中考-三角形知识点复习归纳总结
初三数学三角形知识点总结归纳

初三数学三角形知识点总结归纳三角形是初中数学中的重要内容,掌握三角形的相关知识是理解和解决相关问题的基础。
在初三数学学习中,我们需要对三角形的性质、分类、定理等内容进行总结和归纳,以便更好地应对考试和日常学习中的问题。
一、三角形的基本概念三角形是由三条边和三个内角组成的图形。
常见的表示方法有三个顶点的大写字母或者使用线段AB、BC、CA表示。
三角形的顶点分别为A、B、C,三边分别为a、b、c,对应的内角为∠A、∠B、∠C。
二、三角形的分类1. 根据边的长度分类:- 等边三角形:三条边的长度相等,对应的内角也相等,记作∆ABC。
- 等腰三角形:两条边的长度相等,对应的两个内角也相等,记作∆ABC。
- 普通三角形:三条边的长度均不相等,对应的内角也均不相等,记作∆ABC。
2. 根据角度的大小分类:- 直角三角形:一个内角为直角(90度角),记作∆ABC。
- 钝角三角形:一个内角大于90度,记作∆ABC。
- 锐角三角形:三个内角均小于90度,记作∆ABC。
三、三角形的性质1. 三角形内角和定理:一个三角形的内角和等于180度。
∠A + ∠B + ∠C = 180度2. 三角形的外角和定理:一个三角形的外角和等于无关角的内角和或补角。
∠D = ∠A + ∠B 或∠D = 180度 - ∠C3. 三角形的边与角关系:- 三角形两边之和大于第三边。
- 三角形两边之差小于第三边。
- 三角形内角的关系:最大的内角对应最长的边,最小的内角对应最短的边。
四、常见的三角形定理1. 直角三角形的性质:- 勾股定理:直角三角形斜边的平方等于两直角边的平方和。
c^2 = a^2 + b^2- 余弦定理:直角三角形中,直角边的平方等于斜边的平方减去另一直角边的平方。
a^2 = c^2 - b^2 或 b^2 = c^2 - a^22. 等腰三角形的性质:- 等腰三角形的底角相等。
∠A = ∠C- 等腰三角形的高度和斜边关系:等腰三角形的高度是斜边平分线的垂直平分线。
初中中考三角形知识点总结

初中中考三角形知识点总结一、三角形的定义三角形是平面上的一个图形,它由三条边和三个顶点组成。
三角形是一种基本的几何图形,也是平面几何中研究最多的图形之一。
二、三角形的分类根据三条边的长度,三角形可以分为等腰三角形、等边三角形和普通三角形。
1. 等腰三角形:两条边的长度相等的三角形。
2. 等边三角形:三条边的长度都相等的三角形。
3. 普通三角形:三条边的长度都不相等的三角形。
根据角的大小,三角形可以分为直角三角形、锐角三角形和钝角三角形。
1. 直角三角形:其中一个角是90度的三角形。
2. 锐角三角形:三个角都是锐角的三角形。
3. 钝角三角形:其中一个角是钝角的三角形。
三、三角形的性质1. 三角形的内角和恒为180度。
这是三角形的最基本的性质,也是很多三角形问题的关键。
2. 等腰三角形的性质(1) 两底角相等。
(2) 两边边相等。
3. 等边三角形的性质(1) 三个角均相等,每个角为60度。
(2) 三条边均相等。
4. 直角三角形的性质(1) 两个锐角的和等于90度。
(2) 三个角的和等于180度。
(3) 符合勾股定理:a²+b²=c²。
5. 三角形的外角和等于没有被包含的两个内角的和。
这个性质非常重要,经常和外角性质一起来进行三角形的运算。
6. 三角形的两边之和大于第三边,任意两边之差小于第三边。
这是三角形的一个重要性质,也是判断三角形是否存在的关键。
7. 经常包含的一些特殊的三角形关系(1) 在一个等腰三角形中,这个等腰三角形可以分成两个直角三角形。
(2) 30度和60度角的三角函数值,这种关系是初中数学中的重点内容。
四、初中中考三角形的运算1. 求三角形的周长和面积。
我们经常会遇到问周长或者面积的问题,对初中生来说,掌握好周长和面积的计算方法是非常重要的。
2. 利用三角形的性质进行求解。
在解三角形问题的时候,我们经常会利用三角形的性质,根据题目给出的条件进行运算。
3. 利用勾股定理求解。
中考-三角形知识点复习归纳总结

中考三角形知识点复习归纳总结1.三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形. 三角形有三条边,三个内角,三个顶点 •组成三角形的线段叫做三角形的边 ;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点,三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示, AC 可用b 表示,BC 可用a 表示.2. 三角形的分类:(1) 按边分类:(2) 按角分类:底边和腰不相等的等腰三角形「等腰三角形J三角形彳 I 等边三角形i 不等边三角形直角三象形3. 三角形的主要线段的定义:(1) 三角形的中线三角形中,连结一个顶点和它对边中点的线段.表示法:1AD 是A ABC 的BC 上的中线•1 2.BD=DC=— BC.2 注意:①三角形的中线是线段;② 三角形三条中线全在三角形的内部;③ 三角形三条中线交于三角形内部一点;④ 中线把三角形分成两个面积相等的三角形. 三角形< 斜三角形锐角三角形i 钝角三角形(2) 三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:1AD是△ABC的Z BAC的平分线.2. Z 1 = Z 2=Z BAC.2注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;④用量角器画三角形的角平分线.(3) 三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.表示法:1AD是△ABC的BC上的高线.2. AD 丄BC于D.3. Z ADB=Z ADC=90°.注意:①三角形的咼是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条咼所在直线交于一点.4. 在画三角形的三条角平分线,三条中线,三条高时应注意:(1) 如图3,三角形三条角平分线交于一点,交点都在三角形内部(2) 如图4,三角形的三条中线交点一点,交点都在三角形内部B如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角顶点上•图6 图75三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.图8 6.三角形的角与角之间的关系:(1)三角形三个内角的和等于180 ;⑵三角形的一个外角等于和它不相邻的两个内角的和;(3) 三角形的一个外角大于任何一个和它不相邻的内角(4) 直角三角形的两个锐角互余三角形的内角和定理 定理:三角形的内角和等于 180°.推论:直角三角形的两个锐角互余。
三角形的知识点归纳总结

三角形的知识点归纳总结三角形是平面几何中最基本的图形之一,它有着丰富的性质和知识点。
下面将对三角形的知识点进行归纳总结。
一、基本概念1. 三角形的定义:三角形是由三条线段组成的闭合图形,它的边由三个非共线的点确定。
2. 三角形的元素:三角形有三条边和三个顶点,三角形的三个内角和为180度。
3. 三角形的分类:根据边长和角度的不同,三角形可以分为等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等多种类型。
二、边长关系1. 三角形边长的关系:在任意三角形中,任意两边之和大于第三边,任意两边之差小于第三边。
2. 等边三角形:等边三角形的三边长度相等。
3. 等腰三角形:等腰三角形的两边长度相等,两个底角也相等。
4. 直角三角形:直角三角形有一个内角是90度,满足勾股定理。
5. 锐角三角形:锐角三角形的三个内角都小于90度。
6. 钝角三角形:钝角三角形的一个内角大于90度。
三、角度关系1. 三角形内角和定理:任意三角形的三个内角和为180度。
2. 等角三角形:等角三角形的三个内角相等。
3. 外角和定理:三角形的一个内角的外角和等于180度。
4. 锐角三角形的性质:锐角三角形的三个内角都是锐角,且最小的内角对应最小的边。
5. 钝角三角形的性质:钝角三角形的一个内角是钝角,且最大的内角对应最长的边。
四、重要定理1. 三角形的中线定理:三角形的三条中线交于一点,且这个点到三个顶点的距离相等,且等于中线的一半。
2. 三角形的高线定理:三角形的三条高线交于一点,且这个点到三个顶点的距离相等。
3. 三角形的角平分线定理:三角形的三条角平分线交于一点,且这个点到三个顶点的距离相等。
五、面积公式1. 三角形面积的计算:三角形的面积可以使用海伦公式或底边高公式进行计算。
2. 海伦公式:设三角形的边长为a、b、c,半周长为s,则三角形的面积S等于sqrt(s(s-a)(s-b)(s-c))。
3. 底边高公式:设三角形的底边长为b,高为h,则三角形的面积S等于1/2 * b * h。
人教版数学中考知识点梳理-三角形的基本知识及全等三角形

第15讲一般三角形及其性质镇海中学陈志海一、知识清单梳理中位线 平行于第三边,且等于第三边的一半5. 三角形中内、外角与角平分线的规律总结如图①,AD 平分∠BAC ,AE ⊥BC ,则∠α=12∠BAC-∠CAE=12(180°-∠B-∠C )-(90°-∠C )=12(∠C-∠B ); 如图②,BO 、CO 分别是∠ABC 、∠ACB 的平分线,则有∠O=12∠A+90°;如图③,BO 、CO 分别为∠ABC 、∠ACD 、∠OCD 的平分线,则∠O=12∠A ,∠O ’=12∠O ;如图④,BO 、CO 分别为∠CBD 、∠BCE 的平分线,则∠O=90°-12∠A.对于解答选择、填空题,可以直接通过结论解题,会起到事半功倍的效果.知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三形的对应角平分线、对应中线、对应高相等. (3)全等三角形的周长等、面积等.失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两和它们的夹角对应相等AAS (两角和其中一个角的对边对应相等)失分点警示 如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL ) (2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS. 8.全等三(1)利用全等证明角、边相等或求线段长、求角度:将特征的或例:角形的运用角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件.(2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS可得△ACD≌△EBD,则AC=BE.在△ABE中,AB+BE>AE,即AB+AC>2AD.③截长补短法:适合证明线段的和差关系,如图③、④.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.【素材积累】1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。
中考三角形知识点总结

中考三角形知识点总结一、三角形的概念与分类。
1. 概念。
- 由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
- 三角形有三个顶点、三条边和三个内角。
2. 分类。
- 按角分类。
- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角是直角的三角形。
直角三角形可以用“Rt△”表示,直角所对的边称为斜边,其余两条边称为直角边。
- 钝角三角形:有一个角是钝角的三角形。
- 按边分类。
- 不等边三角形:三边都不相等的三角形。
- 等腰三角形:有两边相等的三角形。
相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
- 等边三角形:三边都相等的三角形,等边三角形是特殊的等腰三角形,它的三个角都相等,且每个角都是60°。
二、三角形的性质。
1. 三角形内角和定理。
- 三角形的内角和为180°。
- 直角三角形的两个锐角互余。
2. 三角形的外角性质。
- 三角形的一个外角等于与它不相邻的两个内角的和。
- 三角形的一个外角大于任何一个与它不相邻的内角。
3. 三角形的三边关系。
- 三角形任意两边之和大于第三边。
- 三角形任意两边之差小于第三边。
4. 等腰三角形的性质。
- 等腰三角形的两腰相等。
- 等腰三角形的两底角相等(简称为“等边对等角”)。
- 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简称为“三线合一”)。
5. 等边三角形的性质。
- 等边三角形的三条边相等。
- 等边三角形的三个角都相等,并且每个角都是60°。
三、三角形中的重要线段。
1. 中线。
- 连接三角形一个顶点和它对边中点的线段叫做三角形的中线。
- 三角形的三条中线相交于一点,这点叫做三角形的重心。
重心到顶点的距离是它到对边中点距离的2倍。
2. 角平分线。
- 三角形一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
- 三角形的三条角平分线相交于一点,这点到三角形三边的距离相等。
中考解直角三角形知识点整理复习

x tan 21°
8 3
x
;
B
D
第 19 题图
在
Rt△CEG 中, tan
CGE
CE GE
,则 GE
tan
CE CGE
x tan 37°
4 3
x
∵ EF FG EG,∴ 8 x 50 4 x . x 37.5 ,∴ CD CE ED 37.51.5 39 (米).
3
3
答:古塔的高度约是 39 米. ························ 6 分
a2 b2
a 由 Sin A=c,求∠A;∠B=90°-A,b=
c2 - a2
∠B=90°-A,a=b·Sin A,c=cosA
A bC 一
和
角 一锐角
锐角,对边 (如∠A,a)
∠B=90°-A,b=,c=
斜边,锐角(如 c,∠A)
∠B=90°-A,a=c·Sin A, b=c·cos A
2、测量物体的高度的常见模型
35º 40
CB
D
面 CD 有多长
º
(结果精确到 0.1m.参考数据:sin40º ≈,cos40º ≈,sin35º ≈,tan35º ≈
(2012)20.(8 分)
附历年真题标准答案:
(2007)19.(本小题满分 6 分)
解:过 C 作 AB 的垂线,交直线 AB 于点 D,得到 Rt△ACD 与 Rt△BCD.
数学模型
所用 应测数据
工具
α β x
h1
h
皮尺
αβ a
h x
侧倾 器
仰角α 俯角β 高度 a
俯角α 俯角β
高度
数量关系
三角形知识点复习归纳总结

三角形知识点复习归纳总结三角形是几何学中的基本图形之一,其性质和特点的掌握对于解决与三角形相关的问题非常重要。
以下是对于三角形知识点的复习归纳总结:一、基本概念:1.三角形:由三条边和三个角组成的图形。
2.顶角:三角形的顶点所对应的角。
3.边:三角形的两个顶点所连接的线段。
4.外角:三角形的一个内角的补角。
二、分类:1.按边的关系分类:(1)等边三角形:三条边长度相等。
(2)等腰三角形:两条边长度相等。
(3)普通三角形:三边长度都不相等。
2.按角的关系分类:(1)钝角三角形:一个角度大于90°。
(2)直角三角形:一个角度等于90°。
(3)锐角三角形:三个角度都小于90°。
三、性质与定理:1.内角和定理:三角形的三个内角和等于180°。
2.外角和定理:三角形的一个内角与其相邻的外角补角相等。
3.外角定理:一个三角形的外角等于另外两个内角之和。
4.中位线定理:三角形的三条中位线交于一点。
5.高线定理:三角形的三条高线交于一点。
6.中心定理:三角形的三个角的内心、外心和重心都在一条直线上。
7.角平分线定理:三角形的三个内角的角平分线交于一点,且与该点到三个顶点的距离相等。
8.边平分线定理:三角形的三个内角的边平分线交于一点,且与该点到三个顶点的距离成比例。
9. 正弦定理:对于一个三角形ABC,AB=c,BC=a,AC=b,A、B、C分别为三角形的内角,那么有sinA=a/2R,sinB=b/2R,sinC=c/2R,其中R 为三角形外接圆的半径。
10. 余弦定理:对于一个三角形ABC,AB=c,BC=a,AC=b,A、B、C 分别为三角形的内角,那么有c^2=a^2+b^2-2ab*cosC。
11.面积公式:三角形的面积等于1/2底边乘以高。
12.海伦公式:对于一个三角形ABC,AB=c,BC=a,AC=b,s为三边之和的一半,那么三角形的面积等于根号下[s(s-a)(s-b)(s-c)]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D C
B A
中考三角形知识点复习归纳总结
⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.
三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示.
⒉ 三角形的分类:
(1)按边分类:
(2)按角分类:
⒊ 三角形的主要线段的定义: (1)三角形的中线 三角形中,连结一个顶点和它对边中点的线段.
表示法:1.AD 是△ABC 的BC 上的中线.
三角形 等腰三角形 不等边三角形
底边和腰不相等的等腰三角形
等边三角形 三角形
直角三象形
斜三角形 锐角三角形 钝角三角形
21D C
B A
D C
B A 2.BD=DC=12
BC. 注意:①三角形的中线是线段;
②三角形三条中线全在三角形的内部;
③三角形三条中线交于三角形内部一点;
④中线把三角形分成两个面积相等的三角形.
(2)三角形的角平分线
三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD 是△ABC 的∠BAC 的平分线. 2.∠1=∠2=12
∠BAC. 注意:①三角形的角平分线是线段; ②三角形三条角平分线全在三角形的内部;
③三角形三条角平分线交于三角形内部一点;
④用量角器画三角形的角平分线.
(3)三角形的高
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.
表示法:1.AD 是△ABC 的BC 上的高线.
2.AD⊥BC于D.
3.∠ADB=∠ADC=90°.
注意:①三角形的高是线段;
②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;
③三角形三条高所在直线交于一点.
⒋在画三角形的三条角平分线,三条中线,三条高时应注意:
(1)如图3,三角形三条角平分线交于一点,交点都在三角形内部.
(2)如图4,三角形的三条中线交点一点,交点都在三角形内部.
图3 图4
如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角顶点上.
5 三角形的三边关系 三角形的任意两边之和大于第三边;任意两边之差小于第三边.
注意:(1)三边关系的依据是:两点之间线段是短;
(2)围成三角形的条件是任意两边之和大于第三边.
6. 三角形的角与角之间的关系: (1)三角形三个内角的和等于180;
(2)三角形的一个外角等于和它不相邻的两个内角的和;
(3)三角形的一个外角大于任何一个和它不相邻的内角.
(4)直角三角形的两个锐角互余.
三角形的内角和定理
定理:三角形的内角和等于180°.
图5
图6
图7 图8
推论:直角三角形的两个锐角互余。
推理过程:
一、作CM∥AB,则∠4=∠1,而∠2+∠3+∠4=1800,即∠A+∠B+∠ACB=1800.
二、作MN∥BC,则∠2=∠B,∠3=∠C,而∠1+∠2+∠3=1800,
即∠BAC+∠B+∠C=1800.
注意:(1)证明的思路很多,基本思想是组成平角.
(2)应用内角和定理可解决已知二个角求第三个角或已知三角关系求三个角.7.三角形的稳定性:
三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.
注意:(1)三角形具有稳定性;
(2)四边形没有稳定性.
适当添加辅助线,寻找基本图形
(1)基本图形一,如图8,在ABC中,AB=AC,B,A,D成一条直线,则
1DAC.
DAC=2B=2C或B=C=
2
(2)基本图形二,如图9,如果CO 是AOB的角平分线,DE∥OB交OA,OC于D,E,那么DOE是等腰三角形,DO=DE.当几何问题的条件和结论中,
图9
或在推理过程中出现有角平分线,平行线,等腰三角形三个条件中
的两个时,就应找出这个基本图形,并立即推证出第三个作为结论.
即:角平分线+平行线→等腰三角形.
基本图形三,如图10,如果BD 是ABC的角平分线,M是AB上一点,MN BD,且与BP,BC相交于P,N.那么BM=BN,即BMN是等腰三角形,且MP=NP,
即:角平分线+垂线→等腰三角形.
当几何证题中出现角平分线和向角平分线所作垂线时,就应找出这个基
本图形,如等腰三角形不完整就应将基本图
形补完整,如图11,图12.
图11。