浙教版七下第三章:整式的乘除复习巩固练习

合集下载

浙教版七年级数学下册 第3章 整式的乘除 全章复习和巩固(提高)巩固练习

浙教版七年级数学下册 第3章 整式的乘除 全章复习和巩固(提高)巩固练习

整式的乘除全章复习与巩固(提高)巩固练习一.选择题1.(2019秋﹒长白县期末)设a ,b 是实数,定义*的一种运算如下:a*b=(a+b)2,则下列结论有:①a*b=0,则a=0且b=0 ②a*b=b*a ③a*(b+c)=a*b+a*c ④a*b=(-a)*(-b) 正确的有( )个. A .1 B .2 C .3 D .42. (2019秋﹒白云区期末)化简(x+4)(x-1)+(x-4)(x+1)的结果是( ) A .2x 2-8 B .2x 2-x-4 C .2x 2+8 D .2x 2+6x3. 对于任意的整数n ,能整除代数式()()()()3322n n n n +--+-的整数是( )A.4B.3C.5D.24.若()()2x a x b x px q ++=++,且0p >,0q <,那么a b ,必须满足条件( ).A.a b ,都是正数B. a b ,异号,且正数的绝对值较大C.a b ,都是负数D. a b ,异号,且负数的绝对值较大5.化简222222(53)2(53)(52)(52)x x x x x x x x ++-+++-++-的结果是( )A .101x +B .25C .22101x x ++ D .以上都不对 6.(2019•日照)观察下列各式及其展开式:()2222a b a ab b +=++ ()3322333a b a a b ab b +=+++ ()4432234464a b a a b a b ab b +=++++()554322345510105a b a a b a b a b ab b +=+++++…请你猜想()10a b +的展开式第三项的系数是( ) A .36 B .45 C .55 D .667. 下列各式中正确的有( )个:①a b b a -=-;② ()()22a b b a -=-; ③()()22a b b a -=--;④()()33a b b a -=--;⑤()()()()a b a b a b a b +-=---+;⑥ ()()22a b a b +=-- A. 1 B. 2 C. 3 D. 48.(2019秋﹒海淀区期末)已知长方形ABCD 可以按图示方式分成九部分,在a ,b 变化的过程中,下面说法正确的有( )①图中存在三部分的周长之和恰好等于长方形ABCD 的周长 ②长方形ABCD 的长宽之比可能为2③当长方形ABCD 为正方形时,九部分都为正方形④当长方形ABCD 的周长为60时,它的面积可能为100. A .①② B .①③ C .②③④ D .①③④二.填空题 9. 如果k mx x ++212是一个完全平方式,则k 等于_______. 10.若21=+mx ,34=+my ,则用含x 的代数式表示y 为______. 11.已知2226100m m n n ++-+=,则mn = . 12.若230x y <,化简|)(21|276y x xy --⋅-=_________.13.(2019春•成都)已知A=(2x+1)(x ﹣1)﹣x (1﹣3y ),B=﹣x 2﹣xy ﹣1,且3A+6B 的值与x 无关,则y= . 14. 设实数x ,y 满足2214202x y xy y ++--=,则x =_________,y =__________. 15.16.如果()()22122163a b a b +++-=,那么a b +的值为____ __.三.解答题17.已知222450a b a b ++-+=,求2243a b +-的值. 18. ()2222a b c a b c ++=++,0abc ≠,求111a b c++=________. 19.计算:20002000200020001998357153)37(++⨯ 20. (2019•内江)(1)填空:()()a b a b -+=;()()22a b a ab b -++=;()()3223a b a a b ab b -+++=.(2)猜想:()()1221···+n n n n a b a a b ab b -----+++= (其中n 为正整数,且n≥2).(3)利用(2)猜想的结论计算:98732222222-+-⋅⋅⋅+-+.21.(2020﹒于都县模拟)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a 2+2ab+b 2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a 3+3a 2b+3ab 2+b 3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.【答案与解析】 一.选择题1. 【答案】B ;2. 【答案】A ;3. 【答案】C ;【解析】()()()()223322945n n n n n n +--+-=--+=-. 4. 【答案】B ;【解析】由题意00a b ab +><,,所以选B. 5. 【答案】B ;【解析】原式=()22225352525x x x x ++--+==.6. 【答案】B ;【解析】解:()2222a b a ab b +=++()3322333a b a a b ab b +=+++()4432234464a b a a b a b ab b +=++++()554322345510105a b a a b a b a b ab b +=+++++()6654233245661520156a b a a b a b a b a b ab b +=++++++()77652433425677213535217a b a a b a b a b a b a b ab b +=+++++++第8个式子系数分别为:1,8,28,56,70,56,28,8,1; 第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1, 则()10a b +展开式第三项的系数为45.故选B . 7. 【答案】D ;【解析】②④⑤⑥正确. 8. 【答案】B ;二.填空题 9. 【答案】2116m ; 【解析】2221112244x mx k x mx m ⎛⎫++=+⨯+ ⎪⎝⎭.所以k =2116m .10.【答案】224y x x =-+【解析】∵21=-mx ,∴222234323(2)3(1)24=+=+=+=+-=-+mmm y x x x .11.【答案】-3;【解析】()()22222610130,1,3m m n n m n m n ++-+=++-==-=.12.【答案】78x y【解析】因为230x y <,所以0y <,原式=676778112||222xy x y xy x y x y ⎛⎫-=-⨯-= ⎪⎝⎭. 13.【答案】2;【解析】解:∵A=(2x+1)(x ﹣1)﹣x (1﹣3y )=2x 2﹣2x+x ﹣1﹣x+3xy=2x 2﹣2x+3xy ﹣1B=﹣x 2﹣xy ﹣1,∴3A+6B=6x 2﹣6x+9xy ﹣3﹣6x 2﹣6xy ﹣6=﹣6x+3xy ﹣9=(﹣6+3y )x ﹣9, 由结果与x 无关,得到﹣6+3y=0,解得:y=2.故答案为:2.14.【答案】2;4;【解析】等式两边同乘以4,得:224216480x y xy y ++--=222448160x xy y y y -++-+=()()22240x y y -+-=∴2,4,x y y ==∴ 2x =.15.【答案】32; 【解析】原式2002233313222⎛⎫=⨯⨯÷= ⎪⎝⎭. 16.【答案】±4;【解析】由题意得()()2222163,464,4a b a b a b +-=+=+=±. 三.解答题 17.【解析】解:22245a b a b ++-+222144a a b b =+++-+()()22120a b =++-=∵()()2210,20a b +≥-≥∴1,2a b =-=()22243214237a b +-=⨯-+⨯-=.18.【解析】解:222222222a b c a b c ab ac bc ++=+++++所以2220,0ab ac bc ab ac bc ++=++=即 因为0abc ≠,等式两边同除以abc ,111a b c++=0. 19.【解析】 解:===()()20002000199819982000200031573715+⨯+ ==.20.【解析】解:(1)()()a b a b -+=22a b -;()()22a b a ab b -++=33a b -; ()()3223a b a a b ab b -+++=44a b -.(2)由(1)的规律可得: 原式=n na b -,(3)987328642222222(21)(22222)342-+-⋅⋅⋅+-+=-++++=21.【考点】完全平方公式.完全平方公式解:(1)如图, 则(a+b)5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5; (2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5. =(2-1)5,=1.【点评】本题考查了完全式的n 次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.。

浙教版七年级(下)数学第3章整式的乘除章节练习

浙教版七年级(下)数学第3章整式的乘除章节练习

第3章章节练习[范围:3.3~3.5]一、选择题(每小题3分,共21分)1.计算(a+b)(-a+b)的结果是 ()A.-a2-2ab+b2B.a2-b2C.b2-a2D.-a2+2ab+b22.计算(-a-2b)2的结果是()A.a2-4ab+4b2B.-a2+4ab-4b2C.-a2-4ab-4b2D.a2+4ab+4b23.若(x2-mx+1)(x-2)的结果中x的二次项系数为零,则m的值是()A.1B.-1C.-2D.24.已知x-y=5,(x+y)2=49,则x2+y2的值等于()A.25B.27C.37D.445.如图G-4-1,有正方形卡片A类、B类和长方形卡片C类各若干张.如果要拼成一个长为(2a+b)、宽为(a+2b)的大长方形,那么需要C类卡片的张数为()图G-4-1A.2B.3C.4D.56.如图G-4-2是一块边长为a的正方形花圃,两横一纵宽度均为b的三条人行通道把花圃分隔成6块.下列式子中能表示该花圃的实际种花面积的是()图G-4-2A.a2-3abB.a2-3b2C.a2-2abD.a2-3ab+2b27.已知P=m-1,Q=m2-m(m为任意实数),则P,Q的大小关系为()A.P<QB.P=QC.P>QD.由m的值确定二、填空题(每小题3分,共21分)8.整式A与m2-2mn+n2的和是(m+n)2,则A=.9.已知ab=5,(a-b)2=5,则(a+b)2=.10.若(x+2)(x-a)=x2+bx-10,则ab的值为.11.若(a+b-3)2+|a-b+5|=0,则a2-b2=.12.已知a+b=,ab=1,则(a-2)(b-2)的值为.13.已知ab=a+b+1,则(a-1)(b-1)=.14.一组数:2,1,3,x,7,y,23,…满足“从第三个数起,若前面两个数依次为a,b,则紧随其后的数就是2a-b”,例如:这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中的y表示的数为.三、解答题(共58分)15.(8分)计算:(1)(a+b)2-b(2a+b);(2)(x+1)(x-1)+x(3-x).16.(8分)解方程:(1)(2a-3)(a+1)=2a2-2;(2)3(2x+1)2-12(x+1)(x-1)=0.17.(10分)先化简,再求值:(a+b)(a-b)+(a+b)2-2a2,其中ab=-1.18.(10分)王老师家买了一套新房,其结构如图G-4-3所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?图G-4-319.(10分)观察下列等式:32-4×12=5,①52-4×22=9,②72-4×32=13,③…根据上述规律解决下列问题:(1)完成第四个等式:92-4×()2=;(2)写出你猜想的第n(n为正整数)个等式(用含n的式子表示),并验证.20.(12分)把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.(1)图G-4-4①是将几个面积不完全相等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论?请写出来;(2)图②是将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连结BD和BF.若两个正方形的边长满足a+b=10,ab=20,请你求出阴影部分的面积.图G-4-4详解详析1.C2.D3.C4.C[解析] x2+y2=[(x+y)2+(x-y)2]=×(49+25)=37.5.D[解析] 大长方形的面积=(2a+b)·(a+2b)=2a2+5ab+2b2,所以大长方形是由2张A类正方形卡片、5张C类长方形卡片、2张B类正方形卡片组成的.故选D.6.D[解析] ∵正方形花圃的边长为a,人行通道的宽为b,∴经过平移后,实际种花部分是一个长为(a-b),宽为(a-2b)的长方形,其面积=(a-2b)(a-b)=a2-3ab+2b2.故选D.7.A8.4mn9.25[解析] ∵ab=5,(a-b)2=5,∴(a+b)2=(a-b)2+4ab=5+20=25.10.-15[解析] (x+2)(x-a)=x2+(2-a)x-2a=x2+bx-10,可得2-a=b,-2a=-10,解得a=5,b=-3,则ab=-15.故答案为-15.11.-15[解析] 由题意,得a+b-3=0且a-b+5=0,∴a=-1,b=4,∴a2-b2=(-1)2-42=1-16=-15.12.2[解析] (a-2)(b-2)=ab-2(a+b)+4=2.13.2[解析] (a-1)(b-1)=ab-a-b+1.当ab=a+b+1时,原式=a+b+1-a-b+1=2.故答案为2.14.-915.解:(1)原式=a2+2ab+b2-2ab-b2=a2.(2)原式=x2-1+3x-x2=3x-1.16.解:(1)(2a-3)(a+1)=2a2-2,2a2-a-3=2a2-2,-a=1,a=-1.(2)3(2x+1)2-12(x+1)(x-1)=0,3(4x2+4x+1)-12(x2-1)=0,12x2+12x+3-12x2+12=0,12x+15=0,x=-.17.解:原式=a2-b2+a2+2ab+b2-2a2=2ab.当ab=-1时,原式=-2.18.解:(1)卧室的面积是2b(4a-2a)=4ab(m2),厨房、卫生间、客厅的面积和是b·(4a-2a-a)+a·(4b-2b)+2a·4b=ab+2ab+8ab=11ab(m2),即木地板需要4ab m2,地砖需要11ab m2.(2)11ab·x+4ab·3x=11abx+12abx=23abx(元),即王老师需要花23abx元.19.解:(1)417(2)(2n+1)2-4n2=4n+1.验证:∵左边=(2n+1)2-4n2=4n2+4n+1-4n2=4n+1=右边,∴等式成立.20.[解析] (1)此题根据面积的不同求解方法,可得到不同的表示方法.一种是3个正方形的面积和6个长方形的面积和,一种是大正方形的面积,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(2)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD的面积求解.解:(1)S=(a+b+c)2或S=a2+b2+c2+2ab+2bc+2ac.结论:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(2)∵a+b=10,ab=20,∴S阴影=a2+b2-(a+b)•b-a2=a2+b2-ab=(a+b)2-ab=×102-×20=50-30=20.。

浙教版七下第三章:整式的乘除复习巩固练习

浙教版七下第三章:整式的乘除复习巩固练习

A. a 2 a 3 a 6B. (a 2)33若(xA * 4xy 2y)2 {xA C 、4. 2a 要变为一个完全平方式则需加上的常数是 C- 16bQ >6.(2a 2b)3c(3a»『27C 、Wac 2727c7•1©浙教版七下第三章:整式的乘除复习巩固练习1 •下列计算中正确的是:(2•计算(3a 2 )3的结果是:C ・ 27a G D. 27a 5B 、2)能成为完全平方式(8•px A 、D -矢2)(x q)的乘积中不含好项 > 则p 与q 的矣系是() A • 2m3nBC 、6mnz 3•m2n2D* m n10 *如1 >2果a b 2 9ac2 f那么a 2b 2c 2ab ac be 等于( 1313D 、不能确定AvR 、134 8211<b32 (y) 2(y 于二給*3/■B *互为相反数C 亍相等■ •w •V••9•已知10xm* > 105为则10“穷等于()■ • • • f4巧常1213算14曾6a 2b 3< c 2ab 3~ ■ ■(2 1 )(22;1)(241)(281)12006(3)20053b 3,ab 1'则 a2 b2 (2b 3c4)(3c 2b 4) 2(bc)215若 a 16•计b?( b)3 (b)?b 317. ( __ ._)-3ab 2= 9ab 518. (3 xy 2xy 2)()= 3x19. 若 X 5— 32 » 贝IJ x=若 02y$,则 n=3220若(X 3)(x 1) ■w»zx ax21 •计(1)3x 2(xy) b,则 b a________I2(y x)2)(2x 3y j < ( -2xy) + ( -2x 3y)(2x 2)(3) 4(x y)2 9(x y)222 •先化简,再求值: 2(x 4尸(x 5)2 (x 3)(x 3)』其中;x=-2 ;23 •解方程:(X 3)(X2)(X 1尸 124 •已知m? m 1 0』求m3 2m2 2012的值;222225 •先化简F再求值:2(a2b 2ab2) ( b2a 2ba2) 2,其中 a b 126 •已知:yax 5 bx^cxl •且当x 2时'y5,求当x2时?y的■27 •已知:x2 xy 21』xy y 2212,求代数式X?y22ac28 -已知:ab2 ? be 3 Y 求2000 a(2) X229•已知 2010 a 2000 a 2007,求 2010 a30 -计算:(1) 8a 2b 4( 3a) 4b3⑶(2a 1)2(2a 1)( 1 2a)■3m 2m 4m25 m231 ••先化简:严ab32 •⑴图1是一b长为2m,宽为2n的长方形,沿图中虚线剪开,分成四块小长方形*然后2的形状拼成f正方按图图1形9O1用两种不同方法表示2中阴影部分的面图积o2写出代数式m n — m n… m n之间的等量矢系;(2)利用上述等量矢系'解决如下问题:• •L i »•■ 1* • • • * S * **•mn m图2若已知a b 12 » ab 35,求a b的值。

浙教版七年级数学下第三章《整式的乘除》常考题(解析版)

浙教版七年级数学下第三章《整式的乘除》常考题(解析版)

浙江七年级数学下第三章《整式的乘除》常考题一、单选题(共30分)1.(本题3分)(2018·浙江嘉兴·七年级期末)计算a 2•a 3,结果正确的是( ) A .a 5 B .a 6 C .a 8 D .a 9【答案】A 【解析】 【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答. .【详解】同底数幂相乘,底数不变,指数相加. m n m n a a a +⋅=所以23235.a a a a +⋅== 故选A. 【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键. 2.(本题3分)(2021·浙江浙江·七年级期末)若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为( ) A .5 B .2.5C .25D .10【答案】A 【解析】 【分析】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘计算;再根据单项式除以单项式的法则计算,然后将x 2a =5代入即可求出原代数式的值. 【详解】(2x 3a )2÷4x 4a =4644a a x x ÷=2a x , ∵x 2a =5,∵原式= x 2a =5. 故选A. 【点睛】3.(本题3分)(2021·浙江浙江·七年级期中)已知3,5a b x x ==,则32a b x -=( ) A .2725B .910 C .35D .52【答案】A 【解析】 【分析】直接利用同底数幂的除法和幂的乘方运算法则将原式变形得出答案. 【详解】 ∵x a =3,x b =5,∵x 3a-2b =(x a )3÷(x b )2 =33÷52 =2725. 故选A. 【点睛】考查了同底数幂的乘除运算和幂的乘方运算,正确将原式变形是解题关键. 4.(本题3分)(2020·浙江杭州·七年级期末)下列各式不能用平方差公式计算的是( ) A .(52)(52)x ab x ab -+ B .()()ax y ax y --- C .)()(ab c ab c --- D .()()m n m n +--【答案】D 【解析】 【分析】根据平方差公式对各选项进行逐一分析即可. 【详解】解:A 、(52)(52)x ab x ab -+=222254x a b -,故能用平方差公式计算,不合题意; B 、()()ax y ax y ---=222a x y -+,故能用平方差公式计算,不合题意; C 、)()(ab c ab c ---=222c a b -,故能用平方差公式计算,不合题意; D 、()()m n m n +--=2()m n -+,故不能用平方差公式计算,符合题意; 故选D . 【点睛】5.(本题3分)(2021·浙江浙江·七年级期末)若(x﹣2)(x+3)=x2+ax+b,则a,b的值分别为()A.a=5,b=﹣6B.a=5,b=6C.a=1,b=6D.a=1,b=﹣6【答案】D【解析】【分析】等式左边利用多项式乘多项式法则计算,再利用多项式相等的条件求出a与b的值即可.【详解】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∵a=1,b=﹣6,故选:D.【点睛】此题考查了多项式乘多项式以及多项式相等的条件,熟练掌握运算法则是解本题的关键.6.(本题3分)(2021·浙江浙江·七年级期中)如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2cm2B.2acm2 C.4acm2D.(a2﹣1)cm2【答案】C【解析】【详解】根据题意得出矩形的面积是(a+1)2﹣(a﹣1)2,求出即可:矩形的面积是(a+1)2﹣(a﹣1)2=a2+2a+1﹣(a2﹣2a+1)=4a(cm2).故选C.7.(本题3分)(2018·浙江·七年级阶段练习)已知x2+mx+25是完全平方式,则m的值为()【解析】 【分析】根据完全平方式的特点求解:a 2±2ab +b 2. 【详解】∵x 2+mx +25是完全平方式, ∵m =±10, 故选B . 【点睛】本题考查了完全平方公式:a 2±2ab +b 2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x 和1的乘积的2倍.8.(本题3分)(2021·浙江吴兴·七年级期末)如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式( )A .2221(1)x x x -+=-B .21(1)(1)x x x -=+-C .2221(1)x x x ++=+D .2(1)x x x x -=-【答案】B 【解析】 【分析】利用大正方形的面积减去小正方形的面积得到空白部分的面积,然后根据面积相等列出等式即可. 【详解】第一个图形空白部分的面积是x 2-1, 第二个图形的面积是(x+1)(x-1). 则x 2-1=(x+1)(x-1).本题考查了平方差公式的几何背景,正确用两种方法表示空白部分的面积是解决问题的关键.9.(本题3分)(2021·浙江浙江·七年级期末)已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题的图形是()A.B.C.D.【答案】B【解析】【详解】∵222x y x y xy+=++,(2)44>), 则这个图∵若用边长分别为x和y的两种正方形组成一个图形来解决(其中x y形应选A,其中图形A中,中间的正方形的边长是x,四个角上的小正方形边长是y,四周带虚线的每个矩形的面积是xy.故选B.10.(本题3分)(2019·浙江瑞安·七年级期中)已知18n++是一个有理数的平方,则221n不能为()-B.10C.34D.36A.20【答案】D【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n的值,然后选择答案即可.【详解】2n是乘积二倍项时,2n+218+1=218+2•29+1=(29+1)2,此时n=9+1=10,218是乘积二倍项时,2n+218+1=2n+2•217+1=(217+1)2,此时n=2×17=34,1是乘积二倍项时,2n+218+1=(29)2+2•29•2-10+(2-10)2=(29+2-10)2,综上所述,n可以取到的数是10、34、-20,不能取到的数是36.故选D.【点睛】本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(共21分)11.(本题3分)(2020·浙江杭州·七年级期末)若2y=+,则用含x的代数式表=mx,34m示y=______.【答案】3+x2【解析】【分析】直接利用幂的乘方运算法则表示出y与x之间的关系即可.【详解】解:∵x=2m,∵y=3+4m=3+22m=3+(2m)2=3+x2.故答案为:3+x2.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.12.(本题3分)(2021·浙江浙江·七年级期中)计算:(3)2-⋅=_______.a ab【答案】-6a2b【解析】【分析】根据单项式乘单项式法则计算求解即可.【详解】解:-3a•2ab=(-3×2)•(a•a)•b故答案为:-6a 2b . 【点睛】此题考查了单项式乘单项式,熟记单项式乘单项式法则是解题的关键.13.(本题3分)(2018·浙江义乌·七年级期末)某班墙上布置的“学习园地”是一个长方形区域,它的面积为3a 2+9ab ﹣6a ,已知这个长方形“学习园地”的长为3a ,则宽为__ 【答案】a +3b ﹣2. 【解析】 【分析】根据题意列出算式,在利用多项式除以单项式的法则计算可得. 【详解】根据题意,长方形的宽为(3a 2+9ab ﹣6a )÷3a =a +3b ﹣2, 故答案为a +3b ﹣2. 【点睛】本题主要考查整式的除法,解题的关键是掌握多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.14.(本题3分)(2018·浙江仙居·七年级期末)如果代数式8a b +的值为5-,那么代数式()()3252a b a b --+的值为________.【答案】10 【解析】 【分析】原式去括号合并整理后,将a+8b 的值代入计算即可求值. 【详解】原式=3a-6b-5a-10b=-2a-16b=-2(a+8b ), 当a+8b=-5时,原式=10. 故答案为10 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.15.(本题3分)(2021·浙江杭州·七年级期中)多项式(8)(23)mx x +-展开后不含x 一次项,则m =________. 【答案】12【分析】乘积含x 项包括两部分,∵mx×2,∵8×(-3x ),再由展开后不含x 的一次项可得出关于m 的方程,解出即可. 【详解】解:(mx+8)(2-3x ) =2mx-3mx 2+16-24x =-3mx 2+(2m-24)x+16,∵多项式(mx+8)(2-3x )展开后不含x 项, ∵2m-24=0, 解得:m=12, 故答案为:12. 【点睛】此题考查了多项式乘多项式的知识,属于基础题,注意观察哪些项相乘所得的结果含一次项,难度一般.16.(本题3分)(2018·浙江·余姚市兰江中学七年级期中)已知130x x+-=,则221x x +=________. 【答案】7 【解析】 【分析】利用完全平方和公式()2222a b a ab b +=++解答; 【详解】 解:130x x+-= ∵13,x x+= ∵22211()2927x x x x ,+=+-=-= 即2217.x x += 故答案为7. 【点睛】考查完全平方公式,熟记公式是解题的关键,属于易错题.22(2016)(2019)n n -+-=________.【答案】7 【解析】 【分析】先设2016n a ,2019n b ,则(2016)(2019)1n n --=可化为1ab =,22(2016)(2019)n n 22a b =+22abab ,再将2016n a ,2019n b 代入,然后求出结果【详解】解:设:2016n a ,2019n b , 则(2016)(2019)1n n --=可化为:1ab = ∵22(2016)(2019)n n22(2016)(2019)n n22a b =+()22a b ab =--将2016n a ,2019n b ,1ab =代入上式, 则22(2016)(2019)n n22016201921nn2327=【点睛】本题考查了对完全平方公式的应用,能熟记公式,并能设2016n a ,2019n b ,然后将原代数式化简再求值是解此题的关键,注意:完全平方公式为∵ 222()2a b a ab b +=++,∵222()2a b a ab b -=-+.三、解答题(共49分)18.(本题9分)(2020·浙江义乌·七年级期末)计算:(1)()23210-⨯;(2)()232()2⋅-+-a a a ;(3)()2321(23)(5)x x x x x ++-+-【答案】(1)6410⨯;(2)43a ;(3)32341015x x x +++ 【解析】 【分析】(2)先算乘方,再算乘法,最后算加法; (3)先算乘法,再算加减法. 【详解】解:(1)()23210-⨯,=()()223210-⨯,=6410⨯;(2)()232()2⋅-+-a a a , =34()4a a a ⋅-+, =444a a -+, =43a ;(3)()2321(23)(5)x x x x x ++-+- =()3223632715x x x x x ++---,=3223632715x x x x x ++-++, =32341015x x x +++ 【点睛】本题考查了整式的混合运算,整式混合运算的顺序是先乘方,后乘除,再加减.如果有括号,先算括号内.19.(本题6分)(2021·浙江浙江·七年级期末)(1)已知m +n =4,mn =2,求m 2+n 2的值;(2)已知am =3,an =5,求a 3m ﹣2n 的值. 【答案】(1)12;(2)2725【解析】 【分析】(1)先根据完全平方公式得出m 2+n 2=(m +n )2﹣2mn ,再求出答案即可;(2)先根据同底数幂的除法进行变形,再根据幂的乘方进行变形,最后求出答案即可. 【详解】解:(1)∵m +n =4,mn =2, ∵m 2+n 2=42﹣2×2=12;(2)∵am =3,an =5,∵a 3m ﹣2n=a 3m ÷a 2n=(am )3÷(an )2=33÷52 =2725. 【点睛】本题考查了同底数幂的除法,幂的乘方,完全平方公式等知识点,能灵活运用知识点进行计算是解此题的关键,注意:(a +b )2=a 2+2ab +b 2.20.(本题8分)(2021·浙江·七年级专题练习)若关于x 的多项式()2(3)x x m mx +-⋅-的展开式中不含2x 项,求4(1)(2)(25)(3)m m m m +--+-的值.【答案】16【解析】【分析】将多项式展开,合并同类项,根据不含2x 项得到m 值,再代入计算.【详解】解:原式()2(3)x x m mx =+-⋅-3222333mx x mx x m x m =-+--+()322(3)33mx m x m x m =+--++由题意得30m -=,∵3m =,∵原式4(31)(32)(235)(33)16=⨯+⨯--⨯+⨯-=.【点睛】本题考查了整式的混合运算和求值,多项式的应用,解此题的关键是能根据整式的运算法则进行化简,难度不是很大.21.(本题8分)(2019·浙江桐乡·七年级期中)王老师家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x 元,木地板的价格为每平方米3x 元,那么王老师需要花多少钱?【答案】(1)木地板需要4ab m 2,地砖需要11ab m 2;(2)王老师需要花23abx 元.【解析】【详解】试题分析:(1)根据长方形面积公式计算出卧室面积即为木地板的面积,客厅的面积+卫生间的面积+厨房的面积就是需要铺的地砖面积;(2)利用总面积×单价=总钱数求解即可.试题解析:(1)卧室的面积是2b (4a -2a )=4ab (平方米),厨房、卫生间、客厅的面积和是b ·(4a -2a -a )+a ·(4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),即木地板需要4ab 平方米,地砖需要11ab 平方米;(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元),即王老师需要花23abx 元.22.(本题8分)(2021·浙江浙江·七年级期末)从边长为 a 的正方形剪掉一个边长为b 的正方形(如图 1),然后将剩余部分拼成一个长方形(如图 2).(1)上述操作能验证的等式是 (请选择正确的一个)A .a 2﹣2ab +b 2=(a ﹣b )2B .a 2﹣b 2=(a +b )(a ﹣b )C .a 2+ab =a (a +b )(2)若 x 2﹣9y 2=12,x +3y =4,求 x ﹣3y 的值;(3)计算:2222211111(1)(1)(1)(1)(1)23420192020-----.【答案】(1)B (2)3 (3)20214040【解析】【分析】 (1)分别根据图1和图2表示阴影部分的面积,即可得解;(2)利用(1)的结论求解即可;(3)利用(1)的结论进行化简计算即可.【详解】(1)根据阴影部分的面积可得()()22a b a b a b -=+-故上述操作能验证的等式是B ;(2)∵22912x y -=∵()()3312x y x y +-=∵34x y +=∵()4312x y -=∵33x y -=;(3)2222211111(1)(1)(1)(1)(1)23420192020-⨯-⨯-⨯⨯-⨯- 111111111111111111112233442019201920202020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+⨯-⨯+⨯-⨯+⨯-⨯+⨯-⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭31425320202018202120192233442019201920202020=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1202122020=⨯ 20214040=. 【点睛】本题考查了平方差公式的证明以及应用,掌握平方差公式的证明以及应用是解题的关键.23.(本题10分)(2021·浙江浙江·七年级期末)若x 满足(7)(4)2x x --=,求22(7)(4)x x -+-的值:解:设7,4x a x b -=-=,则(7)(4)2(7)(4)3x x ab a b x x --==+=-+-=,所以22222222(7)(4)(7)(4)()23225x x x x a b a b ab -+-=-+-=+=+-=-⨯=请仿照上面的方法求解下面的问题(1)若x 满足(8)(3)3x x --=,求22(8)(3)x x -+-的值;(2)已知正方形ABCD 的边长为x E F ,,分别是AD DC ,上的点,且25AE CF ==,,长方形EMFD 的面积是28,分别以MF DF 、为边作正方形,求阴影部分的面积.【答案】(1)19;(2)33.【解析】【分析】(1)设8,3x a x b -=-=,从而可得3,5ab a b =+=,再利用完全平方公式进行变形运算即可得;(2)先根据线段的和差、长方形的面积公式可得(2)(5)28x x --=,再利用正方形MFRN 的面积减去正方形DFGH 的面积可得阴影部分的面积,然后仿照(1)的方法思路、结合平方差公式进行变形求解即可得.【详解】(1)设8,3x a x b -=-=,则3,5ab a b =+=,所以2222(8)(3)x x a b -+-+=,2()2a b ab =+-,2523=-⨯,19=;(2)由题意得:2,5MF DE x DF x ==-=-,(2)(5)28DE DF x x ⋅=--=, 因为阴影部分的面积等于正方形MFRN 的面积减去正方形DFGH 的面积, 所以阴影部分的面积为2222(2)(5)MF DF x x -=---,设2,5x m x n -=-=,则28,3mn m n =-=,所以222()()43428121m n m n mn +=-+=+⨯=,由平方根的性质得:11+=m n 或110m n +=-<(不符题意,舍去),所以2222(2)(5)x x m n ---=-,=+-,m n m n()()=⨯,113=,33故阴影部分的面积为33.【点睛】本题考查了乘法公式与图形面积,熟练掌握并灵活运用乘法公式是解题关键.。

浙教版七年级下册数学第三章 整式的乘除含答案(巩固)

浙教版七年级下册数学第三章 整式的乘除含答案(巩固)

浙教版七年级下册数学第三章整式的乘除含答案一、单选题(共15题,共计45分)1、下列运算正确的是()A. B. C. D.2、下列计算正确的是()A. (﹣3a)2=﹣9a2B. =﹣1C. 2a2﹣1=(2a+1)(2a﹣1)D. a3﹣4a3=﹣3a33、下列运算正确的是()A.a 2•a 3=a 6B.(﹣a+b)(a+b)=b 2﹣a 2C.(a 3)4=a7 D.a 3+a 5=a 84、把方程2x2﹣4x﹣1=0化为(x+m)2=n的形式,则m,n的值是()A.m=2,n=B.m=﹣1,n=C.m=1,n=4 D.m=n=25、下列等式成立的是A. B. C. D.6、下列计算正确的是()A.b 3•b 3=2b 3B.C.D.7、如果将 a8写成下列形式正确的共有()①a4 + b4;② (a2) 4;③a16÷b2;④ (a4 ) 2;⑤ (a4 )4 ;⑥ a4· a4;⑦ a20÷a12;⑧2a8 - a8A.6个B.5个C.4个D.3个8、计算的结果是()A. B. C.c D.9、下列算式正确的是()A. B. C. D.10、将一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②中阴影部分的面积(用a、b的代数式表示)是()A.a 2﹣b 2B.abC.D.(a﹣b)211、下列各式计算正确的是()A.x 2+x 3=x 5B.(mn 3) 2=mn 6C.(a-b) 2=a 2-b 2D.p 6÷p 2=p 4(p≠0)12、下列多项式乘法中不能用平方差公式计算的是()A.(a 3+b 3)(a 3﹣b 3)B.(a 2+b 2)(b 2﹣a 2)C.(2x 2y+1)(2x 2y﹣1) D.(x 2﹣2y)(2x+y 2)13、若a+b=-1,则a2+b2+2ab的值为()A.-1B.1C.2D.-214、下列各式计算正确的是()A. B. C. D.15、下列计算正确的是()A.x﹣2x=xB.x 6÷x 3=x 2C.(﹣x 2)3=﹣x 6D.(x+y)2=x 2+y 2二、填空题(共10题,共计30分)16、已知,则的值为________.17、若a2+b2=19,a+b=5,则ab=________.18、计算:|﹣3|﹣(﹣1)2016×(π﹣3)0﹣+()﹣2=________.19、计算:+ =________.20、已知可以被10到20之间某两个整数整除,则这两个数是________.21、用科学记数法表示0.000021为________.22、已知,则________,________.23、已知a﹣=3,那么a2+ =________.24、若m=2n+3,则m2﹣4mn+4n2的值是________.25、计算:=________,=________.三、解答题(共5题,共计25分)26、已知2a=3,2b=6,2c=12,求证:2b=a+c.27、一个单项式加上多项式9(x﹣1)2﹣2x﹣5后等于一个整式的平方,试求所有这样的单项式.28、(1)解方程:3x2﹣27=0(2)已知22x+1+4x=48,求x的值.29、a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.30、一个长方体的长为8×105cm,宽为5×106cm,高为9×108cm,求长方体的体积.参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、B6、D7、B8、B9、D10、B11、D12、D13、B14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

2021年浙教版七年级数学下册《第3章整式的乘除》期末综合复习培优提升训练(附答案)

2021年浙教版七年级数学下册《第3章整式的乘除》期末综合复习培优提升训练(附答案)

2021年浙教版七年级数学下册《第3章整式的乘除》期末综合复习培优提升训练(附答案)1.计算x6•x2的结果是()A.x3B.x4C.x8D.x122.下列计算正确的是()A.a3•a2=a6B.a2+a4=2a2C.(3a3)2=9a6D.(3a2)3=9a6 3.计算(﹣x3)2÷(﹣x)所得结果是()A.x5B.﹣x5C.x6D.﹣x64.计算:20200﹣|﹣2|=()A.2022B.2018C.﹣1D.35.如果一个单项式与﹣2a2b的积为﹣a3bc2,则这个单项式为()A.ac2B.ac C.ac D.ac26.若(x+a)(x+b)的积中不含x的一次项,那么a与b一定是()A.互为相反数B.互为倒数C.相等D.a比b大7.已知a+b=7,a﹣b=8,则a2﹣b2的值是()A.11B.15C.56D.608.若a+b=6,ab=4,则a2+4ab+b2的值为()A.40B.44C.48D.529.计算的值等于()A.1B.C.D.10.若x2﹣kx+64是完全平方式,则k的值是()A.±8B.±16C.+16D.﹣1611.若a=﹣0.22,b=﹣2﹣2,c=(﹣)﹣2,d=(﹣)0,则它们的大小关系是()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b 12.下列多项式乘法中可以用平方差公式计算的是()A.B.(x+2)(2+x)C.(﹣a+b)(a﹣b)D.(x﹣2)(x+1)13.3(22+1)(24+1)…(232+1)+1计算结果的个位数字是()A.4B.6C.2D.814.如图①,从边长为a的正方形中剪去一个边长为b的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)15.若a为正整数,且x2a=5,则(2x3a)2÷4x4a的值为()A.5B.C.25D.1016.若一个正方形的边长增加2cm,则面积相应增加了32cm2,则这个正方形的边长为()A.5cm B.6cm C.7cm D.8cm17.若3m=5,9n=10,则3m+2n的值是()A.50B.500C.250D.250018.若(a﹣1)a+2=1,则a=.19.计算:(6x4﹣8x3)÷(﹣2x2)=.20.将边长分别为2a和a的两个正方形按如图的形式摆放,图中阴影部分的面积为.21.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为.22.若3x+2=36,则=.23.计算:20212﹣2019×2023=.24.若(x+3)(x+n)=x2+mx﹣15,则n m的值为.25.先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.26.化简求值:(2x+y)2﹣(2x﹣y)(x+y)﹣2(x﹣2y)(x+2y),其中,y=﹣2.27.计算:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)28.先化简,再求值已知代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含有x2项和常数项.(1)求a、b的值;(2)求(b﹣a)(﹣a﹣b)+(﹣a﹣b)2﹣a(2a+b)的值.29.(1)已知x+y=5,xy=3,求x2+y2的值;(2)已知x﹣y=5,x2+y2=51,求(x+y)2的值;(3)已知x2﹣3x﹣1=0,求x2+的值.30.(1).(2)(﹣x)4•x2+2x3•(﹣x)3.(3)(2x﹣1)(2x+1)(x2+x+1).(4)(3x﹣2y+1)(3x+2y﹣1).(5)解方程:2x(x+1)﹣(3x﹣2)x+2x2=x2+1.31.用简便方法计算(1)2019×2021 (2)1032(3)5(6+1)(62+1)(64+1)(68+1)(616+1)+132.动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的积:,;(2)请写出三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系:;(3)问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求(x﹣y)2的值.参考答案1.解:x6•x2=x6+2=x8.故选:C.2.解:A.a3•a2=a5,故本选项不合题意;B.a2与a4不是同类项,所以不能合并,故本选项不合题意;C.(3a3)2=9a6,正确,故本选项符合题意;D.(3a2)3=27a6,故本选项不合题意.故选:C.3.解:(﹣x3)2÷(﹣x)=x6÷(﹣x)=﹣x5,故选:B.4.解:20200﹣|﹣2|=1﹣2=﹣1.故选:C.5.解:(﹣a3bc2)÷(﹣2a2b)=ac2.故选:A.6.解:(x+a)(x+b)=x2+ax+bx+ab=x2+(a+b)x+ab,由结果中不含x的一次项,得到a+b=0,即a与b一定是互为相反数.故选:A.7.解:∵a+b=7,a﹣b=8,∴a2﹣b2=(a+b)(a﹣b)=7×8=56.故选:C.8.解:∵a+b=6,ab=4,∴原式=(a+b)2+2ab=36+8=44,故选:B.9.解:原式=()6×()4=(×)4×()2=()2.10.解:∵关于x的多项式x2﹣kx+64是一个完全平方式,∴k=±16,故选:B.11.解:∵a=﹣0.22=﹣0.04;b=﹣2﹣2=﹣=﹣0.25,c=(﹣)﹣2=4,d=(﹣)0=1,∴﹣0.25<﹣0.04<1<4,∴b<a<d<c,故选:B.12.解:A、可以运用平方差,故本选项正确;B、不能运用平方差,故本选项错误;C、不能运用平方差,故本选项错误;D、不能运用平方差,故本选项错误;故选:A.13.解:原式=(22﹣1)(22+1)(24+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1=264﹣1+1=264;∵21=2,22=4,23=8,24=16,个位数按照2,4,8,6依次循环,而64=16×4,∴原式的个位数为6.故选:B.14.解:大正方形的面积﹣小正方形的面积=a2﹣b2,矩形的面积=(a+b)(a﹣b),故a2﹣b2=(a+b)(a﹣b).故选:A.15.解:(2x3a)2÷4x4a=4x6a÷4x4a=x2a,当x2a=5时,原式=x2a=5.故选:A.16.解:设这个正方形的边长为xcm,由题意得,(x+2)2﹣x2=32,故选:C.17.解:∵3m=5,9n=10,∴32n=10,∴3m+2n=3m×32n=5×10=50.故选:A.18.解:分三种情况解答:(1)a﹣1≠0,a+2=0,即a=﹣2;(2)a﹣1=1时,a=2,此时a+2=4原式成立;(3)a﹣1=﹣1,此时a=0,a+2=2,原式成立.故本题答案为:﹣2或0或2.19.解;原式=6x4÷(﹣2x2)﹣8x3÷(﹣2x2)=﹣3x2+4x,故答案为:﹣3x2+4x.20.解:S=(2a)2+a2﹣×3a×2a=5a2﹣3a2=2a2,∴阴影部分的面积为2a2,故答案为2a2.21.解:如图所示:设正方形A、B的边长分别为x,y,依题意得:,化简得:由①+②得:x2+y2=18,∴,故答案为18.22.解:原等式可转化为:3x×32=36,解得3x=4,把3x=4代入得,原式=2.故答案为:2.23.解:20212﹣2019×2023=20212﹣(2021﹣2)(2021+2)=20212﹣20212+22=4.故答案为:4.24.解:∵(x+3)(x+n)=x2+(3+n)x+3n,∴x2+(3+n)x+3n)=x2+mx﹣15,∴3+n=m,3n=﹣15,∴m=﹣2,n=﹣5,∴n m=(﹣5)﹣2=,故答案为.25.解:原式=x2+6x+9+x2﹣4﹣2x2=6x+5,当x=﹣1时,原式=﹣1×6+5=﹣1.26.解:(2x+y)2﹣(2x﹣y)(x+y)﹣2(x﹣2y)(x+2y)=4x2+4xy+y2﹣(2x2+xy﹣y2)﹣2(x2﹣4y2)=3xy+10y2,把,y=﹣2,代入上式得:原式=3××(﹣2)+10×(﹣2)2=37.27.解:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)=x8+x8﹣x8﹣x8=0.28.解:(1)(ax﹣3)(2x+4)﹣x2﹣b=2ax2+4ax﹣6x﹣12﹣x2﹣b=(2a﹣1)x2+(4a﹣6)x+(﹣12﹣b),∵代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含有x2项和常数项.,∴2a﹣1=0,﹣12﹣b=0,∴a=,b=﹣12;(2)∵a=,b=﹣12,∴(b﹣a)(﹣a﹣b)+(﹣a﹣b)2﹣a(2a+b)=a2﹣b2+a2+2ab+b2﹣2a2﹣ab=ab=×(﹣12)=﹣6.29.解:(1)因为x+y=5,xy=3,所以x2+y2=(x+y)2﹣2xy=25﹣6=19;即x2+y2的值是19;(2)∵x﹣y=5,∴(x﹣y)2=x2+y2﹣2xy=25,又∵x2+y2=51,∴2xy=26,∴(x+y)2=x2+y2+2xy=51+26=77;即(x+y)2的值是77;(3)解:∵x2﹣3x﹣1=0∴x﹣3﹣=0,∴x﹣=3,∴x2+=(x﹣)2+2=11,即x2+的值是11.30.解:(1)原式=4x2y6﹣2x2y6=2x2y6;(2)原式=x4•x2﹣2x3•x3=x6﹣2x6=﹣x6;(3)原式=(4x2﹣1)(x2+x+1)=4x4+4x3+4x2﹣x2﹣x﹣1=4x4+4x3+3x2﹣x﹣1;(4)原式=[3x﹣(2y﹣1)][3x+(2y﹣1)]=(3x)2﹣(2y﹣1)2=9x2﹣4y2+4y﹣1(5)2x2+2x﹣3x2+2x+2x2=x2+14x=1x=.31.解:(1)2019×2021=(2020﹣1)(2020+1)=20202﹣1=4080400﹣1=4080399;(2)1032=(100+3)2=1002+2×100×3+32=10000+600+9=10609;(3)5(6+1)(62+1)(64+1)(68+1)(616+1)+1=(6﹣1)(6+1)(62+1)(64+1)(68+1)(616+1)+1=(62﹣1)(62+1)(64+1)(68+1)(616+1)+1=632﹣1+1=632.32.解:(1)(a+b)2﹣4ab或(a﹣b)2,故答案为:(a+b)2﹣4ab,(2)∵(a+b)2﹣4ab=a2﹣2ab+b2=(a﹣b)2;故答案为:(a+b)2﹣4ab=(a﹣b)2;(3)由(2)知:(x﹣y)2=(x+y)2﹣4xy,∵x+y=8,xy=7,∴(x﹣y)2=64﹣28=36.。

浙教版本初中七年级的下数学第三章整式的乘除单元总结复习检测试卷习题包括答案.docx

浙教版本初中七年级的下数学第三章整式的乘除单元总结复习检测试卷习题包括答案.docx

浙教版本初中七年级的下数学第三章整式的乘除单元总结复习检测试卷习题包括答案.docx浙教版七年级下数学《第三章整式的乘除》单元检测试卷含答案第三章整式的乘除单元检测卷姓名: __________ 班级: __________题号一二三评分一、选择题(共9 题;每小题 4 分,共36 分)1.若( x2+px﹣ q)( x2+3x+1)的结果中不含x2和x3项,则p﹣ q 的值为()A. 11B. 5C. -11D. -142.下列计算正确的是()A. (﹣2)3=8B. ()﹣1=3C. a4?a2=a8D. a6÷a3=a23.(mx+8)( 2﹣ 3x)展开后不含x 的一次项,则m 为()A. 3B.C. 12D. 244.下列关系式中,正确的是()A. B. C. D.5.下列运算正确的是()2365510623326A. a ?a =aB. a +a =aC. a÷a=aD. ( a)=a6.22)若 a+b=﹣ 3, ab=1,则 a +b =(A. -11B. 11C. -7D. 77.如图中,利用面积的等量关系验证的公式是()22222 A. a﹣ b =(a+b)( a﹣ b) B. ( a﹣ b) =a ﹣ 2ab+bC. ( a+2b)( a﹣ b) =a2+ab﹣ 2b2D. ( a+b)2=a2+2ab+b28.算(23的果正确的是()a b )A. a4b2B. a6b3C.a6b3D.a5b 39.已知,的是()A. 5B. 6C. 8D. 9二、填空题(共10 题;共 30 分)10.算: a n ?a n?a n =________;( x)( x2)( x3)( x4)=________.11.你能化( x 1)( x99+x98+? +x+1)?遇到的复,我可以先从的情形入手,然后出一些方法,分化下列各式并填空:(2231;( x x 1)( x+1)=x 1;( x 1)( x+x+1) =x1)( x3+x2+x+1)=x4 1根据上述律,可得(9998x 1)( x +x +? +x+1) =________你利用上面的,完成下面:算: 299+298+297+? +2+1,并判断末位数字是________12.如果( x+q)( x+)的果中不含x ,那么 q=________.13.若 5x=12,5y=4,5x-y=________.14.若 x n=4, y n =9,( xy)n =________15.m ( a b+c) =ma mb+mc. ________.2的是 ________.16.若 x +kx+25 是完全平方式,那么 k17.若 x+2y 3=0, 2x?4y的 ________.0﹣ 218.算:(π) +2 =________.19.(22.________ )÷ 7st=3s+2t;( ________ )( x 3)=x 5x+6三、解答题(共 3 题;共 34 分)20.解不等式:(x 6)( x 9)( x 7)( x 1)< 7( 2x 5)21.当 a=3, b= 1(1)求代数式 a2 b2和( a+b)( a b)的;(2)猜想两个代数式的有何关系?( 3)根据( 1)( 2),你能用便方法算出a=2008, b=2007 ,a2 b 2的?22.已知: 2x+3y 4=0,求 4x?8y的.参考答案一、选择题B BC BD D D C B二、填空题10. a3n; x1011. x100﹣ 1; 512. ﹣13. 314. 3615. 正确16. ±1017. 818.19. 21s2t2+14st3; x﹣ 2三、解答题20.解:原不等可化为: x2﹣ 15x+54﹣ x2+8x﹣ 7< 14x﹣ 35,整理得:﹣ 21x<﹣ 82,解得: x>,则原不等式的解集是x>.222﹣(﹣221. 解:( 1)a﹣ b=31) =9﹣ 1=8( a+b)( a﹣ b) =(3﹣ 1)( 3+1) =8;( 2) a2﹣ b2=( a+b)( a﹣b );( 3) a2﹣ b2=( a+b)( a﹣b )=( 2008+2007 )( 2008﹣ 2007 ) =4015.22. 解:∵ 2x+3y﹣ 4=0,∴ 2x+3y=4,∴4x?8y=22x?23y=22x+3y=24=16,∴4x?8y的值是 16。

浙教版七年级数学下册第三章 整式的乘除练习(含答案)

浙教版七年级数学下册第三章 整式的乘除练习(含答案)

第三章 整式的乘除一、单选题1.若23213333,m m ⨯⨯=则m 的值为( ) A .2B .3C .4D .5 2.计算(﹣2a 3)2的结果是( )A .2a 5B .4a 5C .﹣2a 6D .4a 63.下列运算中,正确的是( )A .326a a a ⋅=B .()326a a =C .22(1)1x x x -=-+D .223323a b ab a b +=4.计算-()2163a ab ⋅-的结果正确的是( ) A .32a b B .32a b - C .22a b - D .22a b5.一个长方形的长是2xcm ,宽比长的一半少4cm ,若将这个长方形的长和宽都增加3cm ,则该长方形的面积增加了( ).A .9cm 2B .(2x 2+x -3)cm 2C .(-7x -3)cm 2D .(9x -3)cm 2 6.若(x-9)(2x-n)=2x 2+mx-18,则m 、n 的值分别是( )A .m=-16,n=-2B .m=16,n=-2C .m=-16,n=2D .m=16,n=27.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则拼成长方形的面积是( )A .24m 12m 9++B .3m 6+C .23m 6+mD .22m 6m 9++ 8.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣199.已知x + x = 1,xx = −2,则(2 − x )(2 − x )的值为( )A .−2B .0C .2D .410.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为 ( )A .6B .7C .8D .9二、填空题11.计算:(-x 2y )2÷213x y =___. 12.若a >0且2x a =,3y a =,则23x y a -的值为_______;32x y a +的值为_______.13.计算()()a b c d ++的结果等于________.14.已知22(2020)(2019)7a a -+-=,则代数式(2020 - a )(a -2019) 的值是_________.三、解答题15.已知:2,2,m n a b ==试用a b 、分别表示2m n +和2222m n +.16.计算:(1)4a 2b(-2ab)3(2)(3+m)(3-m) -m(m -6) -717.先化简,再求值:(x ﹣1)(x 2﹣x )+2(x 2+2)﹣13x (3x 2+6x ﹣1).其中x =﹣3. 18.()1先化简,再求值,()()()222a b b a b a b +--+-,其中求1,24a b =-= ()2对于任意一个正整数n ,整式()()()()31134141n n n n +-+-+一定能被哪一个正整数整除?请说明理由.19.(1)从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证的公式为 .(2)运用你所得到的公式,计算:(a +2b ﹣c )(a ﹣2b ﹣c ).答案1.C 2.D 3.B 4.A 5.D 6.A 7.C 8.C 9.B 10.C 11.3x2y12.4277213.ac ad bc bd+++ 14.-315.2m n ab +=;222222=m n a b ++.16.(1)-32a 5b 4;(2)-2m 2+6m +217.﹣2x 2+43x +4,﹣18. 18.(1)−2ab ;1(2)7n 2;一定能被7整除.19.(1)a 2﹣b 2=(a+b )(a ﹣b );(1)a 2﹣2ac+c 2﹣4b 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版七下第三章:整式的乘除复习巩固练习
1.下列计算中正确的是:( )
A. 236a a a ⨯=
B. 235()a a =
C. 624a a a ÷=
D. 325a a a +=
2.计算23(3)a -的结果是:( )
A. 63a -
B. 627a
C. 627a -
D. 527a -
3.若A )y 2x ()y 2x (22++=-,则A 等于( )
A 、xy 4
B 、xy 4-
C 、xy 8
D 、xy 8-
4. a 2a 42+要变为一个完全平方式则需加上的常数是( )
A 、2
B 、2-
C 、41-
D 、41 5. )(4b 162++能成为完全平方式( )
A 、b 16
B 、b 16±
C 、b 16-
D 、以上都不对 6.332)ab 3(c )b a 2(÷等于( )
A 、c a 322
B 、c
a 2782 C 、c a 3278 D 、c 278 7.计算2n 1n 1n )a (a a ÷⋅-+的结果是( )
A 、1
B 、0
C 、-1
D 、1±
8.要使)q x )(2px x (2-++的乘积中不含2x 项,则p 与q 的关系是( )
A 、互为倒数
B 、互为相反数
C 、相等
D 、关系不能确定
9.已知m 10x =,n 10y =,则y 3x 210+等于( )
A 、n 3m 2+
B 、22n m +
C 、mn 6
D 、32n m
10、如果2b a =-,21c a =
-,那么bc ac ab c b a 222---++等于( ) A 、413 B 、813 C 、2
13 D 、不能确定 11化简:33233)y (2)y (y ⋅-⋅=__________________
12.计算:=÷-332ab 2c b a 6_____________;
13.计算:=++++)12)(12)(12)(12(842___________
14.计算:=⋅-20062005)3
1()3(_____________; 15.若3b a =+,1ab =,则=+22b a ____________;
16.计算:=--+-+-2)c b (2)4b 2c 3)(4c 3b 2(_________________;
17.(______)·3ab 2 = 9ab 5; =•---•-33)()(b b b b ________;
18.÷-)23(22xy y x (_______)=y x 23+-
19.若x 5=32,则x =______若32
12=-n ,则n =_____ 20.若,)1)(3(2b ax x x x ++=-+则=a b _______
21.计算:(1) )x y (12)y x (x 32-+-
(2)(2x 3y )2·(-2xy )+(-2x 3y )3÷(2x 2)
(3)
22)y x (9)y x (4--+
22.先化简,再求值:)3x )(3x ()5x ()4x (222-+-+-+,其中x=-2;
23.解方程:1)1x ()2x )(3x (2-=+--+
24.已知01m m 2=-+,求201222
3-+m m 的值;
25.先化简,再求值:22222(2)(2)2,a
b ab b a ba ---+-其中1a b ==-
26.已知:13
5-++=cx bx ax y ,且当2-=x 时,5=y ,求当2=x 时,y 的值
27.已知:212=-xy x ,122-=-y xy ,求代数式22y x -
28.已知:2=-b a ,3-=-c b ,求()()()222c a c b b a -+-+-
29.已知()()200720002010=--a a ,求()()2
220002010a a -+-
30.计算:(1) 2438(3)4a b a b ⋅-÷ (2) ()()322--+x x
(3) )21)(12()12(2a a a +-+-+ (4)
⎪⎭
⎫ ⎝⎛--+÷--252423m m m m
31.先化简:.2151,21122=-=+-⋅⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-b a b a b a ab b a a b b a ,其中
32.(1) 图1是一个长为2m ,宽为2n 的长方形,
沿图中虚线剪开,分成四块小长方形,然后按图2的 形状拼成一个正方形。

○1用两种不同方法表示图2中阴影部分的面积
○2写出代数式()2n m +、()2n m -、mn 之间的等量关系;
(2) 利用上述等量关系,解决如下问题:
若已知12=-b a ,35-=ab ,求b a +的值。

33.已知224250a b a b ++-+=,则a b a b +-
34.已知3
5a b +=,3ab =- 求下列代数式的值:
(1)()()55a b --
(2)()2214123a b a b ab a b ⎛⎫
---+ ⎪⎝⎭
图2图1n n
n
m m
35.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:22420=-,221242=-,222064=-,因此4,12,20这三个数都是神秘数。

(1)28和36这两个数是神秘数吗?为什么?
(2)设两个连续偶数为2k+2和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?。

相关文档
最新文档