不等关系与不等式(二)

合集下载

第二章 2.1 第一课时 不等关系与不等式

第二章 2.1 第一课时 不等关系与不等式

24设计》
【训练3】 在例3的方案中,哪种方案用书籍最少?共用多少本? 解 比较3种方案可知当x=18时用书籍最少.共用书籍130×18+90×12=3 420(本).
25
课前预习
课堂互动
核心素养
@《创新设计》
一、素养落地 1.通过用不等式(组)表示实际问题的不等关系,提升数学抽象素养,通过作差法比
核心素养
@《创新设计》
题型一 用不等式(组) 表示不等关系 提取有效数字,寻找不等关系
【例1】 某钢铁厂要把长度为4 000 mm的钢管截成500 mm和600 mm两种.按照 生产的要求600 mm钢管的数量不能超过500 mm钢管数量的3倍,写出满足所有 上述不等关系的不等式(组). 解 设截得500 mm的钢管x根,截得600 mm的钢管y根. 500x+600y≤4 000, 根据题意得:3x≥x≥0y且,x∈N, y≥0且y∈N.
@《创新设计》
22
课前预习
课堂互动
核心素养
@《创新设计》
故有三种组建方案:方案一,组建中型图书角18个,小型图书角12个;方案二, 组建中型图书角19个,小型图书角11个;方案三,组建中型图书角20个,小型 图书角10个.
23
课前预习
课堂互动
核心素养
@《创新设计》
规律方法 1.根据实际问题列不等式(组)的关键是通过分析找出问题中的不等关系, 并确定不等号,然后写出不等号两边的代数式. 2.根据实际问题列出不等式(组),应从是否符合实际意义出发,而不能拘于某一种 形式.
文字语言


少,不低于
不超过
符号语言
>
<


15

人教版高中数学必修二讲义专题03 不等关系与不等式(解析版)

人教版高中数学必修二讲义专题03 不等关系与不等式(解析版)

目录不等关系与不等式 ................................................................................................. 错误!未定义书签。

考点1:不等关系与不等式 (2)考点2:等式性质与不等式性质 (7)专题03 不等关系与不等式 考点1:不等关系与不等式知识点一 基本事实两个实数a ,b ,其大小关系有三种可能,即a >b ,a =b ,a <b .思考 x 2+1与2x 两式都随x 的变化而变化,其大小关系并不显而易见.你能想个办法,比较x 2+1与2x 的大小吗?正确答案 作差:x 2+1-2x =( x -1)2≥0,所以x 2+1≥2x . 知识点二 重要不等式∀a ,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.题型1:用不等式( 组)表示不等关系例1 《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票( 以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票. ……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h ( 米),物品外部长、宽、高尺寸之和为P ( 厘米),请用不等式表示下表中的不等关系.解 由题意可获取以下主要信息:( 1)身高用h ( 米)表示,物体长、宽、高尺寸之和为P ( 厘米);( 2)题中要求用不等式表示不等关系.参考解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h ≤1.5, 身高超过1.5米可表示为h >1.5, 身高不足1.2米可表示为h <1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P ≤160.如下表所示:变式 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x ≥20( 2.5≤x <6.5).题型2:作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-( a 2b +ab 2)=( a 3-a 2b )+( b 3-ab 2) =a 2( a -b )+b 2( b -a )=( a -b )( a 2-b 2)=( a -b )2( a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,( a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.变式 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵( x 3-1)-( 2x 2-2x )=x 3-2x 2+2x -1 =( x 3-x 2)-( x 2-2x +1)=x 2( x -1)-( x -1)2 =( x -1)( x 2-x +1)=( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34, 又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .考点1:练习题1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 正确答案 C详细解析 对于A,x 应满足x ≤2 000,故A 错误;对于B,x ,y 应满足x <y ,故B 错误;C 正确;对于D,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm,人跑开的速度为每秒4 m,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x ( cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100正确答案 C详细解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关正确答案 A详细解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .随x 值变化而变化 正确答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .( a +4)( b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 正确答案 C详细解析 由题意知a >4b ,根据面积公式可以得到( a +4)( b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.( 不用化简)正确答案 5x -2( 19-x )≥80,x ∈N *详细解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2( 19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 正确答案 |x -500|≤1详细解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________. 正确答案x 1+x 2≤12详细解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 9.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解 因为x -y =a 3-b -a 2b +a =a 2( a -b )+a -b =( a -b )( a 2+1), 所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .10.已知甲、乙、丙三种食物的维生素A,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56 000单位维生素A 和63 000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z , 又x +y +z =100,∴c =400+7x +5y ,由⎩⎪⎨⎪⎧600x +700y +400z ≥56 000,800x +400y +500z ≥63 000及z =100-x -y ,得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130.∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .无法确定正确答案 B详细解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-( a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1( a 2-1)-( a 2-1)=( a 1-1)( a 2-1)>0, ∴M >N ,故选B.12.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12正确答案 A详细解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式( 组)将题中的不等关系表示为________.正确答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *)详细解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.( 填“>”“<”“=”) 正确答案 >详细解析 a 1b 1+a 2b 2-( a 1b 2+a 2b 1) =a 1( b 1-b 2)+a 2( b 2-b 1) =( b 1-b 2)( a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即( b 1-b 2)( a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.考点2:等式性质与不等式性质知识点一 等式的基本性质 ( 1)如果a =b ,那么b =a . ( 2)如果a =b ,b =c ,那么a =c . ( 3)如果a =b ,那么a ±c =b ±c . ( 4)如果a =b ,那么ac =bc . ( 5)如果a =b ,c ≠0,那么a c =bc .知识点二 不等式的性质题型1:利用不等式的性质判断或证明例1 ( 1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m .其中真命题的序号是________.正确答案 ①③详细解析 对于①,若ab >0,则1ab >0,又a >b ,所以a ab >b ab ,所以1a <1b ,所以①正确;对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-( -10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a ( b +m )<b ( a +m ), 又1b (b +m )>0,所以a b <a +m b +m ,③正确.综上,真命题的序号是①③.( 2)已知a >b >0,c <d <0.求证:3ad<3b c. 证明 因为c <d <0,所以-c >-d >0. 所以0<-1c <-1d.又因为a >b >0,所以-a d >-bc>0.所以3-a d>3-bc,即-3a d>-3b c, 两边同乘-1,得3a d<3b c.变式 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3. 则不正确的不等式的个数是( ) A .0 B .1 C .2 D .3 正确答案 C详细解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确.故不正确的不等式的个数为2.题型2:利用性质比较大小例2 若P =a +6+a +7,Q =a +5+a +8( a >-5),则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P >Q D .不能确定正确答案 C详细解析 P 2=2a +13+2(a +6)(a +7),Q 2=2a +13+2(a +5)(a +8),因为( a +6)( a +7)-( a +5)( a +8)=a 2+13a +42-( a 2+13a +40)=2>0, 所以(a +6)(a +7)>(a +5)(a +8),所以P 2>Q 2,所以P >Q .变式 下列命题中一定正确的是( ) A .若a >b ,且1a >1b,则a >0,b <0B .若a >b ,b ≠0,则a b>1 C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d正确答案 A详细解析 对于A,∵1a >1b ,∴b -a ab>0, 又a >b ,∴b -a <0,∴ab <0,∴a >0,b <0,故A 正确;对于B,当a >0,b <0时,有a b<1,故B 错; 对于C,当a =10,b =2时,有10+1>2+3,但1<3,故C 错;对于D,当a =-1,b =-2时,有( -1)×( -1)>( -2)×3,但-1<3,故D 错.题型3:利用性质比较大小例3 已知12<a <60,15<b <36.求a -b 和a b的取值范围. 解 ∵15<b <36,∴-36<-b <-15,∴12-36<a -b <60-15,即-24<a -b <45.又136<1b <115,∴1236<a b <6015,即13<a b<4. 故-24<a -b <45,13<a b<4.变式 已知0<a +b <2,-1<b -a <1,则2a -b 的取值范围是____________.正确答案 -32<2a -b <52详细解析 因为0<a +b <2,-1<-a +b <1,且2a -b =12( a +b )-32( -a +b ), 结合不等式的性质可得,-32<2a -b <52.考点2:练习题1.如果a <0,b >0,那么下列不等式中正确的是( )A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |正确答案 A详细解析 ∵a <0,b >0,∴1a <0,1b >0,∴1a <1b ,故选A.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是() A .a +c ≥b -c B .ac >bcC.c 2a -b >0 D .( a -b )c 2≥0正确答案 D详细解析 ∵a >b ,∴a -b >0,∴( a -b )c 2≥0,故选D.3.已知a >b >c ,则1b -c +1c -a 的值是( )A .正数B .负数C .非正数D .非负数正确答案 A详细解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ), ∵a >b >c ,∴b -c >0,c -a <0,b -a <0,∴1b -c +1c -a>0,故选A. 4.若x >1>y ,下列不等式不一定成立的是( )A .x -y >1-yB .x -1>y -1C .x -1>1-yD .1-x >y -x 正确答案 C详细解析 利用性质可得A,B,D 均正确,故选C.5.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 正确答案 D详细解析 ∵a <0,b <-1,∴a b>0,b 2>1, ∴0<1b 2<1,∴0>a b 2>a 1, ∴a b >a b 2>a . 6.不等式a >b 和1a >1b同时成立的条件是________. 正确答案 a >0>b详细解析 若a ,b 同号,则a >b ⇒1a <1b. 7.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.正确答案 ②③详细解析 ①当c 2=0时不成立;②一定成立;③当a >b 时,a 3-b 3=( a -b )( a 2+ab +b 2)=( a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; ④当b <0时,不一定成立.如:|2|>-3,但22<( -3)2.8.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.正确答案 z >y >x详细解析 ∵a >b >c >0,y 2-x 2=b 2+( c +a )2-a 2-( b +c )2=2ac -2bc=2c ( a -b )>0,∴y 2>x 2,即y >x .同理可得z >y ,故z >y >x .9.判断下列各命题的真假,并说明理由.( 1)若a <b ,c <0,则c a <c b; ( 2)a c 3<b c 3,则a >b ; ( 3)若a >b ,且k ∈N *,则a k >b k ;( 4)若a >b ,b >c ,则a -b >b -c .解 ( 1)假命题.∵a <b ,不一定有ab >0,∴1a >1b不一定成立, ∴推不出c a <c b,∴是假命题. ( 2)假命题.当c >0时,c -3>0,则a <b ,∴是假命题.( 3)假命题.当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.( 4)假命题.当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.解 设2a +3b =x ( a +b )+y ( a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎨⎧ x =52,y =-12.因为-52<52( a +b )<152,-2<-12( a -b )<-1,所以-92<52( a +b )-12( a -b )<132, 所以-92<2a +3b <132. 11.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b正确答案 D详细解析 对于A,若c <0,其不成立;对于B,若a ,b 均小于0或a <0,其不成立;对于C,若a >0,b <0,其不成立;对于D,其中a ≥0,b >0,平方后显然有a <b .12.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y | 正确答案 C详细解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0. 所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 13.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c | 正确答案 C详细解析 对于A,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立;对于D,当c=0时,a|c|=b|c|,∴D不成立.14.有外表一样,重量不同的四个小球,它们的重量分别是a,b,c,d,已知a+b=c+d,a+d>b+c,a+c<b,则这四个小球由重到轻的排列顺序是( )A.d>b>a>c B.b>c>d>aC.d>b>c>a D.c>a>d>b正确答案A详细解析∵a+b=c+d,a+d>b+c,∴a+d+( a+b)>b+c+( c+d),即a>c.∴b<d.又a+c<b,∴a<b.综上可得,d>b>a>c.。

不等关系与不等式 课件

不等关系与不等式 课件
(2)要注意“箭头”是单向的还是双向的,也就是说每条 性质是否具有可逆性.
用不等式(组)表示不等关系
[典例] 某家电生产企业计划在每周工时不超过40 h的情 况下,生产空调、彩电、冰箱共120台,且冰箱至少生产20 台.已知生产这些家电产品每台所需工时如下表:
家电名称 空调
彩电
冰箱
工时(h)
1 2
用不等式性质求解取值范围 [典例] 已知1<a<4,2<b<8,试求2a+3b与a-b的取值 范围. [解] ∵1<a<4,2<b<8,∴2<2a<8,6<3b<24. ∴8<2a+3b<32. ∵2<b<8,∴-8<-b<-2. 又∵1<a<4,∴1+(-8)<a+(-b)<4+(-2), 即-7<a-b<2. 故2a+3b的取值范围是(8,32),a-b的取值范围是(-7,2).
数式的大小比较
[典例] (1)已知x<1,比较x3-1与2x2-2x的大小;
(2)已知a>0,试比较a与1a的大小. [解] (1)(x3-1)-(2x2-2x) =(x-1)(x2+x+1)-2x(x-1) =(x-1)(x2-x+1)
=(x-1)x-122+34. ∵x<1,∴x-1<0.又x-122+34>0, ∴(x-1)x-122+34<0. ∴x3-1<2x2-2x.
(2)因为a-1a=a2-a 1=a-1aa+1, 因为a>0,所以当a>1时,a-1aa+1>0,有a>1a; 当a=1时,a-1aa+1=0,有a=1a; 当0<a<1时,a-1aa+1<0,有a<1a. 综上,当a>1时,a>1a; 当a=1时,a=1a; 当0<a<1时,a<1a.

2.1.1不等关系与重要不等式课件(人教版)

2.1.1不等关系与重要不等式课件(人教版)
∴ 2 + 2 + 2 ≥ + + .
当且仅当 = = 时,等号成立
4 课堂训练
4
课堂训练
C
C
4
课堂训练
≥ 0
+ >
16 ≤ ≤ 18
2 + 2 > 3
5 预习自测
5
预习自测


×

5
预习自测
C
<
= 2 + 5 + 6 − 2 + 5 + 4
=2
∵2>0,
∴ +2 +3 > +1 +4 .
作差
变形
0是相等与不等的分界
限,它也为比较实数的大
定号
定论
小提供了标杆.
2
实数大小的比较

已知,均为正数,且 ≠ ,比较3 + 3与2 + 2的大小
【解】运用作差法:
【问题4】 :如何证明重要不等式?
2
2
2
证明: (a b ) - 2ab (a b)
当a b时, (a b) 0
2
当a b时, ( a b )2 0
(a 2 b 2 ) 2ab 0,
当 且 仅 当 a b时 , 等 号 成 立 。
3
一个重要不等式
B
D
(3)S与S’会出现相等的情况吗,什么时候相
当a=b时
等? 当a=b时,S=S',即 + =
A
C
E(FGH)
B
综上, + ≥
重要不等式

不等关系与不等式(二)

不等关系与不等式(二)

(对称性) (传递性) (可加性)
(4) a b, c 0 ac bc ; (可乘性) a b, c 0 ac Байду номын сангаасbc (5) a b 0, c d 0 ac bd (6) a b 0, n N , n 1
n n n n
(同向不等式的可乘性)
□复习引入
数学含义 (1) 若a>b,则a+c>b+c,a-c>b-c;
a b (2) 若a>b,c>0,则ac>bc, ; c c a b (3) 若a>b,c<0,则ac<bc, . c c
□新授课 一、常用的基本不等式的性质
(1) a b b a
( 2) a b, b c a c ( 3) a b a c b c
a b , a b (可乘方性、可开方性)
□范例讲解
c c 例题1. 已知 a b 0, c 0, 求证: . a b 例题2.. 若、 满足 , 则 6 2 2 的取值范围是( B )
A. C. B. 0 D.
3.1 不等关系与不等式(2)
□复习引入
1. 比较两实数大小的理论依据是什么?
如果a>b a-b>0;
如果a<b a-b<0;
如果a=b a-b=0.
2. “作差法”比较两实数的大小的一般步骤? 作差比较法的步骤是: ① 作差 ② 变形 ③判断符号 ④作出结论
□复习引入
3. 初中我们学过的不等式的基本性质是 什么? 基本性质1 不等式两边都加上(或减去)同 一个数或同一个整式,不等号的方向不变. 基本性质2 不等式两边都乘(或除以)同一 个正数,不等号的方向不变. 基本性质3 不等式两边都乘(或除以)同一 个负数,不等号的方向改变.

(易错题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试题(有答案解析)(2)

(易错题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试题(有答案解析)(2)

一、选择题1.下列结论不正确的是( ) A .若a b >,0c >,则ac bc > B .若a b >,0c >,则c c a b> C .若a b >,则a c b c +>+ D .若a b >,则a c b c ->- 2.若2a ≠-,(21)(2)m a a =-+,(2)(3)n a a =+-,则m 、n 的大小关系是( ) A .m n =B .m n <C .m n >D .m 、n 关系不确定3.下列命题中,正确的是( ) A .若a b >,c d >,则a c > B .若ac bc >,则a b > C .若22a b c c<,则a b < D .若a b >,c d >,则ac bd >4.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+5.已知01x y a <<<<,log log a a m x y =+,则有( ) A .0m <B .01m <<C .12m <<D .2m >6.若a b c R ∈,,,则以下命题为真的是( ) A .若a b >,则11a b< B .若a b >,则22ac bc > C .若a b >,则22a b >D .若a b >,则22a b >7.已知1a >,实数,x y 满足x y a a >,则下列不等式一定成立的是( ) A .11x y x y+>+ B .()()22ln 1ln 1x y +>+C .sin sin x y >D .33x y >8.下列四个不等式:①log 10lg 2(1)x x x +>;②a b a b -<+;③2(0)b a ab a b+≠;④121x x -+-≥,其中恒成立的个数是( )A .1B .2C .3D .49.若0a <b <,则下列不等式中成立的是( )A .|a |>b -B .1a b< C <D .11a b< 10.设实数0,0a b c >>>,则下列不等式一定正确....的是( ) A .01ab<< B .a b c c >C .0ac bc -<D .ln0ab> 11.对于任意实数,,,,a b c d 以下四个命题正确的是( ) A .若,,a b c d >>则a c b d +>+ B .22a b ac bc >>若,则 C .若,a b >则11a b< D .若,,a b c d >>则ac bd >12.对于任意实数,,,,a b c d 以下四个命题正确的是 A .,a b c d a c b d >>+>+若,则 B .22a b ac bc >>若,则 C .11,a b a b><若则D .,a b c d ac bd >>>若,则二、填空题13.垃圾分类可以提高垃圾的资源价值和经济价值,具有社会、经济、生态等几方面的效益,某地街道呈现东-西,南-北向的网格状,相邻街距都为1,两街道相交的点称为格点,若以互相垂直的两条街道为坐标轴建立平面直角坐标系,现有下述格点(2,2)-,(2,1),(2,3),(2,4)-,(4,5),(6,6)为垃圾回收点,请确定一个格点(除回收点外)________为垃圾集中回收站,使这6个回收点沿街道到回收站之间路程的和最短 14.给出下列语句: ①若,a b 为正实数,ab ,则3322a b a b ab +>+;②若,a m 为正实数,a b <,则a m ab m b+<+; ③若22a bc c>,则a b >;④当(0,)2x π∈时,2sin sin x x+的最小值为___________. 15.若关于x 的不等式14x x a -++<的解集是空集,则实数a 的取值范围是__________.16.若()f x 是R 上的减函数,且()f x 的图像经过点()0,3A 和()3,1B -,则不等式()112f x +-<的解集是__________.17.若关于x 的不等式215x a x x -+-≥-在R 上恒成立,则实数a 的取值范围为________.18.设x ,y 为实数,满足238xy ≤≤,249x y≤≤,则3x y 的最小值是______. 19.设函数2()||(,)f x x a x b a b R =+++∈,当[2,2]x ∈-时,记()f x 的最大值为(,)M a b ,则(,)M a b 的最小值为______.20.设函数1()||||f x x x a a=++-(0)a >,若(3)5f <,则a 的取值范围是_____.三、解答题21.已知数列{}n a 的前n 项和为n S ,14a =,数列{}n S n是公差为12的等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设21(1)n nb n a =+,求证:对于任意的*n N ∈,12341n b b b +++<. 22.已知正实数,x y 满足21x y += (1)解关于x 的不等式52()||2x y x y ++-≤; (2)证明:22114136x y ⎛⎫⎛⎫--≥ ⎪⎪⎝⎭⎝⎭. 23.设函数()212f x x x =-++. (1)求不等式()4f x ≥的解集;(2)若不等式()2f x m <-的解集是非空的集合,求实数m 的取值范围. 24.已知函数()||,f x x x a a R =-∈. (1)当(1)(1)1f f +->,求a 的取值范围;(2)若0a >,对,(,]x y a ∀∈-∞,都有不等式5()||4f x y y a ≤++-恒成立,求a 的取值范围.25.已知()13f x x x =++-.(1)求直线8y =与函数()y f x =的图象所围图形的面积; (2)若()211f x a a ≥++-对一切实数x 成立,求a 的取值范围. 26.设函数3211()132f x ax bx cx =+++,f x 为()f x 的导函数,(1)2af '=-,322a c b >>.(1)用a ,b 表示c ,并证明:当0a >时,334b a -<<-; (2)若12a =-,2b =,32c ,求证:当1x ≥时,()ln x f x '≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】根据不等式的性质,对选项逐一分析,由此得出正确选项. 【详解】对于A 选项,不等式两边乘以一个正数,不等号不改变方程,故A 正确.对于B 选项,若2,1,1a b c ===,则c ca b<,故B 选项错误.对于C 、D 选项,不等式两边同时加上或者减去同一个数,不等号方向不改变,故C 、D 正确.综上所述,本小题选B. 【点睛】本小题主要考查不等式的性质,考查特殊值法解选择题,属于基础题.2.C解析:C 【分析】由条件可得22232,6m a a n a a =+-=--,两式作差即可得大小关系. 【详解】(21)(2)m a a =-+,(2)(3)n a a =+-,22232,6m a a n a a ∴=+-=--, 2244(2)m n a a a ∴-=++=+,由2a ≠-知,2(2)0m n a -=+>,m n ∴>,故选:C 【点睛】本题主要考查了利用作差法比较不等式的大小,属于基础题.3.C解析:C 【分析】利用不等式的基本性质进行逐项判断即可,不成立的举反例. 【详解】对于选项A:若2,3,1,2a b c d =-=-==-,满足a b >,c d >,但是a c >不成立,故选项A 错误;对于选项B :若1,3,2c a b =-=-=-,满足ac bc >,但a b >不成立,故选项B 错误; 对于选项C :因为22a b c c<,整理化简可得20a bc -<,因为20c >,所以0a b -<,即a b <成立,故选项C 正确;对于选项D:若1, 1.1,2a b c d ==-=-=-,满足a b >,c d >,但是ac bd >不成立,故选项D 错误; 【点睛】本题考查不等式与不等关系;不等式的基本性质的灵活运用是求解本题的关键;属于中档题、常考题型.4.A解析:A 【分析】根据对数函数的单调性可得0m >,0n <,根据不等式的性质可知m n m n ->+ ;通过比较11m n+ 与1 的大小关系,即可判断m n m n +>,从而可选出正确答案. 【详解】解:0.30.3log 0.6log 10m =>=,2211log 0.6log 1022n =<=,则0mn < ()()20m n m n n --+=->,m n m n ∴->+0.60.60.60.611log 0.3log 4log 1.2log 0.61m n +=+=<= m n mn ∴+> 故选:A. 【点睛】本题主要考查了对数的运算,对数函数的单调性.在比较对数的大小时,常常结合对数函数的单调性比较大小.对于()log a f x x =,若01a << ,则(1)当01x << 时,()0f x >; (2)当1x = 时,()0f x =; (3)当1x > 时,()0f x <; 若1a > ,则(1)当01x << 时,()0f x <; (2)当1x = 时,()0f x =; (3)当1x > 时,()0f x >.5.D解析:D 【分析】首先根据对数的运算得到()log a m xy =,再由不等式的性质及对数函数的性质即可得解. 【详解】解:由题意得()log a m xy =,01x y a <<<<,201xy a ∴<<<,2log 2a m a ∴>=.故选:D 【点睛】本题考查对数的运算及对数函数的性质,不等式的性质,属于中档题.6.D解析:D 【分析】A .举例:取0,0a b ><的值,检验;B .举例:0c ,检验;C .举例:取0,0a b ><的值(注意大小),检验;D .考虑两边同时平方来证明.【详解】A .取1,1a b ==-,所以11a b>,故错误; B .取0c,所以22ac bc =,故错误;C .取1,2a b ==-,所以22a b <,故错误;D .因为0a b >≥,所以22a b >,所以22a b >,故正确. 故选:D. 【点睛】本题考查利用不等式的性质判断命题的真假,难度一般.(1)不等号两边同时乘以一个正数,不等号的方向不会改变;(2)已知两数的大小,比较两个数平方的大小时,要注意考虑数的正负.7.D解析:D 【分析】根据指数函数的单调性,得到x y >,再利用不等式的性质,以及特殊值法,即可求解. 【详解】根据指数函数的单调性,由1a >且x y a a >,可得x y >, 对于A 中,由111()()(1)x y x y x y x y x y xy xy-+--=--=--,此时不能确定符号,所以不正确;对于B 中,当x 1,y 2==-时,2211x y +<+,此时()()22ln 1ln 1x y +<+,所以不正确;对于C 中,例如:当2,32x y ππ==时,此时sin sin x y <,所以不正确; 对于D 中,由33222213()()()[()]024x y x y x xy y x y x y y -=-++=--+>,所以33x y >,所以是正确的.故选D . 【点睛】本题主要考查了指数函数的单调性,以及不等式的性质的应用,其中解答中合理利用特殊值法判定是解答的关键,着重考查了推理与运算能力,属于基础题.8.C解析:C 【分析】依次判断每个选项的正误,得到答案. 【详解】 ①1log 10lg lg 2(1)lg x x x x x+=+>,当10x =时等号成立,正确②a b a b -<+,0b =时不成立,错误 ③,a b =时等号成立.正确④12(1)(2)1x x x x -+-≥---=,12x ≤≤时等号成立,正确 故答案选C 【点睛】本题考查了不等式性质,绝对值不等式,均值不等式,综合性较强,是不等式的常考题型.9.A解析:A 【解析】 【分析】对于A ,用不等式的性质可以论证,对于B ,C ,D ,列举反例,可以判断. 【详解】∵a <0,∴|a |=﹣a ,∵a <b <0,∴﹣a >﹣b >0,∴|a |>﹣b ,故结论A 成立; 取a =﹣2,b =﹣1,则 ∵21ab=>,∴B 不正确; 21a b -=-=,,∴a b -->∴C 不正确;112a =-,11b =-,∴11a b>,∴D 不正确. 故选:A . 【点睛】本题考查不等式的性质,解题的关键是利用不等式的性质,对于不正确结论,列举反例.10.D解析:D 【分析】对4个选项分别进行判断,即可得出结论. 【详解】 解:由于a >b >0,1ab>,A 错; 当0<c <1时,c a <c b ;当c =1时,c a =c b ;当c >1时,c a >c b ,故c a >c b 不一定正确,B 错;a >b >0,c >0,故ac ﹣bc >0,C 错.lnln10ab>= ,D 对; 故选D . 【点睛】本题考查不等式的性质,考查学生分析解决问题的能力,属于中档题.11.A解析:A 【解析】分析:根据不等式性质判断命题真假.可举反例说明命题不成立. 详解:因为同向不等式可相加,所以若,,a b c d >>则a c b d +>+, 因为c=0时,22ac bc =,所以B 错; 因为121,12>->-,所以C 错; 因为10,01,100(1)>>-⨯=⨯-,所以D 错; 选A.点睛:本题考查不等式性质,考查基本论证能力.12.A解析:A 【解析】分析:由不等式的性质,逐个选项验证可得答案. 详解:选项①,a b c d >>若,,由不等式的可加性可得a c b d +>+ 故A 正确,选项②22a b ac bc >>若,则,由不等式的性质可得;2c =0时22ac bc >不正确, 选项③a b >若,则11a b <错误,比如12-> ,但1112-> ; 选项④若,a b c d ac bd >>>,则错误,需满足a b c d ,,,均为正数才可以. 故选:A .点睛:本题考查不等式的性质,属基础题.二、填空题13.【分析】首先表示横轴和纵轴方向的距离和再根据含绝对值三角不等式求最值【详解】设格点的坐标为则根据含绝对值三角式可知横轴方向距离和此时的最小值是14此时三个等号成立的条件是所以时的最小值是纵轴方向的距 解析:(2,4)【分析】首先表示横轴和纵轴方向的距离和,再根据含绝对值三角不等式求最值. 【详解】设格点的坐标为(),x y ,则26x -≤≤,16y ≤≤, 根据含绝对值三角式+≥-a b a b 可知横轴方向距离和()222246d x x x x x =++-+-+-,()()262422x x x x x =++-+++-+-()()()()26242014x x x x ≥+--++--+⨯=,此时()d x 的最小值是14,此时三个等号成立的条件是26242x x x -≤≤⎧⎪-≤≤⎨⎪=⎩,所以2x =时,()d x 的最小值是14,纵轴方向的距离和()123456d y y y y y y y =-+-+-+-+-+-,()()()()()()()1625349d y y y y y y y ≥---+---+---=此时()d y 的最小值是9,三个等号成立的条件是162534y y y ≤≤⎧⎪≤≤⎨⎪≤≤⎩,即3y =或4,当3y =时,此时格点位置是()2,3,是垃圾回收点,舍去,所以4y =,此时格点坐标是()2,4.故答案为:()2,4 【点睛】关键点点睛:本题是具有实际应用背景的习题,本题的关键是正确理解题意,并能转化为横轴距离和纵轴距离,利用含绝对值三角不等式求最值.14.①③【分析】利用作差法可判断出①正确;通过反例可排除②;根据不等式的性质可知③正确;根据的范围可求得的范围根据对号函数图象可知④错误【详解】①为正实数即可知①正确;②若则可知②错误;③若可知则即可知解析:①③. 【分析】利用作差法可判断出①正确;通过反例可排除②;根据不等式的性质可知③正确;根据x 的范围可求得sin x 的范围,根据对号函数图象可知④错误.【详解】①()()()()()()233222222a b a b ab aa b b b a a b a b a b a b +--=-+-=--=-+a b ≠,,a b 为正实数 ()20a b ∴->,0a b +>33220a b a b ab ∴+-->,即3322a b a b ab +>+,可知①正确;②若1a =,2b =,1m =,则2132a m ab m b+=>=+,可知②错误; ③若22a b c c >,可知20c >,则2222a b c c c c⋅>⋅,即a b >,可知③正确; ④当0,2x π⎛⎫∈ ⎪⎝⎭时,()sin 0,1x ∈,由对号函数图象可知:()2sin 3,sin x x +∈+∞,可知④错误.本题正确结果:①③ 【点睛】本题考查不等式性质的应用、作差法比较大小问题、利用对号函数求解最值的问题,属于常规题型.15.【解析】由题意可知原不等式无解由即填 解析:(),5-∞【解析】由题意可知原不等式无解,由()14x 1x 45x x -++≥---=,即max (14)5a x x <-++=,填(),5-∞。

3.1不等式与不等关系(第二课时)

3.1不等式与不等关系(第二课时)
设2x+3y=m(x+y)+n(x-y)
则2x+3y=(m+n)x+(m-n)y
5 m+n = 2 m = 2 即 m − n = 3 得 n = − 1 2 5 1 ∴2x+3y= (x+y)+(- )(x-y) 2 2
待定系数法
Q −1 ≤ x + y ≤ 2, 2 ≤ x − y ≤ 4 5 5 ∴− ≤ (x+y) ≤ 5 2 2 1 -2 ≤ - (x-y) ≤ -1 2 9 5 1 ∴− ≤ (x+y)+(- )(x-y) ≤ 4 2 2 2
复习回顾 1.了解不等式(组)的实际背景,会用 了解不等式( 了解不等式 的实际背景, 不等式表示不等关系。 不等式表示不等关系。 2. 掌握大小比较的原理,学会大小比较 掌握大小比较的原理, 的方法。 的方法。
作差法的步骤
作差 变形 定号 结论
3.1
不等关系与不等式(第二课时) 不等关系与不等式(第二课时)
e e 已知:a > b > 0, c < d < 0, e < 0 求证: > a−c b−d 解: e e e(Q− d< − e<a0 c) e[(b − a ) + (c − d )] b c )d ( − − = = a−c b−d (a c )( − d ) (a − c)(b − d ) ∴−− c> b − d> 0
题型四. 题型四.利用不等式的性质求取值范围 a 例4 已知1 < a < 4, 2 < b < 8, 试求a - b与 的取值范围 b
解:Q 2 < b < 8

3.1.2不等关系与不等式(二)课件ppt(北师大版必修五)

3.1.2不等关系与不等式(二)课件ppt(北师大版必修五)
所以 f(-2)=3(a-b)+(a+b).又因为 1≤a-b≤2, 所以 3≤3(a-b)≤6 因为 2≤a+b≤4. 所以 5≤3(a-b)+(a+b)≤10.即 5≤f(-2)≤10. 法二 设xy==aa+-bb,, 即 a=x+2 y,b=y-2 x.
所以f(-2)=4a-2b=2(x+y)-(y-x)=3x+y, 而1≤x=a-b≤2,2≤y=a+b≤4,所以5≤f(-2)≤10.
本题把所求的问题用已知不等式表示,然后利用 同向不等式的性质 加以解决,解决此类问题常用的方法是 方程组思想与待定系数法.
课前探究学习
课堂讲练互动
[正解] 法一 (待定系数法): 设 f(-2)=4a-2b=m(a-b)+n(a+b),
所以-m+m+n=n=4,-2, 解得mn==13.,
答案 3
课前探究学习
课堂讲练互动
题型二 利用不等式性质证明简单不等式
【例2】 (1)已知 a>b,e>f,c>0,求证:f-ac<e-bc; (2)已知 a>1,m>n>0,求证:am+a1m>an+a1n. [思路探索] (1)对不等式进行变形,利用不等式的性质证 明;(2)将不等式两边相减,转化为比较与0的大小问题.
课堂讲练互动
想一想:若a>b>0,当n<0时,an>bn成立吗?
提示 不成立,如当 a=3,b=2,若 n=-1,则 3-1= 13<2-1=12,所以原式不成立.
课前探究学习
课堂讲练互动
名师点睛
1.对不等式性质的理解 (1)不等式的性质是不等式的基础知识,是不等式变形的 依据,每一步变形,都应有根有据,记准适用条件是关 键,不准强化或弱化它们成立的条件,盲目套用. (2)性质4中①当c>0时,得同向不等式.②当c<0时,得 异向不等式.③当c=0时,ac=bc. (3)性质5是同向不等式相加得同向不等式并无相减式. (4)性质6是均为正数的同向不等式相乘,得同向不等式, 并无相除式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.1 不等关系与不等式(二) 命题人 申占宝 王柏青
学习目标
1.掌握不等式的基本性质,并能运用这些性质进行逻辑推理。

2.会用不等式的性质证明简单的不等式。

※ 学习重点、难点:
教学重点:掌握不等式的性质和利用不等式的性质证明简单不等式。

教学难点:利用不等式的性质证明简单的不等式。

(1),(2)(3),0(4),0a b b c a c
a b a c b c
a b c ac bc
a b c ac bc
>>⇒>>⇒+>+>>⇒>><⇒<
二、新课导学
※ 探索新知
探究:不等关系
问题:(1)如果0>>b a ,0>>d c ,试证明bd ac >
新知:
1. 性质6:如果0>>b a 且0>>d c ,那么bd ac >(相乘法则)
0>>b a ,0>>d c ⇒bd ac >
2.性质7 如果0>>b a , 那么n n b a > )1(>∈n N n 且 0>>b a ⇒n n b a >
3.性质8:如果0>>b a ,那么n n b a > )1(>∈n N n 且 0>>b a ⇒n n b a >
※ 知识检测
2
23322.,..,..1bc ac b a D b a b a C b a b a B b a b a A >>>>>>>>则若 则若则若则 若 )
下列命题正确的是 (
2.下面命题中,假命题的序号是____________
①bd ac d c b a >>>则若,,
②n
n b a N k k n b a >∈+=>*则若),(12, ③c
b d a d
c b a >>>>>则
若,0,0 ④n n n n b a b a n N n b a >>≥∈>且则且若,2,
.2110.3x x x +<+>,求证已知 .,0,0.4c b d a d c b a >>>>>求证已知 5.火车站有某公司待运的甲种货物1530t ,乙种货物1150t 。

现计划用A,B 两种型号的车厢共50节运送这批货物。

已知35t 甲种货物和15t 乙种货物可装满一节A 型货厢;25t 甲种货物和35t 乙种货物可装满一节B 型货厢,据此安排A,B 两种货厢的节数,共有几种方案?若每节A 型货厢的运费是0.5万元,每节
2 B 型货厢的运费是0.8万元,哪种方案的运费最少
※ 学习小结
1.“作差法”比较两个实数的大小和常用的不等式的基本性质:
⑴ 用“作差法”比较两个实数大小的关键是判断差的正负,常采用配方、因式分解、有理化等方法.常用结论有2200x x ≥-≤≥≤,,|x|0,-|x|0等.
⑵“作差法”的一般步骤是: ①作差;②变形;③判断符号;④得出结论.
2.不等式的常见类型:
⑴判断对错型,一般直接利用不等式的性质即可,特殊值法也是解决这种题的常用方法;
⑵证明型,根据不等式两边式子的特点来选择是作差比较法还是直接利用不等式的性质。

⑶求范围型,一般用同向不等式相加的性质求解即可。

课后作业
______
__________)1()1)(3()1())(2(,11
)1(,,,.1222
2中,不成立的是
则下面三个不等式:
且若->-+>+-->>∈b a b b a a b a b
b a R b a
的大小。

比较为正数,且广州)设d b c a n m n d c m n b a
m d c b a ++<<<<,,,,
,,,.2007.(2。

相关文档
最新文档