稀土离子的高能光谱

合集下载

2-稀土离子的光谱特性

2-稀土离子的光谱特性
物体而言); 电子的运动速度很大;
图中 表示原子核,一个小黑点代表 电子在这里出现过一次
➢小黑点的疏密表示电子在核外空间单 位体积内出现的概率的大小。
现代物质结构学说 电子云
描述核外电子运动状态的四个量子数
1、主量子数n(电子层)
原子核外的电子可以看作是分层排布 的。处于不同层次中的电子,离核的 远近也不同。离核愈近的电子层能级 愈低,离核愈远的电子层能级愈高。
能层 K L
M
N
符号 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f
最多电子数 2 2 6 2 6 10 2 6 10 14
第一电子层只有一个亚层,第二电子层有两个,以 此类推,第n个电子层最多有n个亚层。
3、磁量子数m:轨道(电子云的伸展方向)
电子云不仅有确定的形状,而且有一定的伸展方向。s 电子云是球形对称的,在空间各个方向上伸展的程 度相同。p电子云在空间可以有三种互相垂直的伸展 方向。d电子云可以有五种伸展方向,f电子云可以 有七种伸展方向。
④阴离子中:质子数=核外电子数-离子所带电荷数

代 原
发 现
带 核
子 电原
论 子子




轨 道 原 子 结 构 模 型
电 子 云 模 型
电子云模型 (现代物质结构学说)
❖ 现代科学家们在实验中发现,电子在原子核周围 有的区域出现的次数多,有的区域出现的次数少, 就像“云雾”笼罩在原子核周围。因而提出了 “电子云模型”。
简略表示
第3层
第2层
原子核
第1层
原子核带正子结构示意图
2.1 稀土元素和离子的电子组态及特性
稀土元素是一组化学性质非常相似的元素,由钪 (21)、钇(29)和57的镧增至71的镥等17种元素组成。 稀土离子的光谱特性主要取决于稀土离子的特殊组态。

2-稀土离子的光谱特性

2-稀土离子的光谱特性
如把在一定电子层上,具有一定形状和伸展方向的电 子云所占据的空间称为一个轨道,那么s、p、d、f 四个能级就分别有1、3、5、7个轨道
磁量子数与原子轨道
❖ 对于角量子数为l 的原子,m的取值有 (2l +1)个。(注意l 的取值从0开始,到±l)
❖ n、l 相同的轨道被称为等价轨道或简并轨道
s 轨道
物体而言); 电子的运动速度很大;
图中 表示原子核,一个小黑点代表 电子在这里出现过一次
➢小黑点的疏密表示电子在核外空间单 位体积内出现的概率的大小。
现代物质结构学说 电子云
描述核外电子运动状态的四个量子数
1、主量子数n(电子层)
原子核外的电子可以看作是分层排布 的。处于不同层次中的电子,离核的 远近也不同。离核愈近的电子层能级 愈低,离核愈远的电子层能级愈高。
原子半径 187.7 182.5 182.8 182.1 181.0 180.2 204.2 180.2 178.2 177.3 176.6 175.7 174.6 194.0 173.4 180.1
三价离子 La3+ Ce3+ Pr3+ Nd3+ Pm3+ Sm3+ Eu3+ Gd3+ Tb3+ Dy3+ Ho3+ Er3+ Tm3+ Yb3+ Lu3+ Y3+
❖ ② 泡利不相容原理:一条轨道最多容纳两个自旋 相反的电子。
各层最多容纳2n2 个电子
❖ 最外层不超过8个(K层2个) ❖ 次外层不超过18个, ❖ 倒数第三层不超过32个。
③ 洪特规则 (Hund’s rule):在等价轨道上,电子将尽先分占
各轨道,且自旋平行。(量子力学理论已证明:原子中自旋平行 电子的增多有利于能量的降低)

稀土材料的光学性质与光谱分析

稀土材料的光学性质与光谱分析

稀土材料的光学性质与光谱分析引言稀土材料是指由稀土元素组成的材料,由于其独特的光学性质而受到广泛关注。

稀土材料的光学性质包括吸收、发射和激发的能量传递等方面,这对于光学器件的设计和应用具有重要意义。

光谱分析是研究稀土材料光学性质的主要方法之一,通过光谱分析可以获取材料在不同波长下的吸收和发射特性,从而了解其内部结构和能量转移过程。

本文将介绍稀土材料的光学性质以及光谱分析的原理和方法。

稀土材料的光学性质稀土材料具有丰富的光学性质,其中最重要的是它们在可见光波段的吸收和发射特性。

稀土离子的能级结构决定了它们在不同波长下的光学行为。

吸收特性稀土离子的能级结构可以使其在特定波长范围内吸收光能。

当光子的能量与稀土离子能级的能量差相匹配时,稀土离子会吸收光子的能量并跃迁到激发态。

这种吸收特性对于光学传感器和光电器件的设计非常重要。

发射特性稀土离子从激发态跃迁到基态时,会通过发射光子的方式释放能量。

这种能量的释放可以是荧光或者磷光的形式。

稀土材料的发射特性使得它们在荧光显示、固态激光器、药物标记等领域具有广泛应用。

能量传递过程稀土材料中的离子之间可以发生能量传递,这种传递通常通过非辐射跃迁实现。

能级之间的跳跃会导致能量从一个离子传递到另一个离子,从而影响整个材料的光学性质。

这种能量传递过程对于稀土材料的荧光效率和时间特性有重要影响。

光谱分析的原理和方法光谱分析是研究稀土材料光学性质的重要手段,在分析稀土材料的光谱特性时,主要使用的方法有吸收光谱和发射光谱。

吸收光谱吸收光谱是研究稀土材料吸收特性的重要手段。

在吸收光谱实验中,通过测量被材料吸收的光线强度的变化,可以得到吸收光谱曲线。

吸收光谱曲线可以告诉我们材料在不同波长下的吸收能力,从而了解其能级结构和吸收机制。

发射光谱发射光谱是研究稀土材料发射特性的主要手段。

在发射光谱实验中,通过激发稀土材料并测量其发射的光线强度,可以得到发射光谱曲线。

发射光谱曲线可以告诉我们材料在不同波长下的发射能力,从而了解其能级结构和发射机制。

稀土元素的光谱特征

稀土元素的光谱特征

电子云重排效应产生的原因: 形成配合物后中心离子与配体之间存
在着某种程度的共价作用,这种共价作用 的程度虽然较弱,但可使稀土离子的能级 发生微小的改变,引起吸收谱带发生微小 的位移。不同的配体共价作用不同,所以 引起能级的改变量不同,故谱带位移程度 不同。
共价作用产生的机理: 4f轨道直接参与分子轨道的形成及成
如:Pr3+4f2组态有13个J能级, Nd3+4f3组态有41个J能级 .
在稀土离子可能存在的组态中,4fn是 能量最低的组态,因此在光谱性质的研究 中也是最重要的。
2.能级图
三价稀土离子的4fn组态能级见下图。各能级均
以光谱支项表示。图中数值是从中性原子或离子的发
射光谱中得到的,有些可能不够完全。图中基态能级
稀土离子(III)的f-f跃迁光谱主要是: 4fn组态:基态→激发态跃迁的造成的.
其中Sm3+ Eu3+除了基态(6H5/2, 7F0)向激 发态跃迁外,还存在着由第一、二激发态 ( Sm3+ :6H7/2 和Eu3+ :7F1 7F2)向更高能态 的跃迁。能级图.ppt
Sm3+ Eu3+的这种有别于其它三价稀土离子 的情况是由于Sm3+ 的6H7/2 和Eu3+ 的7F1 7F2 能级与基态能级差太小,常温下部分离子可居于 上述能态的原因。
1.f-f跃迁光谱: 指 fn组态内不同J能级间跃迁产生的光谱。
f-f跃迁光谱的特点: a.f-f电偶极跃迁宇称选则规则禁阻。 因此不能观察到气态稀土离子的f-f电
偶极跃迁吸收光谱。 但在液体和固体中由于受配体场的微
扰,可观察到响应的谱带,但强度很弱 (相对于d-d跃迁)
摩尔消光系数 Є=0.5. (l/molcm)。

稀土离子的发射光谱范围

稀土离子的发射光谱范围

稀土离子的发射光谱范围
稀土离子的发射光谱范围取决于其电子能级结构和能量级差。

稀土元素有多个价电子能级,每个能级之间的跃迁会产生特定波长的光线。

稀土离子常见的发射光谱范围一般在红外、可见光和紫外光区域。

常见的稀土离子及其发射光谱范围如下:
1. 锗离子(Ge3+):发射红外光,波长范围约在1.9-
2.3微米。

2. 铥离子(Tm3+):发射可见光和近红外光,波长范围约在400-3700纳米。

3. 镨离子(Pr3+):发射可见光,波长范围从近红外到深红,可达到400-700纳米。

4. 铈离子(Ce3+):发射蓝色光和近紫外光,波长范围约在300-500纳米。

5. 钆离子(Gd3+):发射可见光和近紫外光,波长范围在
200-900纳米之间。

6. 镝离子(Dy3+):发射红色和黄色光,波长范围在400-700纳米之间。

需要注意的是,稀土离子的发射光谱范围也受到溶剂、温度和杂质等因素的影响。

此外,稀土离子发射光谱范围的确定也需要通过实验测定和研究来获得。

稀土元素 发光谱

稀土元素 发光谱

稀土元素发光谱
答:稀土元素具有独特的发光性质,其发光光谱是一个重要的研究领域。

稀土元素在受到特定能量的光照射时,会吸收能量并跃迁到高能级,然后通过辐射跃迁回到低能级,释放出光子。

这个过程就是稀土元素的发光现象。

由于稀土元素具有丰富的能级结构,它们可以产生多种不同波长的光,形成丰富多彩的发光光谱。

通过对稀土元素发光光谱的研究,人们可以了解稀土元素的能级结构、跃迁机制以及与周围环境的相互作用等重要信息。

这些信息对于理解稀土元素的发光性质、开发新的发光材料以及优化现有发光器件的性能都具有重要的意义。

此外,稀土元素发光光谱在生物医学、环境监测、能源科学等领域也有广泛的应用。

例如,利用稀土元素荧光探针可以实现对生物体内特定分子的高灵敏度检测;在能源领域,稀土元素荧光材料可以用于太阳能电池、LED等器件的优化和改进。

总之,稀土元素发光光谱是一个充满挑战和机遇的研究领域,对于推动科学技术的进步和发展具有重要意义。

稀土离子的光谱特性

稀土离子的光谱特性

第二讲稀土离子的光谱特性稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土。

稀土元素的原子具有未充满的受到外层屏蔽的4f5d电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20余万个,可以产生多种多样的辐射吸收和发射,构成众多的发光和激光材料。

稀土化合物的发光是基于它们的4f电子在f—f组态之内或f—d组态之间的跃迁。

具有未充满的4f壳层的稀土原子或离子,其光谱大约有30000条可观察到的谱线,它们可发射从紫外光、可见光到红外光区的各种波长的电磁辐射。

稀土离子丰富的能级和4f电子的跃迁特性,使其成为巨大的发光宝库,从中可发掘出更多新型的发光材料。

第一节稀土元素基态原子的电子层构型及光谱项1、稀土元素的电子层构型稀土元素包括17种元素,即属于元素周期表中ⅢB族的15个镧系元素以及同一族的钪和钇。

钪和钇的电子层构型分别为:Sc 1s22s22p63s23p63d14s2Y 1s22s22p63s23p63d104s24p65s2镧系原子的电子层构型为:1s22s22p63s23p63d104s24p64d104f n5s25p65d n'6s2,n=0-14, n'=0或1。

镧系稀土元素电子层结构的特点是电子在外数第三层的4f轨道上填充,4f轨道的角量子数l=3,磁量子数m可取0、±1、±2、±3等7个值,故4f亚层具有7个轨道。

根据Pauli不相容原理,在同一原子中不存在4个量子数完全相同的两个电子,即一个原子轨道上只能容纳自旋相反的两个电子,4f亚层只能容纳14个电子,从La到Lu,4f电子依次从0增加到14。

形成三价稀土离子时首先失去的是6s和5d电子,使三价稀土离子具有顺序增加的4f n 电子结构,n=0,1,…,14,分别对应于La 3+,Ce 3+,…,Lu 3+离子。

晶体中稀土离子的光谱和能级

晶体中稀土离子的光谱和能级

晶体中稀土离子的光谱和能级稀土离子的光谱和能级在晶体中会受到晶体结构、离子半径、电荷和周围配位环境等多种因素的影响。

以下是一些常见的稀土离子晶体的光谱和能级特点:
1.铯镧系晶体:铯镧系晶体是一类重要的稀土晶体,其中包含铯离子(Ce3+)和镧离子(La3+或Pr3+)。

铯镧系晶体具有非常高的透明度和优异的光学性能。

铯镧系晶体的光谱和能级特点与铑镧系晶体类似,但是铯镧系晶体中铯离子的半径更小,因此其能级更加紧密地排列。

2.钆镧系晶体:钆镧系晶体是另一类重要的稀土晶体,其中包含钆离子(Nd3+)和镧离子(La3+或Pr3+)。

钆镧系晶体具有非常高的红外吸收光谱和优异的电学性能。

与铯镧系晶体相比,钆镧系晶体的能级更加复杂,受到离子半径和电荷的影响更加明显。

3.铈镧系晶体:铈镧系晶体是一类新兴的稀土晶体,其中包含铈离子(Np3+)和镧离子(La3+或Pr3+)。

铈镧系晶体具有非常宽的光谱范围和优异的光学性能,并且在太阳电池和激光器件等领域具有广泛的应用。

总的来说,稀土离子的光谱和能级在晶体中的研究是稀土化学和材料科学领域的一个重要的研究方向,对于了解稀土离子在晶体中的相互作用和性质具有重要意义。

1/ 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档