不等关系与不等式
不等关系与不等式

1.掌握不等式的性质及其推论,并能证明这些结论. 2.利用不等式的有关基本性质研究不等关系.
不等式:用不等号连接的式子,叫作不等式. 说明: (1)不等号的种类:>、<、≥、≤、≠. (2) 不等式研究的范围是实数集R.
对于任意两个实数 a、b,在“a>b,a = b,a<b”
用“<”或“>”填空
(1) 如果 a b, c d ,则 a c __>__ b d ; (2) 如果 a b 0, c d 0 ,则 ac _>___ bd ; (3) 如果 a b 0 ,则 a2 _>___ b2 ; (4) 如果 a b 0 ,则 a _>___ b .
解: 设住宅窗户面积和地板面积分别为 a,b ,同时增加的面积为 m ,
根据问题的要求 a b, 且 a 10% . b
由于 a m a m(b a) 0, b m b b(b m)
于是 a m a , 又 a 10%, bm b b
因此, a m a 10%. bm b
初中时我们曾经学过哪些不等式的性质?
1(对称性):如果a>b,那么b<a;如果b<a,那么a>b. 2(传递性):如果a>b,b>c,那么a>c.
3(可加性):如果a>b,则a+c>b+c. 不等式的两边都加上同一个实数,不等号方向不变.
4(可乘性):如果a>b,c>0,则ac>bc; 如果a>b,c<0,则ac<bc.
所以,同时增加相 等的窗户面积和地板面积后,住宅的 采光条件变好了!
一般地,设 a,b 为正实数,且 a b, m 0 ,则 am a. bm b 日常生活中,还有哪些实例满足例3中的不等式?
高中数学必修五-不等关系与不等式

不等关系与不等式知识集结知识元不等关系与不等式知识讲解1.不等关系与不等式【不等关系与不等式】不等关系就是不相等的关系,如2和3不相等,是相对于相等关系来说的,比如与就是相等关系.而不等式就包含两层意思,第一层包含了不相等的关系,第二层也就意味着它是个式子,比方说a>b,a﹣b>0就是不等式.【不等式定理】①对任意的a,b,有a>b⇔a﹣b>0;a=b⇒a﹣b=0;a<b⇔a﹣b<0,这三条性质是做差比较法的依据.②如果a>b,那么b<a;如果a<b,那么b>a.③如果a>b,且b>c,那么a>c;如果a>b,那么a+c>b+c.推论:如果a>b,且c>d,那么a+c>b+d.④如果a>b,且c>0,那么ac>bc;如果c<0,那么ac<bc.例题精讲不等关系与不等式例1.设a、b、c是互不相等的正数,则下列等式中不恒成立的是()A.|a-b|≤|a-c|+|b-c|B.C.D.例2.已知a,b,c,d∈R,则下列命题中必然成立的是()A.若a>b,c>b,则a>cB.若a>b,c>d,则C.若a2>b2,则a>bD.若a>-b,则c-a<c+b例3.若a,b∈R下列说法中正确的个数为()①(a+b)2≥a2+b2;②若|a|>b,则a2>b2;③a+b≥2A.0B.1C.2D.3不等式比较大小知识讲解1.不等式比较大小【知识点的知识】不等式大小比较的常用方法(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.【典型例题分析】方法一:作差法典例1:若a <0,b <0,则p =与q =a +b 的大小关系为()A .p <qB .p ≤qC .p >qD .p ≥q解:p ﹣q =﹣a ﹣b ==(b 2﹣a 2)=,∵a <0,b <0,∴a +b <0,ab >0,若a =b ,则p ﹣q =0,此时p =q ,若a ≠b ,则p ﹣q <0,此时p <q ,综上p ≤q ,故选:B方法二:利用函数的单调性典例2:三个数,,的大小顺序是()A .<<B .<<C .<<D .<<解:由指数函数的单调性可知,>,由幂函数的单调性可知,>,则>>,故<<,故选:B.例题精讲不等式比较大小例1.已知-1<a<0,b<0,则b,ab,a2b的大小关系是()A.b<ab<a2b B.a2b<ab<bC.a2b<b<ab D.b<a2b<ab例2.a=80.7,b=0.78,c=log0.78,则下列正确的是()A.b<c<a B.c<a<bC.c<b<a D.b<a<c例3.三个数a=,b=()2020,c=log2020的大小顺序为()A.b<c<a B.b<a<cC.c<a<b D.c<b<a当堂练习单选题练习1.已知t=a+4b,s=a+b2+4,则t和s的大小关系是()A.t>s B.t≥sC.t<s D.t≤s练习2.已知a=,b=,c=,则()A.a>b>c B.a>c>bC.b>a>c D.c>b>a练习3.设a=,b=2,c=log32,则()A.b>a>c B.a>b>cC.c>a>b D.b>c>a练习4.设a=(),b=(),c=(),则a,b,c的大小关系为()A.a<b<c B.b<c<aC.a<c<b D.c<a<b练习5.若a=(),b=(),e=log,则下列大小关系正确的是()A.c<a<b B.c<b<aC.a<b<c D.a<c<b填空题练习1._____.不等式≤3的解集是__________练习2.于实数a、b、c,有下列命题①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若c>a>b>0,则;⑤若a>b,,则a>0,b<0.其中正确的是______.练习3.已知a,b∈R,且>1,则下列关系中①②a3<b3③ln(a2+1)<ln(b2+1)④若c>d>0,则其中正确的序号为_____。
不等式关系与不等式

不等式关系与不等式一.基础知识1.不等式的性质是证明不等式和解不等式的基础 不等式的基本性质有: (1)对称性:a>b ⇔b<a ;(2)传递性:若a>b ,b>c ,则a>c ; (3)可加性:a>b ⇒a+c>b+c ;(4)可乘性:a>b ,当c>0时,ac>bc ;当c<0时,ac<bc 。
不等式运算性质:(1)同向相加:若a>b ,c>d ,则a+c>b+d ; (2)异向相减:b a >,d c <d b c a ->-⇒.(3)正数同向相乘:若a>b>0,c>d>0,则ac>bd 。
(4)乘方法则:若a>b>0,n ∈N +,则n n b a >; (5)开方法则:若a>b>0,n ∈N +,则n n b a >; (6)倒数法则:若ab>0,a>b ,则b1a1<。
2、基本不等式(或均值不等式)利用完全平方式的性质,可得a 2+b 2≥2ab (a ,b ∈R ),该不等式可推广为a 2+b 2≥2|ab|;或变形为|ab|≤2b a 22+;当a ,b ≥0时,a+b ≥ab 2或ab ≤22b a ⎪⎭⎫⎝⎛+.3、不等式的证明(1)不等式证明的常用方法:比较法,公式法,分析法,反证法,换元法,放缩法;(2)在不等式证明过程中,应注重与不等式的运算性质联合使用; (3)证明不等式的过程中,放大或缩小应适度。
4.利用基本不等式求最大(小)值时,要注意的问题:(一“正”;二“定”;三“相等”)即:(1)和、积中的每一个数都必须是正数;(2)求积的最大值时,应看和是否为定值;求和的最小值时,应看积是否为定值,;简记为:和定积最_____,积定和最______. (3)只有等号能够成立时,才有最值。
不等关系与不等式

一、不等关系是普遍存在的
想一想, 举出几个现实生活 中与不等关系有关的例子?
二、用不等式(组)来表示不等关系
不等式
用不等号(<、>、≤、≥、≠)表示不等关 系的式子叫不等式。
“不等号”是英国数学家哈里奥特 (T.Harriot)于1631年开始使用的,但当时并 没有被数学界所接受,直到100多年后,才逐 渐成为标准的应用符号。
二、用不等式(组)来表示不等关系
问题1 今天的天气预报说:明天早晨最低温 度为9℃,明天白天的最高温度为16℃ ,那 么明天白天的温度t℃满足什么关系?
变式a b 0那么 1
1
ab a
(2)如果a>b>c>0,那么 c
c
ab
变式a>b>c>0,那么 b c a-b a c
练习:已知c>a>b>0,试比较 b 与 c 的大小? c-b c a
例3.如果30<x<42,16<y<24,求x+y,x-2y,x 的范围? y
例4:已知a>b>0,c>d>0,求证:a d
4.作差比较法 步骤:作差,变形,定号
作业 :
必修5第75页 习题3.1 A组4、5; B组1、3
3x y
x
N
*
y N *
Hale Waihona Puke 必修5 第74页a+b ≥0 h4
新课讲授
2.文字语言与数学符号间的转换.
文字语言 数学符号 文字语言 数学符号
大于
>
至多
≤
不等关系与不等式 课件

不等式性质的应用
[探究问题] 1.小明同学做题时进行如下变形: ∵2<b<3, ∴13<1b<12, 又∵-6<a<8, ∴-2<ab<4. 你认为正确吗?为什么?
提示:不正确.因为不等式两边同乘以一个正数,不等号的方向不变, 但同乘以一个负数,不等号方向改变,在本题中只知道-6<a<8.不明确 a 值 的正负.故不能将31<b1<21与-6<a<8 两边分别相乘,只有两边都是正数的同向 不等式才能分别相乘.
2.由-6<a<8,-4<b<2,两边分别相减得-2<a-b<6,你认为正确吗? 提示:不正确.因为同向不等式具有可加性与可乘性.但不能相减或相 除,解题时要充分利用条件,运用不等式的性质进行等价变形,而不可随意 “创造”性质.
3.你知道下面的推理、变形错在哪儿吗? ∵-2<a-b<4, ∴-4<b-a<-2. 又∵-2<a+b<2, ∴0<a<3,-3<b<0, ∴-3<a+b<3. 这怎么与-2<a+b<2 矛盾了呢?
0<x≤18,
x15-2x≥110.
[规律方法] 1.此类问题的难点是如何正确地找出题中的显性不等关系和隐性不等 关系. 2.当问题中同时满足几个不等关系,则应用不等式组来表示它们之间 的不等关系,另外若问题有几个变量,选用几个字母分别表示这些变量 即可.
3.用不等式(组)表示不等关系的步骤: (1)审清题意,明确表示不等关系的关键词语:至多、至少、不多于、 不少于等. (2)适当的设未知数表示变量. (3)用不等号表示关键词语,并连接变量得不等式.
不等关系与不等式

不等关系与不等式一、学习指导不等式的性质是解(证)不等式的基础,关键是正确理解和运用, 要弄清条件和结论,考试中多以小题出现,题目难度不大,学 习时,应抓好基本概念,少做偏难题.二、基础梳理1.不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数 学符号 连接两个数或代数式以表示它们 之间的不等关系,含有这些不等号的式子,叫做不等式.2.比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a -b >0⇔ ;a -b =0⇔ ;a -b <0⇔ . 另外,若b >0,则有a b >1⇔a >b ;a b =1⇔a =b ;a b <1⇔a <b .3.不等式的性质(1)对称性:a >b ⇔b <a ;(2)传递性:a >b ,b >c ⇔ ;(3)可加性:a >b ⇔a +c b +c ,a >b ,c >d ⇒a +c >b +d ;(4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ;(5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥2);(6)可开方:a >b >0⇒n a >nb (n ∈N ,n ≥2).三、典型题型题型一 比较大小【例1】已知a ,b ,c 是实数,试比较a 2+b 2+c 2与 ab +bc +ca 的大小.解:∵a 2+b 2+c 2-(ab +bc +ca )=12[(a -b )2+(b -c )2+(c -a )2]≥0, 当且仅当a =b =c 时取等号.∴a 2+b 2+c 2≥ab +bc +ca .【训练1】 已知a ,b ∈R 且a >b ,则下列不等式中一定成立的是( ).A.a b >1B .a 2>b 2C .lg(a -b )>0D.⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12 b题型二 不等式的性质【例2】 若a >0>b >-a ,c <d <0,则下列命题:(1)ad >bc ;(2)a d +b c <0;(3)a -c >b -d ;(4)a ·(d -c )>b (d -c )中能成立 的个数是( ).A .1B .2C .3D .4方法总结:在判断一个关于不等式的命题真假时,先把要判断的 命题和不等式性质联系起来考虑,找到与命题相近的性质,并应 用性质判断命题真假,当然判断的同时还要用到其他知识,比如 对数函数,指数函数的性质等.题型三 不等式性质的应用【例3】已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4. 求f (-2)的取值范围.[审题视点] 可利用待定系数法寻找目标式f (-2)与已知式f (-1), f (1)之间的关系,即用f (-1),f (1)整体表示f (-2),再利用 不等式的性质求f (-2)的范围.解:f (-1)=a -b ,f (1)=a +b .f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .∴⎩⎪⎨⎪⎧ m +n =4,m -n =-2,∴⎩⎪⎨⎪⎧ m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1).∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10.题型四 利用不等式的性质证明简单不等式【例4】设a >b >c ,求证:1a -b +1b -c +1c -a >0. 证明:∵a >b >c ,∴-c >-b .∴a -c >a -b >0,∴1a -b >1a -c >0. ∴1a -b +1c -a >0.又b -c >0,∴1b -c>0. 1a -b +1b -c +1c -a>0.四 、小结。
《不等关系与不等式》 知识清单

《不等关系与不等式》知识清单一、不等关系在日常生活和数学中,我们经常会遇到各种不等关系。
比如,身高的比较、成绩的高低、物品价格的差异等等。
不等关系是客观存在的,它反映了事物之间的数量差异和大小顺序。
不等关系可以用文字语言来描述,例如“大于”“小于”“不超过”“不少于”等;也可以用符号语言来表示,常见的不等号有“>”(大于)、“<”(小于)、“≥”(大于或等于)、“≤”(小于或等于)。
二、不等式不等式是用不等号连接两个代数式所形成的式子。
例如,2x + 3 >5 就是一个不等式。
1、不等式的性质性质 1:如果 a > b,那么 b < a ;如果 b < a ,那么 a > b 。
(对称性)性质 2:如果 a > b 且 b > c ,那么 a > c 。
(传递性)性质 3:如果 a > b ,那么 a + c > b + c 。
(加法法则)性质 4:如果 a > b 且 c > 0 ,那么 ac > bc ;如果 a > b 且 c <0 ,那么 ac < bc 。
(乘法法则)这些性质是解决不等式问题的重要依据,需要熟练掌握和运用。
2、一元一次不等式形如 ax + b > 0 或 ax + b < 0 (其中a ≠ 0 )的不等式叫做一元一次不等式。
解一元一次不等式的一般步骤:(1)去分母(根据不等式的性质 2 和 3 )(2)去括号(乘法分配律)(3)移项(根据不等式的性质 1 )(4)合并同类项(5)系数化为 1 (根据不等式的性质 4 )在系数化为1 时,需要注意当系数为负数时,不等号的方向要改变。
3、一元二次不等式形如 ax²+ bx + c > 0 或 ax²+ bx + c < 0 (其中a ≠ 0 )的不等式叫做一元二次不等式。
解一元二次不等式通常需要先求出对应的一元二次方程的根,然后根据二次函数的图像来确定不等式的解集。
例如,对于不等式 x² 2x 3 > 0 ,先解方程 x² 2x 3 = 0 ,得到 x=-1 或 x = 3 。
不等关系与不等式

a b ab 0 a b ab 0 a b ab 0
作差比较法
这既是比较大小(或证明大小)的基本方法,又是 推导不等式的性质的基础.
作差比较法其一般步骤是: 作差→变形→判断符号→确定大小.
例 1 比较(a+3)(a-5)与(a+2)(a-4)的大小. 作差 解: ∵ ( a 3)( a 5) ( a 2 )( a 4 )
变形
∵ a 、 、 m 都是正数,且 a b b ∴ m 0, m a 0, a 0, a b 0
定符号
确定大小
∴
bm am
b a
0
∴
bm am
b a
例 4 .当 p , q 都 为 正 数 且 p + q = 1 时 , 试 比 较 代 数 式 (px qy ) 与 px qy 的 大 小
2 2
>
练习2. 比较下列各组中两个代数式的大小 :
(1)当x 1 , x 与x x 1; 时
3 2
(2) x y 1与2( x y 1).
2 2
练3. ,乙两人同时从A出发去B地,已知甲在前一半 甲 路程的速度为v1 , 而在后一半的路程为v2 (v1 v2 );乙 在前一半时间的速度为v1 , 而在后一半时间的速度 为v2 . : 两人中谁先到达B地 ? 问
• • • •
作差法比较两个实数大小的基本步骤 (1)作差. (2)变形,将两个实数作差,作差后变形为: ①常数;②几个平方和的形式;③几个因式积的形 式. • (3)定号,即判断差的符号是正、负还是零. • (4)结论,利用实数大小之间的关系得出结论.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
不等关系与不等式
知识回顾
一、不等式性质:
1.a >b ⎛ b <a .(反身性)
2.a >b ,b >c =>a >c .(传递性)
3.a >b ⎛ a+c >b+c.(平移性)
4.a >b ,c >0 => ac >bc ;
a >
b ,
c <0 => ac <bc .(伸缩性)
5.a >b ≥0 => ,n ∈N ,且n ≥2.(乘方性)
6.a >b ≥0 => a >nb ,n ∈N ,且n ≥2.(开方性)
7.a >b ,c >d => a+c >b+d.(叠加性)
8.a >b ≥0,c >d ≥0 => ac >bd .(叠乘性)
二、如果a -b 是正数,则a >b ;如果a >b ,则a -b 为正数; 如果a -b 是负数,则a <b ;如果a <b ,则a -b 为负数; 如果a -b 等于零,则a =b ;如果a =b ,则a -b 等于零。
判断两个实数大小的依据是:
000
a b a b a b a b a b a b >⇔->=⇔-=<⇔-< 三、作差比较法其一般步骤是:
作差→变形→判断符号→确定大小. 例题与练习
例1. 比较x 2-x 与x -2的大小。
例2.比较(a +3)(a -5)与(a +2)(a -4)的大小
例3.已知a b m 、、都是正数,且a b >,求证: b m b a m
a
+>
+
2.若0x y <<,试比较()()22x y x y +-与()()22x y x y -+的大小;
2
3.已知1260a <<,1536b <<,求12a b -及
a b
的取值范围;
1.若0a b <<,则下列结论不正确的是
.A 22a b < .B 2ab b < .C 2b a
a b +> .D a b a b -=-
2.设,(,0)a b ∈-∞,则“a b >”是“11a b a b
-
>-
”成立的
.A 充分非必要条件 .B 必要非充分条件 .C 充要条件 .D 既不充分也不
必要条件
3.下列不等式:()1 232()x x x R +≥∈,
()
2553223
(,)a b a b a b a b R +≥+∈,
()
322
2(1)a b a b +≥--.其中正确的个数为
.A 0 .B 1 .C 2 .D 3
4.已知,,a b c 满足c b a <<,且ac <0,那么下列选项中不一定成立的是 .A ab ac > .B c b a ()-<0 .C cb ab 22< .D 0)(<-c a ac
5.若,
a b c R a b ∈>、、,则下列不等式成立的是
.
A b
a
11<
.B 22b a > .
C 1
1
2
2
+>
+c
b c
a .D ||||c
b
c a >
6.若0a >,0b >,则不等式1b a x
-<
<等价于
.A 10x b
-
<<或10x a
<< .B 11x a b
-<<
.C 1x a
<-或1x b
>
.D 1x b
<-或1x a
>
7.若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,则集合A B 等于 A .{}|34x x x ≤>或 B .{}|13x x -<≤ C .{}|34x x ≤<
D .{}|21x x -≤-<
8.若0a b a >>>-,0c d <<,则下列命题:()1ad bc >;()
20a b d c +<;
()3a c b d ->-;()4()()a d c b d c ->-中能成立的个数是
.A 1 .B 2 .C 3 .D 4。