.21.一个盒子中装有5支圆珠笔,其中3支为一等品(记为1A ,2A ,3A ),2支为二等品(记为1B ,2B ),从中随机抽取2支进行检测.(1)写出这个试验的样本空间Ω;(2)求抽取的2支圆珠笔都是一等品的概率.【答案】(1)()12,A A ,()13,A A ,()11,A B ,()12,A B ,()23,A A ,()21,A B ,()22,A B ,()31,A B ,()32,A B ,()12,B B .(2)310【分析】(1)直接写出样本空间即可;(2)计算2支圆珠笔都是一等品的样本数,得到概率.【小问1详解】试验的样本空间Ω为:()12,A A ,()13,A A ,()11,A B ,()12,A B ,()23,A A ,()21,A B ,()22,A B ,()31,A B ,()32,A B ,()12,B B .【小问2详解】抽取的2支圆珠笔都是一等品有()12,A A ,()13,A A ,()23,A A 3种情况,故概率310p =.22.如图,三棱柱111ABC A B C -中,1AA ⊥平面ABC ,AB =3,AC =4,BC =5.(1)求证:AB ⊥平面11ACC A ;(2)若异面直线1BB 与1AC 所成的角为30°,求三棱柱111ABC AB C -的体积.【答案】(1)证明见解析(2)【分析】(1)由1AA ⊥平面ABC 可得1AA AB ⊥,勾股定理可证AC AB ⊥,由线面垂直的判定定理可证结论.(2)由异面直线1BB 与1AC 所成的角为30°,求出1AA ,再由体积公式计算三棱柱111ABC AB C -的体积.【小问1详解】1AA ⊥平面ABC ,AB ⊂平面ABC ,有1AA AB ⊥.AB =3,AC =4,BC =5,有222AB AC BC +=,由勾股定理得AC AB ⊥.1AA AC A = ,1,AA AC ⊂平面11ACC A ,∴AB ⊥平面11ACC A 【小问2详解】由11//BB AA ,异面直线1BB 与1AC 所成的角即为1∠AA C ,130AA C ∠= ,又1AA ⊥平面ABC ,AC ⊂平面ABC ,∴1AA AC ⊥,则1tan 30AC AA = ,得1AA =1134622ABC S AB AC =⋅=⨯⨯=△,所以三棱柱111ABC A B C -的体积16ABC V S AA =⋅=⨯= .23.已知函数2()31x f x a =+-.(1)根据函数单调性的定义证明函数()f x 在区间(),0∞-上单调递减;(2)若函数()f x 是奇函数,求实数a 的值.【答案】(1)证明见解析(2)1【分析】(1)设任意12,(,0)x x ∞∈-且12x x >,然后计算12()()f x f x -,通过化简变形从而确定符号,根据函数的单调性的定义可得结论;(2)先求函数的定义域,然后根据奇函数的定义建立等式关系,即可求出实数a 的值.【小问1详解】证明:设任意12,(,0)x x ∞∈-且12x x >,则211212*********(33)()()31313131(31)(31)x x x x x x x x f x f x a a --=+--=-=------,因为12,(,0)x x ∞∈-且12x x >,所以2121330,310,310x x x x -<-<-<,则21122(33)0(31)(31)x x x x -<--,也即12())0(f x f x -<,所以12()()f x f x <,又因为12x x >,所以函数()f x 在区间(),0∞-上单调递减,【小问2详解】要使函数2()31x f x a =+-有意义,则有310x -≠,所以函数的定义域为(,0)(0,)-∞+∞ ,关于原点对称,若函数()f x 是奇函数,则()()0f x f x -+=,即22223031313113xx x x xa a a a -⋅+++=+++=----,解得:1a =,所以实数a 的值为1.。
吉林省会考数学模拟试题及答案word版

吉林省会考数学模拟试题及答案word版一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1+1=2B. 1+1=3C. 1+1=4D. 1+1=5答案:A2. 一个圆的直径是10厘米,那么它的半径是多少厘米?A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A3. 一个数的平方根是4,那么这个数是多少?A. 16B. 8C. 4D. 2答案:A4. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5和-5D. 以上都不是答案:C二、填空题(每题5分,共20分)1. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是_________。
答案:52. 一个数的立方是-8,那么这个数是_________。
答案:-23. 一个等差数列的前三项分别为2,5,8,那么第四项是_________。
答案:114. 函数f(x) = 2x + 3的值域是_________。
答案:所有实数三、解答题(每题10分,共40分)1. 已知函数f(x) = x^2 - 4x + 4,求f(2)的值。
答案:f(2) = 2^2 - 4*2 + 4 = 4 - 8 + 4 = 02. 求解方程x^2 - 5x + 6 = 0。
答案:x = 2 或 x = 33. 已知一个等比数列的前两项分别为3和6,公比为2,求第三项。
答案:第三项 = 6 * 2 = 124. 计算定积分∫(0到1) (3x^2 - 2x + 1) dx。
答案:∫(0到1) (3x^2 - 2x + 1) dx = [x^3 - x^2 + x] (从0到1) = (1 - 1 + 1) - (0 - 0 + 0) = 1。
2023年3月吉林省普通高中学学业水平合格性考试数学试卷

2023年3月吉林省普通高中学学业水平合格性考试数学试卷一、单选题1.若集合{}1,2,3A =,{}2,3,4B =,则A B =I ( ) A .{}1,2,3,4 B .{}1,4 C .{}2,3D .∅2.sin150︒=( )A .12B .12-C D .3.“2x =”是“24x =”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.已知i 是虚数单位,则(2)i i +=( ) A .12i +B .12i -+C .12i --D .12i -5.已知向量()3,1a =r与(),6b x =-r 垂直,则实数x 的值为( ) A .1B .1-C .2D .2-6.已知函数()3,02,0x x x f x x +≤⎧=⎨>⎩,若()8f a =,则a 的取值为( )A .3B .5C .3-D .5-7.某学校有高中学生1000人,其中高一学生360人,高二学生340人;高三学生300人,按年级进行分层,用分层随机抽样的方法从全校高中学生中抽取一个容量为100的样本,若样本按比例分配,则在高三学生中应抽取的人数为( ) A .30B .34C .36D .608.为了得到函数πsin 3⎛⎫=+ ⎪⎝⎭y x 的图象,只需把正弦曲线sin y x =上所有的点( )A .向左平行移动2π3个单位长度B .向右平行移动2π3个单位长度C .向左平行移动π3个单位长度D .向右平行移动π3个单位长度9.已知2log 5a =,2log 3b =,1c =,则( ) A .b a c >> B .a c b >> C .b c a >>D .a b c >>10.函数y =) A .{0x x 且}1x ≠ B .{|0x x ≥且}1x ≠ C .{}1x x ≠D .{}0x x ≥11.袋中有5个大小质地完全相同的球,其中2个红球、3个黄球,从中不放回地依次随机摸出2个球,则两次都摸到黄球的概率为( )A .0.1B .0.2C .0.3D .0.612.如图,在正方体1111ABCD A B C D -中,异面直线AC 与1A B 所成的角为( )A .90°B .60°C .45°D .30°13.在锐角ABC V 中,a ,b ,c 分别为三个内角,,A B C 所对的边,2sin c B =,则角C 为( )A .15︒B .30︒C .45︒D .60︒14.一个棱长为 )A .18πB .C .D .36π15.在ABC V 中,D 为BC 的中点,O 为AD 的中点,则BO =u u u r( )A .1122BC BA +u u ur u u u rB .1142BC BA +u u ur u u u rC .1144BC BA +u u ur u u u rD .1124BC BA +u u ur u u u r二、填空题16.已知函数()f x 是定义域为R 的奇函数,若()2f a =,则()f a -=. 17.若0a >,0b >,1a b +=,则11a b+的最小值为. 18.甲、乙两位射击运动员在一次射击测试中各射靶10次,每次命中的环数如下:则本次测试中成绩比较稳定的是.(填甲或乙)19.在ABC V 中,,,a b c 分别为三个内角,,A B C 所对的边,且120A =︒,7a =,8+=b c ,则ABC V 的面积为.三、解答题20.已知函数()sin f x x x =. (1)求函数()f x 的最大值和最小值; (2)求函数()f x 的单调递增区间.21.甲、乙两人独立地破译一份密码,已知甲成功破译的概率为34,乙成功破译的概率为23.(1)求两人都成功破译的概率; (2)求至少有一人成功破译的概率.22.如图,在三棱锥-P ABC 中,PC ⊥底面ABC ,AB BC ⊥,D ,E 分别是AB ,PB 的中点,2PC AC ==,BC =(1)求证://DE 平面PAC ; (2)求三棱锥-D PAC 的体积. 23.已知函数()[)()21,1xf x x x =∈+∞+.(1)根据函数单调性的定义证明函数()f x 在区间[)1,+∞上单调递减;(2)若()()223f a f a >+,求实数a 的取值范围.。
吉林高中会考试题及答案

吉林高中会考试题及答案一、单项选择题(每题2分,共20分)1. 下列哪项是吉林省的简称?A. 吉B. 辽C. 黑D. 蒙答案:A2. 吉林省的省会城市是?A. 长春B. 哈尔滨C. 沈阳D. 吉林答案:A3. 吉林省位于中国的哪个方向?A. 东部B. 西部C. 南部D. 北部答案:D4. 吉林省的地形特征主要是?A. 平原B. 高原C. 盆地D. 山地答案:A5. 吉林省的气候类型属于?A. 温带季风气候B. 亚热带季风气候C. 热带雨林气候D. 寒带气候答案:A6. 吉林省的著名旅游景点之一是?A. 长白山B. 故宫C. 九寨沟D. 黄山答案:A7. 吉林省的主要农作物是?A. 水稻B. 小麦C. 玉米D. 棉花答案:C8. 吉林省的人口数量在全国范围内的排名是?A. 前五B. 前十C. 前二十D. 前三十答案:B9. 吉林省的民族构成中,汉族占多少比例?A. 90%以上B. 80%以上C. 70%以上D. 60%以上答案:A10. 吉林省的省花是?A. 牡丹B. 杜鹃C. 玫瑰D. 梅花答案:B二、填空题(每题2分,共20分)1. 吉林省的省会城市是________。
答案:长春2. 吉林省位于中国东北地区,其简称为________。
答案:吉3. 吉林省的气候类型是________。
答案:温带季风气候4. 吉林省的地形以________为主。
答案:平原5. 吉林省的著名旅游景点长白山位于该省的________地区。
答案:东南部6. 吉林省的主要农作物是________。
答案:玉米7. 吉林省的人口数量在全国排名第________。
答案:十8. 吉林省的民族构成中,汉族占________以上。
答案:90%9. 吉林省的省花是________。
答案:杜鹃10. 吉林省的省会城市长春是中国重要的________中心。
答案:汽车工业三、简答题(每题10分,共30分)1. 简述吉林省的地理位置及其在中国的区域地位。
2020年吉林普通高中会考数学真题及答案(完整版)

2020年吉林普通高中会考数学真题及答案姓名:________ 班级:________ 成绩:________一、选择题(本大题共18小題,每小题3分,共54分.) (共18题;共54分)1. ( 3分)已知集合,,且,则()A .B .C .D .2. ( 3分)已知实数,,则大小关系为()A .B .C .D .3. ( 3分)圆( x+2)2+( y+3)2=2 圆心和半径分别是()A . (﹣2,3),1B . ( 2,﹣3),3C . (﹣2,﹣3),D . ( 2,﹣3),4. ( 3分)不等式x2+2x<对任意a,b∈( 0,+∞)恒成立,则实数x 取值范围是()A . (﹣2,0)B . (﹣∞,﹣2)∪( 0,+∞)C . (﹣4,2)D . (﹣∞,﹣4)∪( 2,+∞)5. ( 3分)椭圆+=1 焦点坐标是()A . ( 0,±)B . ( ±, 0)C . ( 0,±)D . ( ±, 0)6. (3分)已知=(2,﹣1,3),=(﹣1,4,﹣2),=(7,5,λ),若、、三向量共面,则实数λ等于()A .B .C .D .7. ( 3分)已知sin(+α)=,则cos2α等于()A .B .C . -D . -8. ( 3分)已知变量、满足,则取值范围是()A .B .C .D .9. ( 3分)如图,平面平面,过平面,外一点引直线分别交平面,平面于、两点,,,引直线分别交平面,平面于、两点,已知,则长等于()A . 9B . 10C . 8D . 710. ( 3分)关于函数f(x)=tan|x|+|tanx|有下述四个结论:①f(x)是偶函数; ②f(x)在区间上单调递减;③f(x)是周期函数; ④f(x)图象关于对称其中所有正确结论编号是()A . ①③B . ②③C . ①②D . ③④11. ( 3分)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1 中点,则下列判断错误是()A . MN与CC1垂直B . MN与AC垂直C . MN与BD平行D . MN与A1B1平行12. ( 3分)已知某几何体三视图,如图所示,则该几何体体积为()A .B .C .D .13. ( 3分)王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”()A . 充要条件B . 既不充分也不必要条件C . 充分不必要条件D . 必要不充分条件14. ( 3分)数列通项为,若要使此数列前项和最大,则值为()A . 12B . 12或13C . 13D . 1415. (3分)已知四棱锥底面是正方形,侧棱长均相等,E是线段上点(不含端点),设直线与所成角为,直线与平面所成角为,二面角平面角为,则()A .B .C .D .16. ( 3分)已知ABP 顶点A,B分别为双曲线左右焦点,顶点P在双曲线C上,则值等于()A .B .C .D .17. (3分)已知函数,数列满足,,若要使数列成等差数列,则取值集合为()A .B .C .D .18. ( 3分)一个圆锥和一个半球有公共底面,如果圆锥体积与半球体积恰好相等,则圆锥轴截面顶角余弦值是()A .B .C .D .二、填空题(本大题共4小题,每空3分,共15分.) (共4题;共15分)19. ( 6分)设等比数列{an} 前n项和为Sn ,若S10:S5=1:2,则S15:S5=________.20. ( 3分)若向量满足: ,则| |=________.21. ( 3分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB 取值范围是________22. ( 3分)已知函数,若对任意,不等式恒成立,则实数a 取值范围是________.三、解答题(本大题共3小题,共31分.) (共3题;共31分)23. (10分)已知函数,在一个周期内图象如图所示,A为图象最高点,B,C为图象与x轴交点,且△ABC为正三角形.(Ⅰ)求ω值及函数f( x)值域;(Ⅱ)若x∈[0,1],求函数f( x)值域;(Ⅲ)若,且,求f( x0+1)值.24. ( 10分)已知椭圆 + =1( a>b>0)离心率为,且过点(,).( 1)求椭圆方程;( 2)设不过原点O 直线l:y=kx+m( k≠0),与该椭圆交于P、Q两点,直线OP、OQ 斜率依次为k1、k2 ,满足4k=k1+k2 ,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你结论;若不是,请说明理由.25. ( 11分)已知函数 .(Ⅰ)求函数单调递减区间;(Ⅱ)求函数在区间上最大值及最小值.参考答案一、选择题(本大题共18小題,每小题3分,共54分.) (共18题;共54分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、二、填空题(本大题共4小题,每空3分,共15分.) (共4题;共15分)19-1、20-1、21-1、22-1、三、解答题(本大题共3小题,共31分.) (共3题;共31分) 23-124-1、24-2、25-1、全卷完 1、相信自己吧!坚持就是胜利!祝考试顺利,榜上有名! 2、愿全国所有的考生都能以平常的心态参加考试,发挥自己的水平,考上理想的学校。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林省数学高中会考真
题精选文档
TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-
2015年吉林省数学高中会考真题
样本数据n x x x ,,,21 的标准差])()()[(122221----++-+-=x x x x x x n
s n ,其中-x 为样本平均数;
柱体体积公式v=sh, 锥体体积公式v=31
sh, s 为底面面积,h 是高。
球体体积公式:S=42R π球体表面积公式334
R V π=,R 是球的半径。
一选择题(1-10,30分,11-15,20分)
1已知集合A={0,1},集合B={1,2,3},则集合A 与集合B 的交集,即A ∩B=(
)
A ?
B {1}
C {0, 1,2,3}
D {0, 2,3}
2.函数22
)(-=x x f 的定义域为( )
A {2<x x }
B {2>x x }
C {2≠x x }
D R
3. 4sin π
=( )
A 22
B 0
C 23
D 21
4.某几何体的三视图如图所示,则该几何体是( )
A 球
B 半球
C 圆柱
D 圆锥
5.若向量a=(1,2),b=(2,4) 则a+b 的坐标是( )
A (-1,-2)
B (1,2)
C (1,6)
D (3,6)
6已知函数=)(x f {1,12<+x x ,则=)2(f ( )
A 1
B 5
C 6
D 9
7下列函数中是偶函数的是( )
A 2)(x x f =
B x x f =)(
C x x f =)(
D 3)(x x f =
8在邓必数列{n a }中,11=a ,公比q =3,则=4a ( )
A 9
B 10
C 27
D 81
A 31
B -3
C 3
1 D 3
10某种储蓄卡的密码有6位数字组成,每个数字可在0到9这10个数字中选取一个,如果一个人忘记了密码的最后一位,则他在自动取款机上,随机试一次密码就能取得钱概率是( )
A
101 B 91 C 1 D 610
1
11某公司现有员工200人,其中普通员工160人,中级管理人员30人,高级管理人员10人,若采用分层抽样的方法,从中抽取20人进行抽样调查,则应抽取普通员工,中级管理人员,高级管理人员各( )人。
A 12,5,3
B 12,3,2
C 16,1,3
D 16,3,1
12执行右面的程序框图,则输出的S=( )
A 4
B 7
C 9
D 16
13函数=)(x f 2ln -+x x 的零点所在的区间是( )
A (0,1)
B (1,2)
C (2,3)
D (3,4)
14已知角α的顶点与平面直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点P (-3,4),则=αcos ( )
A 53-
B 54-
C 53
D 5
4
15若a>1,则11-+
a a 的最小值是( )
A 2
B 3
C 4 D
25
二填空题(每小题4分)
16. 函数)3
sin()(π
-=x x f 的最小正周期是
17随机抽取甲乙两班各10名同学的期中数学考试成绩,获得数学成绩的得分情况的茎叶图,则根据茎叶图可知一模数学平均成绩较高的班级是 .
18如图将正方形ABCD 平均分成面积相等的9个小正方形,若向正方形ABCD 内随机投掷一粒豆子,则该豆子落在阴影部分的概率是
19若变量x,y满足约束条件,x≥-1
y≥ x
3 x +2y≤6,则2x+y的最大值是
20 △ABC的内角A,B,C的对边分别是a,b,c b=1,c=3,C=
3
2π求(1)角B的大小。
(2)△ABC的面积。
21正方体ABCD-A
1B
1
C
1
D
1
中,E,F分别是AB,BC中点,AA
1
=1,
1)证EF//平面AB
1
C
2)求三棱锥B
1
-ABC的体积
等差数列{a
n }中,a1
1
=,a5
3
=
1)求a
9
2)若数列{a
n }前K项和S=
K
121,求K的值。
23若直线l 过点(-1,0),且斜率为2,圆C:)0()3(222>=++r r y x
1)求直线l 的方程
2)直线l 与圆C 相交与A,B 两点,且,2=AB 求圆C 的标准方程。
24已知函数22)(2++=ax x x f
1)当1-=a 时,求函数)(x f 在区间[-3,3]上的最大值和最小值。
2)设函数,1)(-=x x g 当]3,1[-∈x 时,恒有>)(x f )(x g ,求实数a 的取值范围。