正余弦定理讲义

合集下载

正弦定理、余弦定理讲义

正弦定理、余弦定理讲义

此为三角函数最为基础的知识,在以后的多学科学习中都能用到,需要学生熟练掌握,并灵活运用。

解三角形【考点及要求】 1. 掌握正弦定理、余弦定理; 2. 并能初步应用正弦定理、余弦定理解决三角形中的有关问题. 【基础知识】在C B A c b a ABC ∠∠∠∆、、分别是、、中,所对的边,ABC R ∆为的外接圆半径,则有,1.正弦定理:R CcB b A a 2sin sin sin =∠=∠=∠; 2.余弦定理:bca cb A 2cos 222-+=A bc c b a cos 2222-+=⇔ ac b c aB 2cos 222-+=B ac c a b cos 2222-+=⇔ abc b a C 2cos 222-+=C ab b a c cos 2222-+=⇔ 3.常用公式:(1)π=++C B A ;(2)B ac A bc C ab S sin 21cos 21sin 21===知识点一:解直角三角形【典型例题讲练】例1 在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c .【变式训练】 1.在△ABC 中,已知a=3,b=2,B=45°,求A 、C 和c.知识点二:正、余弦定理的运用【典例精析】 例1、(2010辽宁文数)在ABC ∆中,a b c 、、分别为内角A B C 、、的对边,且2sin (2)sin (2)sin a A b c B c b C =+++. (Ⅰ)求A 的大小;(Ⅱ)若sin sin 1B C +=,试判断ABC ∆的形状.例2、(2010重庆文数)设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c,且32b +32c -32a =42bc . (Ⅰ) 求sinA 的值;(Ⅱ)求2sin()sin()441cos 2A B C Aππ+++-的值.例3、在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且CB cos cos =-ca b +2.(1)求角B 的大小; (2)若b=13,a+c=4,求△ABC 的面积.例4、在△ABC中,角A、B、C的对边分别为a、b、c,已知a+b=5,c=7,且4sin22BA+-cos2C=27.(1)求角C的大小;(2)求△ABC的面积.【变式训练】1.(2010天津文数)在∆ABC中,coscosAC B AB C=。

(完整版)DSE正余弦定理复习讲义

(完整版)DSE正余弦定理复习讲义

解三角形【考点及要求】1. 掌握正弦定理、余弦定理;2. 并能初步应用正弦定理、余弦定理解决三角形中的有关问题.【基础知识】1.正弦定理: .利用正弦定理,可以解决以下两类有关三角形的问题:(1) ;(2) .2.余弦定理:第一形式:2b =B ac c a cos 222-+,第二形式:cos B =acb c a 2222-+ 利用余弦定理,可以解决以下两类有关三角形的问题:(1) ;(2) .3.三角形的面积公式 . 4.△ABC 中,::sin :sin :sin ;a b c A B C = .A B C π++=【基本训练】1.在△ABC 中,“A B >”是“sin sin A B >”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若三角形的面积S =41(a 2+b 2-c 2),则∠C 的度数是_______.3.在△ABC 中,4,7,AB AC ==M 为BC 的中点,且35AM =⋅,则BC = .4.在ABC △中,若1tan 3A =,150C =,1BC =,则AB = 【典型例题讲练】例1 在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c .1. 变式: 在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos =B ,则ABC △的面积S =________________ 例2在ΔABC 中,若2cos sin sin B A C =,则ΔABC 的形状为 .变式1: ABC C b a B A b a ABC ∆-=-+∆则中若sin )()sin()(2222是( )A 、等腰三角形B 、直角三角形C 、等腰直角三角形D 、等腰或直角三角形。

例3在△ABC 中 A=45°,B :C = 4:5最大边长为10,求角B 、C 、外接圆半径及面积S变式:在△ABC 中以知A=30°a 、b 分别为角A 、B 对边,且a=4=33b 解此三角形例4.△ABC 的周长为12, 且sinA ·cosB -sinB=sinC -sinA ·cosC ,则其面积最大值为 。

正弦定理和余弦定理课件PPT

正弦定理和余弦定理课件PPT
直角三角形的一个锐角的对边与斜边的比叫做这个 角的正弦.
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
A. 3
B.2
C. 5
D. 7
【解析】选D.因为a2=b2+c2-2bccosA=22+32-2×2×3×
cos 60°=7,所以a=
7.
3.在△ABC中,a=3,b=4,c= ,则此三角形的最大角为
37
.
【解析】由c>b>a知C最大,
因为cosC=
a2
所以C=120°.
b2 c2 2ab
32 42 37 234
【拓展延伸】利用平面图形的几何性质和 勾股定理证明余弦定理 ①当△ABC为锐角三角形时,如图, 作CD⊥AB,D为垂足,则CD=bsinA, DB=c-bcosA,则a2=DB2+CD2=(c-bcosA)2+(bsinA)2 =b2+c2-2bccosA,其余两个式子同理可证;
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c

6.4.3第1课时余弦定理讲义

6.4.3第1课时余弦定理讲义

6.4.3 余弦定理、正弦定理 第1课时 余弦定理(教师独具内容)课程标准:借助向量的运算,探索三角形边长与角度的关系,掌握余弦定理. 教学重点:用向量的方法推导余弦定理,用余弦定理求解三角形的边、角. 教学难点:余弦定理在解三角形中的应用.核心素养:1.通过余弦定理的推导过程培养逻辑推理素养.2.通过余弦定理的应用培养数学运算素养.1.对余弦定理的理解(1)适用范围:余弦定理对任意的三角形都成立. (2)结构特征:“平方”“夹角”“余弦”.(3)揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系式,它描述了任意三角形中边与角的一种数量关系.(4)主要功能:余弦定理的主要功能是实现三角形中边角关系的互化. 2.判定三角形的形状(1)有关三角形边角关系解三角形问题,就是从“统一”入手,体现转化思想.判断三角形的形状有两条思路:①化边为角,再进行三角恒等变换,求出三角之间的数量关系式. ②化角为边,再进行代数恒等变换,求出三边之间的数量关系式. (2)判定三角形形状时经常用到下列结论:①在△ABC 中,若a 2<b 2+c 2,则0°<A <90°;反之,若0°<A <90°,则a 2<b2+c 2.例如:在不等边△ABC 中,a 是最大的边,若a 2<b 2+c 2,可得角A 的范围是⎝ ⎛⎭⎪⎫π3,π2. ②在△ABC 中,若a 2=b 2+c 2,则A =90°;反之,若A =90°,则a 2=b 2+c 2. ③在△ABC 中,若a 2>b 2+c 2,则90°<A <180°;反之,若90°<A <180°,则a 2>b 2+c 2.1.判一判(正确的打“√”,错误的打“×”)(1)余弦定理只适用于已知三边和已知两边及其夹角的情况.( )(2)勾股定理是余弦定理的特例,余弦定理是勾股定理的推广.( )(3)已知△ABC中的三边,可结合余弦定理判断三角形的形状.( )2.做一做(1)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=7,c =3,则B=____.(2)已知△ABC的三边分别为2,3,4,则此三角形是____三角形.(3)在△ABC中,若a2+b2-c2=ab,则角C的大小为____.(4)在△ABC中,AB=4,BC=3,B=60°,则AC等于____.题型一已知两边及一角解三角形例1 在△ABC中,a=23,c=6+2,B=45°,解这个三角形.[跟踪训练1] (1)在△ABC中,已知a=4,b=6,C=120°,则边c的值是( )A.8 B.217C.6 2 D.219(2)在△ABC中,已知b=3,c=33,B=30°,求角A,C和边a.题型二已知三边(三边关系)解三角形例2 (1)在△ABC中,若a=7,b=43,c=13,则△ABC的最小角为( )A.π3B.π6C.π4D.π12(2)在△ABC中,角A,B,C的对边分别为a,b,c,已知a-b=4,a+c=2b,且最大角为120°,求此三角形的最大边长.题型三判断三角形的形状例3 在△ABC中,已知(a+b+c)(a+b-c)=3ab,且2cos A sin B=sin C,试确定△ABC的形状.[跟踪训练3] 在△ABC中,若B=60°,2b=a+c,试判断△ABC的形状.1.在△ABC中,已知b2=ac且c=2a,则cos B等于( )A.14B.34C.24D.232.在△ABC中,已知a=2,则b cos C+c cos B等于( )A.1 B. 2C.2 D.43.在△ABC中,若a=3+1,b=3-1,c=10,则△ABC的最大角的度数为____.4.在△ABC中,a,b,c分别为∠A,∠B,∠C的对边,b=2,c=1+3,且a2=b2+c2-2bc sin A,则边a=____.5.在△ABC中,b=a sin C,c=a cos B,试判断△ABC的形状.一、选择题1.在△ABC中,已知a=5,b=15,A=30°,则c等于( )A.2 5 B. 5C.25或 5 D.以上都不对2.在△ABC中,sin2A2=c-b2c(a,b,c分别为角A,B,C的对应边),则△ABC的形状为( )A.正三角形B.直角三角形C.等腰直角三角形D.等腰三角形3.在△ABC中,内角A,B,C的对边分别为a,b,c,且a2+b2+2ab=c2,则角C为( )A.π4B.3π4C.π3D.2π34.(多选)钝角三角形的三边分别为a,a+1,a+2,其最大角不超过120°,则a的值可能为( )A.1 B.3 2C.2 D.35.已知△ABC的三边长分别是x2+x+1,x2-1和2x+1(x>1),则△ABC的最大角为( )A.150° B.120°C.60° D.75°二、填空题6.若|AB→|=2,|AC→|=3,AB→·AC→=-3,则△ABC的周长为____.7.在△ABC中,BD为∠ABC的平分线,AB=3,BC=2,AC=7,则sin∠ABD =____.8.如图,在△ABC中,点D在AC上,AB⊥BD,BC=33,BD=5,sin∠ABC=235,则CD的长度等于____.三、解答题9.在△ABC中,A+C=2B,a+c=8,ac=15,求b.10.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a-c)2=b2-34 ac.(1)求cos B的值;(2)若b=13,且a+c=2b,求ac的值.1.在△ABC中,a=3,b-c=2,cos B=-1 2 .(1)求b,c的值;(2)求sin(B+C)的值.2.在△ABC中,角A,B,C的对边分别为a,b,c,且a2-(b-c)2=(2-3)bc,sin A sin B=cos2C2,BC边上的中线AM的长为7.(1)求角A和角B的大小;(2)求△ABC的周长.6.4.3 余弦定理、正弦定理第1课时余弦定理(教师独具内容)课程标准:借助向量的运算,探索三角形边长与角度的关系,掌握余弦定理.教学重点:用向量的方法推导余弦定理,用余弦定理求解三角形的边、角.教学难点:余弦定理在解三角形中的应用.核心素养:1.通过余弦定理的推导过程培养逻辑推理素养.2.通过余弦定理的应用培养数学运算素养.1.对余弦定理的理解(1)适用范围:余弦定理对任意的三角形都成立.(2)结构特征:“平方”“夹角”“余弦”.(3)揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系式,它描述了任意三角形中边与角的一种数量关系.(4)主要功能:余弦定理的主要功能是实现三角形中边角关系的互化. 2.判定三角形的形状(1)有关三角形边角关系解三角形问题,就是从“统一”入手,体现转化思想.判断三角形的形状有两条思路:①化边为角,再进行三角恒等变换,求出三角之间的数量关系式. ②化角为边,再进行代数恒等变换,求出三边之间的数量关系式. (2)判定三角形形状时经常用到下列结论:①在△ABC 中,若a 2<b 2+c 2,则0°<A <90°;反之,若0°<A <90°,则a 2<b 2+c 2.例如:在不等边△ABC 中,a 是最大的边,若a 2<b 2+c 2,可得角A 的范围是⎝ ⎛⎭⎪⎫π3,π2. ②在△ABC 中,若a 2=b 2+c 2,则A =90°;反之,若A =90°,则a 2=b 2+c 2. ③在△ABC 中,若a 2>b 2+c 2,则90°<A <180°;反之,若90°<A <180°,则a 2>b 2+c 2.1.判一判(正确的打“√”,错误的打“×”)(1)余弦定理只适用于已知三边和已知两边及其夹角的情况.( ) (2)勾股定理是余弦定理的特例,余弦定理是勾股定理的推广.( ) (3)已知△ABC 中的三边,可结合余弦定理判断三角形的形状.( ) 答案 (1)× (2)√ (3)√ 2.做一做(1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B =____.(2)已知△ABC 的三边分别为2,3,4,则此三角形是____三角形. (3)在△ABC 中,若a 2+b 2-c 2=ab ,则角C 的大小为____. (4)在△ABC 中,AB =4,BC =3,B =60°,则AC 等于____. 答案 (1)5π6 (2)钝角 (3)π3(4)13题型一已知两边及一角解三角形例1 在△ABC中,a=23,c=6+2,B=45°,解这个三角形.[解]由余弦定理得b2=a2+c2-2ac cos B=(23)2+(6+2)2-2×23×(6+2)×cos45°=8,∴b=22,又cos A=b2+c2-a22bc=8+6+22-2322×22×6+2=12,∴A=60°,C=180°-(A+B)=75°.已知两边及一角解三角形的两种情况(1)已知两边和两边夹角,直接应用余弦定理求出第三边,然后根据边角关系应用余弦定理求解其他角.(2)三角形中已知两边和一边的对角,解法如下:利用余弦定理列出关于第三边的等量关系建立方程,运用解方程的方法求出第三边的长.[跟踪训练1] (1)在△ABC中,已知a=4,b=6,C=120°,则边c的值是( )A.8 B.217C.6 2 D.219(2)在△ABC中,已知b=3,c=33,B=30°,求角A,C和边a.答案(1)D (2)见解析解析(1)根据余弦定理,c2=a2+b2-2ab cos C=16+36-2×4×6×cos120°=76,∴c=219.(2)由余弦定理,得b2=a2+c2-2ac cos B,∴32=a2+(33)2-2a×33×cos30°,∴a2-9a+18=0,解得a=3或6.当a=3时,A=30°,∴C=120°.当a=6时,由余弦定理,得cos A=b2+c2-a22bc=9+27-362×3×33=0.∴A=90°,∴C=60°.题型二已知三边(三边关系)解三角形例2 (1)在△ABC中,若a=7,b=43,c=13,则△ABC的最小角为( )A.π3B.π6C.π4D.π12(2)在△ABC中,角A,B,C的对边分别为a,b,c,已知a-b=4,a+c=2b,且最大角为120°,求此三角形的最大边长.[解析](1)因为c<b<a,所以最小角为角C.所以cos C=a2+b2-c22ab=49+48-13 2×7×43=32,所以C=π6,故选B.(2)已知a-b=4,则a>b,且a=b+4,又a+c=2b,则b+4+c=2b,所以b=c+4,则b>c,从而a>b>c,所以a为最大边,A=120°,b=a-4,c=a -8.由余弦定理,得a2=b2+c2-2bc cos A=(a-4)2+(a-8)2+(a-4)(a-8),即a2-18a+56=0,解得a=4或a=14.又b=a-4>0,所以a=14.即此三角形的最大边长为14.[答案](1)B (2)见解析[条件探究] 若本例(1)中条件不变,如何求最大角的余弦值呢?解因为c<b<a,所以最大角为角A,所以由余弦定理可得cos A=b2+c2-a22bc=432+132-72 2×43×13=48+13-49839=3926.故△ABC 的最大角的余弦值为3926.已知三边求解三角形的方法(1)已知三角形的三边求角时,可先利用余弦定理求解出各角的大小. (2)若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边求解.在已知三边求三个角时,一般先求小角后求大角.[跟踪训练2] (1)在△ABC 中,(b +c )∶(c +a )∶(a +b )=4∶5∶6,则此三角形的最大内角为____.(2)在△ABC 中,已知BC =7,AC =8,AB =9,试求AC 边上的中线长. 答案 (1)120° (2)见解析解析 (1)由(b +c )∶(c +a )∶(a +b )=4∶5∶6,得a ∶b ∶c =7∶5∶3,∴边a 最大.又cos A =b 2+c 2-a 22bc =-12,∴A =120°.(2)解法一:由余弦定理的推论,得cos A =AB 2+AC 2-BC 22×AB ×AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知,x 2=⎝ ⎛⎭⎪⎫AC 22+AB 2-2×AC 2×AB cos A =42+92-2×4×9×23=49,则x =7.∴所求中线长为7.解法二:在△ABC 中,设AC 边上的中线长为x ,如图,以AB ,BC 为邻边作▱ABCD .由余弦定理可得,在△ABC 中,有AC 2=AB 2+BC 2-2AB ×BC ×cos∠ABC ,① 在△ABD 中,有BD 2=AB 2+AD 2-2AB ×AD ×cos∠BAD ,② ①+②可得(2x )2+AC 2=2(AB 2+BC 2), 即(2x )2+82=2×(92+72),∴x =7, ∴所求中线长为7.题型三判断三角形的形状例3 在△ABC中,已知(a+b+c)(a+b-c)=3ab,且2cos A sin B=sin C,试确定△ABC的形状.[解]由2cos A sin B=sin C,得2cos A sin B=sin A cos B+cos A sin B,∴sin(A-B)=0,又A与B均为△ABC的内角,∴A=B.由(a+b+c)(a+b-c)=3ab,得(a+b)2-c2=3ab,∴a2+b2-c2=ab,∴由余弦定理,得cos C=12,C=60°,∴△ABC为等边三角形.利用余弦定理判断三角形形状的方法及注意事项(1)利用余弦定理(有时还要结合三角恒等变换等知识)把已知条件转化为边的关系,通过因式分解、配方等方法得出边的相应关系,从而判断三角形的形状.(2)统一成边的关系后,注意等式两边不要轻易约分,否则可能会出现漏解.[跟踪训练3] 在△ABC中,若B=60°,2b=a+c,试判断△ABC的形状.解由余弦定理,得b2=a2+c2-2ac cos B,∵B=60°,b=a+c2,∴⎝⎛⎭⎪⎫a+c22=a2+c2-2ac cos60°.∴(a-c)2=0,a=c,又B=60°,∴△ABC为等边三角形.1.在△ABC中,已知b2=ac且c=2a,则cos B等于( )A.14B.34C.24D.23答案 B解析∵b2=ac,c=2a,∴b2=2a2,b=2a,∴cos B=a2+c2-b22ac=a2+4a2-2a2 2a·2a =3 4.2.在△ABC中,已知a=2,则b cos C+c cos B等于( ) A.1 B. 2C.2 D.4答案 C解析b cos C+c cos B=b·a2+b2-c22ab+c·c2+a2-b22ac=2a22a=a=2.3.在△ABC中,若a=3+1,b=3-1,c=10,则△ABC的最大角的度数为____.答案120°解析由c>a>b,知角C为最大角,则cos C=a2+b2-c22ab=-12,∴C=120°,即此三角形的最大角为120°.4.在△ABC中,a,b,c分别为∠A,∠B,∠C的对边,b=2,c=1+3,且a2=b2+c2-2bc sin A,则边a=____.答案 2解析由已知及余弦定理,得sin A=b2+c2-a22bc=cos A,∴A=45°,∴a2=b2+c2-2bc cos45°=4,a=2.5.在△ABC中,b=a sin C,c=a cos B,试判断△ABC的形状.解由余弦定理知cos B=a2+c2-b22ac,代入c=a cos B,得c=a·a2+c2-b22ac,∴c2+b2=a2,∴△ABC是以A为直角的直角三角形.又b=a sin C,∴b=a·ca,∴b=c,∴△ABC也是等腰三角形.综上所述,△ABC是等腰直角三角形.一、选择题1.在△ABC中,已知a=5,b=15,A=30°,则c等于( ) A.2 5 B. 5C.25或 5 D.以上都不对答案 C解析∵a2=b2+c2-2bc cos A,∴5=15+c2-215×c×32.化简,得c2-35c+10=0,即(c-25)(c-5)=0,∴c=25或c= 5.2.在△ABC中,sin2A2=c-b2c(a,b,c分别为角A,B,C的对应边),则△ABC的形状为( )A.正三角形B.直角三角形C.等腰直角三角形D.等腰三角形答案 B解析∵sin2A2=1-cos A2=c-b2c,∴cos A=bc=b2+c2-a22bc⇒a2+b2=c2,符合勾股定理.故△ABC为直角三角形.3.在△ABC中,内角A,B,C的对边分别为a,b,c,且a2+b2+2ab=c2,则角C为( )A.π4B.3π4C.π3D.2π3答案 B解析∵a2+b2+2ab=c2,∴a2+b2-c2=-2ab,cos C=a2+b2-c22ab=-2ab 2ab =-22,∵C∈(0,π),∴C=3π4.4.(多选)钝角三角形的三边分别为a,a+1,a+2,其最大角不超过120°,则a的值可能为( )A.1 B.3 2C.2 D.3答案BC解析设钝角三角形的最大角为α,则依题意90°<α≤120°,于是由余弦定理得cosα=a2+a+12-a+222a a+1=a-32a,所以-12≤a-32a<0,解得32≤a<3.故选BC.5.已知△ABC的三边长分别是x2+x+1,x2-1和2x+1(x>1),则△ABC的最大角为( )A.150° B.120°C.60° D.75°答案 B解析令x=2,得x2+x+1=7,x2-1=3,2x+1=5,∴最大边x2+x+1应对最大角,设最大角为α,∴cosα=x2-12+2x+12-x2+x+12 2x2-12x+1=-12,∴最大角为120°.二、填空题6.若|AB→|=2,|AC→|=3,AB→·AC→=-3,则△ABC的周长为____. 答案5+19解析 由AB →·AC →=|AB →||AC →|cos A 及条件,可得cos A =-12,∴A =120°,再由余弦定理求得BC 2=19,∴周长为5+19.7.在△ABC 中,BD 为∠ABC 的平分线,AB =3,BC =2,AC =7,则sin ∠ABD =____.答案12解析 因为BD 为∠ABC 的平分线,所以∠ABD =12∠ABC .由余弦定理,得cos∠ABC =AB 2+BC 2-AC 22×AB ×BC =32+22-722×3×2=12.又cos ∠ABC =1-2sin 2∠ABD =12,所以sin ∠ABD =12.8.如图,在△ABC 中,点D 在AC 上,AB ⊥BD ,BC =33,BD =5,sin ∠ABC =235,则CD 的长度等于____.答案 4解析 由题意,知sin ∠ABC =235=sin ⎝ ⎛⎭⎪⎫π2+∠CBD =cos ∠CBD ,由余弦定理可得CD 2=BC 2+BD 2-2BC ·BD ·cos∠CBD =27+25-2×33×5×235=16.∴CD =4.三、解答题9.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b . 解 在△ABC 中,因为A +C =2B ,A +B +C =180°, 所以B =60°.由余弦定理,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B =82-2×15-2×15×12=19.所以b=19.10.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a-c)2=b2-34 ac.(1)求cos B的值;(2)若b=13,且a+c=2b,求ac的值.解(1)由(a-c)2=b2-34 ac,可得a2+c2-b2=54 ac.所以a2+c2-b22ac=58,即cos B=58.(2)因为b=13,cos B=5 8,由余弦定理,得b2=13=a2+c2-54ac=(a+c)2-134ac,又a+c=2b=213,所以13=52-134ac,解得ac=12.1.在△ABC中,a=3,b-c=2,cos B=-1 2 .(1)求b,c的值;(2)求sin(B+C)的值.解(1)由已知及余弦定理,得cos B=c2+a2-b22ca=9+c+b c-b6c=9-2c+b6c=-12,即9-2b+c=0,又b-c=2,所以b=7,c=5.(2)由(1)及余弦定理,cos C=a2+b2-c22ab=32+72-522×3×7=1114,又sin2C+cos2C=1,0<C<π,所以sin C=5314,同理sin B=32,所以sin(B +C )=sin B cos C +sin C cos B =32×1114+5314×⎝ ⎛⎭⎪⎫-12=3314. 2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的周长.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,所以cos A =b 2+c 2-a 22bc =32.又0<A <π,所以A =π6.由sin A sin B =cos 2C2,得12sin B =1+cos C2,即sin B =1+cos C ,则cos C <0,即C 为钝角.所以B 为锐角,且B +C =5π6,则sin ⎝ ⎛⎭⎪⎫5π6-C =1+cos C , 化简得cos ⎝ ⎛⎭⎪⎫C +π3=-1,解得C =2π3,所以B =π6.(2)由(1)知,a =b ,在△ACM 中,由余弦定理得AM 2=b 2+⎝ ⎛⎭⎪⎫a 22-2b ·a 2·cos C=b 2+b 24+b 22=(7)2,解得b =2,所以a =2.在△ABC 中,c 2=a 2+b 2-2ab cos C =22+22-2×2×2×cos 2π3=12, 所以c =2 3.所以△ABC 的周长为4+2 3.。

正弦定理和余弦定理讲义-打印版

正弦定理和余弦定理讲义-打印版

正弦定理和余弦定理讲义解三角形的大前提背景:内角和定理:在ABC ∆中,A B C ++=π;sin A =sin(B +C ),cos A =-cos(B +C ),tan A =-tan(B +C ).sin A 2=cos B +C 2,cos A 2=sin B +C2.考点一:1.正弦定理: ,其中R 是 .2.变形为: (1)a ∶b ∶c = ;(边化角)a =_______,b =_______,c =_____; (角化边)sin A =_______, sin B =______, sin C =_______注:正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.(情况(2)中结果可能有一解、二解、无解,应注意区分.大边对大角) 3.解三角形时,三角形解的个数的判断 例1.已知下列各三角形中的两边及其一边的对角,判断三角形是否有解,有解的作出解答。

(1)7,8,105a b A === (2)10,20,80a b A ===(3)10,56,60b c C === (4)23,6,30a b A ===2.在△ABC 中,a =8,B =60°,C =75°,求边b 和c .考点二:余弦定理 a 2=__________,b 2=_______,c 2=________.余弦定理可以变形为:cos A =__________,cos B =________,cos C =_________.或者 注:1.已知两边b ,c 与其夹角A ,由a 2=b 2+c 2-2bc cos A, 求出a ,再由正弦定理,求出角B ,C. 2.已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C. 例.在△ABC 中,a =1,b =7 ,B =60°,求c.考点三:判断三角形的形状解题思路:一般考虑两个方向进行变形:(1)一个方向是边,走代数变形之路,通常是正、余弦定理结合使用;(2)另一个方向是角,走三角变形之路.通常是运用正弦定理 (思考:如何判断锐、直、钝三角形;结合三角变换判断等腰,等边等)例1.在△ABC 中,bcosA =a cosB ,试判断三角形的形状.2.在△ABC 中,若cosA cosB =ba ,则△ABC 的形状是.( )3.△ABC 中,若lg a -lg c =lgsin B =-lg 2且B ∈()0,π2,则△ABC 的形状是( )4.已知在△ABC 中,222cosA b cc+=,则△ABC 的形状是考点四:三角形的面积问题例1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AC AB ∙=3. (1)求△ABC 的 A 为锐角 A 为钝角或直角 图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解个数1sin 2ABC S ab C ∆==: 1sin 2bc A =1sin 2ca B =abc 4R (R 为外接圆半径)=12(a +b +c )·r (r 内切圆半面积; (2)若b +c =6,求a 的值.2.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;若b =13,a +c =4,求△ABC 的面积. 考点五:三角形中的三角变换题型:利用正、余弦定理和三角函数的恒等变换,进行边角互换,结合三角函数的图象与性质进行化简求值.三角变换公式:1.两角和与差的正弦、余弦和正切公式: 2.二倍角的正弦、余弦和正切公式: 3.辅助角公式:例1.在ABC △中,已知内角A π=3,边23BC =.设内角B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.2.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.3.在△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,AB BC ⋅=8,∠BAC =θ,a =4.(1)求b ·c 的最大值及θ的取值范围;(2)求函数f (θ)=23sin 2(π4+θ)+2cos 2θ-3的值.考点六:综合问题例.(2005年全国高考卷三试题)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,.43cos =B (Ⅰ)求cot A +cotC 的值; (Ⅱ)设32BA BC⋅=,求a +c 的值. 考点七:实际应用(一.)测量问题例1. 如图1所示,为了测河的宽度,在一岸边选定A 、B 两点,望对岸标记物C ,测得∠CAB=30°,∠CBA=75°,AB=120cm ,求河的宽度。

正余弦定理讲义

正余弦定理讲义

正余弦定理讲义
正余弦定理是高中数学中的重要知识点,也是解决三角形相关问题的基础。

本讲义将详细介绍正余弦定理的定义、公式及其应用。

一、正余弦定理的定义
正余弦定理是指在任意三角形ABC中,设三角形三边分别为
a、b、c,对应的内角分别为A、B、C,那么:
① 余弦定理:$a^2=b^2+c^2-2bccos A$;
② 正弦定理:$dfrac{a}{sin A}=dfrac{b}{sin
B}=dfrac{c}{sin C}$。

二、正余弦定理的公式
1. 余弦定理的公式:
$a^2=b^2+c^2-2bccos A$;
$b^2=a^2+c^2-2accos B$;
$c^2=a^2+b^2-2abcos C$。

2. 正弦定理的公式:
$dfrac{a}{sin A}=dfrac{b}{sin B}=dfrac{c}{sin C}$。

三、正余弦定理的应用
1. 判断三角形是否存在
若已知三角形的三边长,应用正余弦定理可以求出三个角的正余弦值,从而判断这个三角形是否存在。

2. 求角度
已知三角形的三边长,应用余弦定理可以求出对应角的余弦值,进而求出对应角的角度大小。

3. 求边长
已知三角形的某两边和夹角,应用余弦定理可以求出第三边的长度。

4. 判断三角形的形状
通过正余弦定理可以判断三角形是锐角三角形、钝角三角形还是直角三角形。

5. 解决实际问题
应用正余弦定理可以解决很多实际问题,如测量高楼建筑物的高度、计算船舶航行距离等。

以上就是正余弦定理的讲义内容,希望对大家学习有所帮助。

正弦定理和余弦定理ppt课件

正弦定理和余弦定理ppt课件
总结词
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。

4.1正弦定理、余弦定理—讲义

4.1正弦定理、余弦定理—讲义

第四章 解三角形4.1正弦定理、余弦定理一.【课标要求】(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

二.【命题走向】对本讲内容的考察主要涉及三角形的边角转化、三角形形状的判断、三角形内三角函数的求值以及三角恒等式的证明问题,立体几何体的空间角以及解析几何中的有关角等问题。

今后高考的命题会以正弦定理、余弦定理为知识框架,以三角形为主要依托,结合实际应用问题考察正弦定理、余弦定理及应用。

题型一般为填空题,也可能是中、难度的解答题。

三.【知识回顾】(1)12ABC S ∆=⋅⋅底高(2)ABC S ∆= = = ;3.三角形中常用结论(1)三个内角和为180,即A B C π++=(2)sin()A B += ,cos()A B += , tan()A B += ,(3)sin2A B += ,cos 2A B+= ; (4)tan tan tan tan tan tan A B C A B C ++=⋅⋅(5)在三角形中,大角对大边,大边对大角,大角的正弦值也较大,正弦值较大的角也较大,即:sin sin A B a b A B >⇔>⇔> (6)在锐角三角形中,sin cos 2A B A B π>⇔+>4.在ABC ∆中,已知,a b 和A 时,解的情况如下:【方法与规律】1. 解斜三角形问题往往用到正弦定理与余弦定理以及三角形面积公式,解题时角度的选取是关键,并注意角的取值范围,2. 解决三角形中的问题,要学会“统一”,或统一成角的关系,或统一成边的关系,视情况灵活掌握.四.【典例解析】考点一、利用正余弦定理求多边形的边或角例1.如下图所示,在四边形ABCD 中,已知,10,14,60AD CD AD AB BDA ⊥==∠=,135BCD ∠= ,求BD BC 及的长.考点二、有关三角形解的个数及形状的判定问题例2.在ABC ∆中已知22sin()()sin()A B a b A B -=-+,则ABC ∆的形状是 . 例3.钝角三角形三边长分别为,1,2a a a ++,其中最大角不超过120,则a 的取值范围是 .例4.在ABC ∆中,若22tan tan A a B b =,则判断该三角形的形状是 . 例5.在ABC ∆中,若2cos sin sin B A C =,则ABC ∆的形状是 .考点三、三角形中的三角函数问题例6.(08年高考全国卷)设ABC ∆的内角,,A B C 的对边长分别为,,a b c ,且3cos cos 5a Bb A C -=.(1)求sin cos cos sin A BA B的值; (2)求tan()A B -的最大值.例7. ABC ∆的三个内角为,,A B C ,当A 为何值时,cos cos 2B CA ++取得最大值,并求出这个最大值.考点四、正、余弦定理及三角形面积公式的综合应用例8.在ABC ∆中,内角,,A B C 的对边长分别为,,a b c ,已知2,3c C π==(1) 若ABC ∆,a b 的值.(2) 若sin sin()2sin 2C B C A +-=,求ABC ∆的面积.例9.在ABC ∆中,角,,A B C 的对边长分别为,,a b c ,且cos cos 2B bC a c=-+. (1) 求角B 的大小;(2) 若4b a c =+=,求ABC ∆的面积.例10.(2009浙江理)(本题满分14分)在ABC ∆中,角,,A B C 的对边长分别为,,a b c 且满足cos 32A AB AC =⋅=.(1)求ABC ∆的面积; (2)若6b c +=,求a 的值.题型五、三角形中的三角恒等变换问题例11.(2009全国卷Ⅰ理)在ABC ∆中,角,,A B C 的对边长分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C =,求b .例12.在ABC ∆中,角,,A B C 的对边长分别为,,a b c ,已知,,a b c 成等比数列,且,求A 的大小及sin b B c的值.例13.在ABC ∆中,已知,,A B C 成等差数列,求2tan 2tan 32tan 2tan CA C A ++的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培优教育一对一辅导讲义
科目:_数__年级:__高一__姓名:____教师:____时间:____
j 垂直于AC ,由AC +CB =AB 边同乘以单位向量j 得…..在一个三角形中,各边和它所对角的正弦的比相等,即
sin b
B
sin c
C
=
=2R
解:
例2 C B b a A c ABC ,,2,45,60和求中,===∆ 解:
例3在C A a c B b ABC ,,1,60,30和求中,===∆
课后作业
1在△ABC 中,
k C
c
B b A a ===sin sin sin ,则k 为( ) A 2R B R
C 4R
D R 2
1
(R 为△ABC 外接圆半径)
2 在ABC ∆中,已知角3
3
4,2245=
==b c B , ,则角A 的值是( ) A. 15 B. 75 C.
105 D.
75或
15 3、在△ABC 中,=︒=︒=c b a B A ::,60,30则若
4、在ABC ∆中,若14,6760===a b B ,
,则A= 。

5、在ABC ∆中,已知 45,2,3===
B b a ,解三角形。

探究一.在∆ABC 中,已知,,a b A ,讨论三角形解的情况
分析:先由sin sin b A
B a
=
可进一步求出B ; 则0180()C A B =-+ ,从而A
C
a c sin sin =
1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。

2.当A 为锐角时,如果a ≥b ,那么只有一解; 3.如果a b <,那么可以分下面三种情况来讨论: (1)若sin a b A >,则有两解; (2)若sin a b A =,则只有一解; (3)若sin a b A <,则无解。

评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且 sin b A a b <<时,有两解;其它情况时则只有一解或无解。

探究二 你能画出图来表示上面各种情形下的三角形的解吗?
三例题讲解
例1.根据下列条件,判断解三角形的情况 (1) a =20,b =28,A =120°.无解 (2)a =28,b =20,A =45°;一解 (3)c =54,b =39,C =115°;一解 (4) b =11,a =20,B =30°;两解
[随堂练习1]
(1)在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。

(2)在∆ABC 中,若1a =,1
2
c =
,040C ∠=,则符合题意的b 的值有_____个。

(3)在∆ABC 中,a xcm =,2b cm =,045B ∠=,如果利用正弦定理解三角形有两解,求x 的取值范围。

(答案:(1)有两解;(2)0;(3)222x <<)
例2.在ABC ∆中,已知,cos cos cos a b c
A B C
==判断ABC ∆的形状.
[随堂练习2]
1.△ABC 中, C B A 2
2
2
sin sin sin += ,则△ABC 为( A ) A.直角三角形 B.等腰直角三角形 C.等边三角形 D.等腰三角形
2. 已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。

答案: ∆ABC 是等腰或直角三角形 1.根据下列条件,判断解三角形的情况
2.在ABC ∆中,a=15,b=10,A=60°,则cosB =
A -223
B 223
C -63
D 63
3.已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=3, A+C =2B,则sinC= .。

,,求,,解这个三角形)(解这个三角形。

和边,求角求边求边)(根据条件解三角形:
C A a B b c C c b B a b c C B A b a c a b B A b a C A c ,6031)6(,45,20,405,30,26,13)4(.,30,316,16)3(.
,,12,120,30)2(.,,30,45,1014︒︒︒︒︒︒︒︒==================
5.设锐角△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a =2bsinA .(1)求B 的大小;(2)求cosA +sinC 的取值范围.
同步分层能力测试题(一)
一.填空题(本大题共8小题,每小题5分,共40分) 1.在△ABC 中, 若a=
5,b=15,A=300
,则边c= 。


︒︒︒============60,20,18)4(30,16,8)3(120,15,12)2(45,16,14)1(B c b A b a A c a A b a 、、、、
(p a =+(,q b a =-//p q ,则角
依据已知条件中的边角关系判断时,主要有如下两种方法:
1.利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;
2.利用正、余弦定理把已知条件转化为内角的三角函数间关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论. 针对性练习:
已知△ABC 中,sin C =sin A +sin B
cos A +cos B
,试判断△ABC 的形状.
考点三:三角形面积公式的应用
典型例题
已知△ABC 中,cos A =
6
3
,a ,b ,c 分别是角A 、B 、C 的对边. 求tan2A ; (2)若sin(π2+B )=22
3
,c =22,求△ABC 的面积.
知识概括、方法总结与易错点分析
1.三角形面积公式的选取取决于三角形中的哪个角可求,或三角形的哪个角的正弦值可求.
2.在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =1
2ac sin B 最常用,因为公式中既有边也有角,容易和
正弦定理、余弦定理联系起来. 针对性练习:
在△ABC 中,a ,b ,c 分别是A ,B ,C 的对边,且满足(2a -c )cos B =b cos C . (1)求角B 的大小;
(2)若b =7,a +c =4,求△ABC 的面积.
9、(2010·江苏高考)某兴趣小组要测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h =4 m,仰角∠ABE=α,∠ADE=β.
(1)该小组已测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精度.若电视塔实际高度为125 m,试问d为多少时,α-β最大?。

相关文档
最新文档