稀土元素的能级跃迁和光谱特征
稀土材料功能概述

稀土发光材料、稀土荧光粉、用途功能技术介绍自古以来,人类就喜欢光明而害怕黑暗,梦想能随意地控制光,现在我们已开发出很多实用的发光材料。
在这些发光材料中,稀土元素起的作用很大,稀土的作用远远超过其它元素。
一、稀土发光材料物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在反回到基态的过程中,以光的形式放出能量。
以稀土化合物为基质和以稀土元素为激活剂的发光材料多属于后一类,即稀土荧光粉。
稀土元素原子具有丰富的电子能级,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,从而获得多种发光性能。
稀土是一个巨大的发光材料宝库,在人类开发的各种发光材料中,稀土元素发挥着非常重要的作用。
自1973年世界发生能源危机以来,各国纷纷致力于研制节能发光材料,于是利用稀土三基色荧光材料制作荧光灯的研究应运而生。
1979年荷兰菲利浦公司首先研制成功,随后投放市场,从此,各种品种规格的稀土三基色荧光灯先后问世。
随着人类生活水平的不断提高,彩电已开始向大屏幕和高清晰度方向发展。
稀土荧光粉在这些方面显示自己十分优越的性能,从而为人类实现彩电的大屏幕化和高清晰度提供了理想的发光材料。
稀土荧光材料与相应的非稀土荧光材料相比,其发光效率及光色等性能都更胜一筹。
因此近几年稀土荧光材料的用途越来越广泛,年用量增长较快。
根据激发源的不同,稀土发光材料可分为光致发光(以紫外光或可见光激发)、阴极射线发光(以电子束激发)、X射线发光(以X射线激发)以及电致发光(以电场激发)材料等。
二、光致发光材料—灯用荧光粉灯用发光材料自70年代末实用化以来,促使稀土节能荧光灯、金属卤化物灯向大功率、小型化、低光衰、高光效、高显色、无污染、无频闪、实用化、智能化、艺术化方向发展。
主要用于各类不同用途的光源,如照明、复印机光源、光化学光源等。
其中三基色荧光粉(由红、绿、蓝三种稀土的荧光粉按一定比例混合而成)制成的节能灯,由于光效高于白炽灯二倍以上,光色也好,受到世界各国的重视。
2-稀土离子的光谱特性

磁量子数与原子轨道
❖ 对于角量子数为l 的原子,m的取值有 (2l +1)个。(注意l 的取值从0开始,到±l)
❖ n、l 相同的轨道被称为等价轨道或简并轨道
s 轨道
物体而言); 电子的运动速度很大;
图中 表示原子核,一个小黑点代表 电子在这里出现过一次
➢小黑点的疏密表示电子在核外空间单 位体积内出现的概率的大小。
现代物质结构学说 电子云
描述核外电子运动状态的四个量子数
1、主量子数n(电子层)
原子核外的电子可以看作是分层排布 的。处于不同层次中的电子,离核的 远近也不同。离核愈近的电子层能级 愈低,离核愈远的电子层能级愈高。
原子半径 187.7 182.5 182.8 182.1 181.0 180.2 204.2 180.2 178.2 177.3 176.6 175.7 174.6 194.0 173.4 180.1
三价离子 La3+ Ce3+ Pr3+ Nd3+ Pm3+ Sm3+ Eu3+ Gd3+ Tb3+ Dy3+ Ho3+ Er3+ Tm3+ Yb3+ Lu3+ Y3+
❖ ② 泡利不相容原理:一条轨道最多容纳两个自旋 相反的电子。
各层最多容纳2n2 个电子
❖ 最外层不超过8个(K层2个) ❖ 次外层不超过18个, ❖ 倒数第三层不超过32个。
③ 洪特规则 (Hund’s rule):在等价轨道上,电子将尽先分占
各轨道,且自旋平行。(量子力学理论已证明:原子中自旋平行 电子的增多有利于能量的降低)
第2章 稀土元素的结构特征与材料性能

第02周:教学内容:稀土元素的结构特点:详述稀土元素在周期表中位置及电子层结构特点、价态;稀土元素的材料性能与物理化学性质1.简述稀土元素的材料性能;2.详述稀土元素的物理与化学性质;教学要求:熟悉并重点掌握稀土元素在周期表中位置及电子层结构特点、价态;稀土元素的物理与化学性质。
第2章稀土元素的结构特征与材料性能§1 稀土元素的结构特点一.稀土元素在元素周期表中的位置稀土元素在元素周期表中的第六周期的ⅢB族中。
镧和铈→镥(Lu)的15个镧系元素在同一格内。
显然,从镧—→镥这15个元素的性质极为相似。
由于第五周期ⅢB族中的钇原子半径接近于镧并且在镧系元素离子半径递减顺序中间,使得钇和镧系元素的化学性质相似。
由于稀土元素在周期表中的这种特殊位置,使得镧系元素的电子能级和离子半径呈现出微小连续变化而具有许多特性。
二.基态原子的电子排布当原子处在基态时,核外电子排布必须遵循下述三个原则:1.泡里(Pauli)不相容原理:即一个原子轨道最多只能排2个电子,而且这两个电子的自旋方向必须相反。
2.能量最低原理:在不违背泡里(Pauli)不相容原理的条件下,电子优先占据能态较低的原子轨道,使整个原子体系的能量处于最低。
3.洪特(Hund)规则:在能级高低相等的轨道上,电子尽可能分占不同的轨道。
作为洪特(Hund)规则的特例,能级高低相等的轨道上全空、半空半满和全满的状态是比较稳定的。
ⅠA~ⅡA ⅢA ~ⅦA ⅢB ~ⅦB 錒系Ac 周期ⅠB~ⅡB 镧系Ln↖↖7s 7p 7↖↖↖6s 6p 6d 6↖↖↖↖5s 5p 5d 5f 5↖↖↖↖↖4s 4p 4d 4f 4↖↖↖↖↖3s 3p 3d 3↖↖↖↖2s 2p 2↖↖↖1s 1↖图2~1原子核外电子填充次序图根据上述原则,基态原子的电子在原子轨道中填充排布的顺序是:1S2;2S2;2P6,3S2;3P6,4S2;3d10,4P6,5S2;4d10,5P6,6S2;4f14,5d10,6P6,7S2;5f14,6d10,7P6…。
稀土元素性质的决定因素和体现

稀土元素性质的决定因素和体现吴秀萍上海交通大学 F0511002班 5051109030摘要:稀土元素的性质十分相似,这与它们原子和离子特有的电子结构和半径大小有关,稀土元素在各方面的应用充分体现了它们的性质。
关键词:电子组态磁性光谱特性引言:稀土元素的发现至今已经经历了一个漫长的时期,人们对稀土元素独特的化学性质和物理性质的认识,也经历了一个逐渐深入的过程,因此能合理充分地应用稀土元素。
1 稀土元素的定义稀土元素是指周期表中第57(镧)到71(镥)号原子序的镧系元素,以及第三副族中的钪和钇共17个元素,它们在自然界中共同存在,性质非常相似。
由于这些元素发现的比较晚,又难以分离出高纯的状态,最初得到的是元素的氧化物,它们的外观似土,所以称它们为稀土元素。
[1]2 稀土元素性质的决定因素稀土元素的性质非常相似,但彼此之间又有一些差别,这都是由它们的原子和离子的电子结构,以及半径大小所决定的。
2.1 稀土元素原子和离子的电子结构特征电子结构特征是由电子组态来描述的。
电子组态是由主量子数n和角量子数l所规定的一种原子或离子中电子排布方式。
电子组态用符号 nl表示。
根据能量最低原理,镧系元素原子的基态电子组态由两种类型:[Xe]4f6s和[Xe]4f5d6s。
当原子受热或电磁辐射的激发,分别失去它们的5d6s或4f6s三个外层电子之后,都变成正三价的离子。
当4f轨道处于全空、半充满和全充满时,离子是较稳定的,所以镧、钆、镥的正三价离子是最稳定的。
原子序比镧大1或2的铈、镨,比钆大1的铽原子,也倾向于多电离出1或2个4f电子,变成稳定的正4价的离子。
原子序比钆、镥小1或2的钐、铕、镱,也倾向于少电离出1或2个电子,变成具有半充满或全充满的4f轨道,形成稳定的正2价的离子。
2.2 稀土元素的原子半径和离子半径镧系元素随着原子序的增加,核电荷相应增加,电子依次填入4f内层,而外层保持不变。
因为4f电子的径向分布不可能完全屏蔽核电荷对外层电子的引力,核电荷的增加对外层电子的引力也增大,因而造成镧系元素原子和正三价离子半径也随之减小,这就是“镧系收缩”现象。
稀土离子4f组态能级

稀土离子4f组态能级1. 引言稀土元素是指周期表中镧系元素(包括镧、铈、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱以及酪梨),它们在化学性质上具有相似的特点。
稀土元素的4f电子壳层结构对其独特的化学和物理性质起到了重要影响。
稀土离子是指稀土元素中失去部分或全部外层电子形成带电离子的过程。
这些带电离子在固体和溶液中表现出不同的能级结构,这对于解释稀土材料的光学、磁学和电学性质至关重要。
本文将详细介绍稀土离子4f组态能级,探讨其在材料科学中的应用。
2. 稀土离子的4f组态稀土元素的4f电子壳层由14个电子组成,可以形成不同的组态。
这些组态由于配位场和晶体场效应而发生变化。
根据洪特规则,4f电子填充顺序为:5d1 6s2 4f0, 5d1 6s2 4f1, 5d1 6s2 4f2, …, 5d1 6s2 4f14。
这些组态可以通过Hund’s规则来解释。
根据Hund’s规则,最低能量的组态是具有最大自旋多重度的组态。
例如,对于铽离子(Tm3+),其4f组态为5d1 6s24f12,其中4f电子填充到了不同的磁量子数状态上,以达到最低能量。
3. 稀土离子的能级结构稀土离子在晶体场下会出现能级分裂现象。
晶体场效应会导致原子轨道的对称性降低,从而使得一些轨道能量增加,一些轨道能量降低。
这种分裂使得稀土离子在吸收和发射光谱中表现出特征性的峰。
稀土离子的能级结构可以通过光谱技术来研究。
例如,紫外可见吸收光谱可以用来确定稀土离子的电子跃迁过程。
磁共振光谱则可以提供关于稀土离子的磁学性质和局域化态的信息。
4. 稀土离子的应用稀土离子的能级结构和性质使得它们在材料科学中具有广泛的应用。
4.1 光学应用稀土离子的能级结构决定了它们的吸收和发射光谱。
这些特征性的光谱可以用于荧光材料、激光器和LED等光学器件中。
例如,铒离子在红外区域有强烈吸收,因此可以用于红外吸收剂和红外传感器。
4.2 磁学应用稀土离子由于其特殊的电子结构,在磁学中有着重要的应用。
稀土荧光材料

稀土荧光材料
稀土荧光材料是一类具有特殊荧光性能的材料,由稀土元素和其他材料组成。
稀土元素是指周期表中镧系元素和锕系元素,它们的电子结构特殊,能够产生特定的荧光效应。
稀土荧光材料在荧光显示、荧光标记、荧光传感等领域有着广泛的应用,具有重要的科研和工程价值。
稀土荧光材料的荧光性能主要取决于稀土元素的电子结构和能级跃迁。
稀土元
素的4f电子能级分裂较小,电子跃迁具有特定的选择性和规则性,因此稀土元素
具有特殊的荧光性质。
不同的稀土元素和不同的配位环境可以产生不同的荧光颜色和荧光寿命,这为稀土荧光材料的设计和应用提供了丰富的选择空间。
稀土荧光材料具有许多优良的性能,如高荧光效率、宽发射光谱、长荧光寿命、抗光照衰减等。
这些性能使得稀土荧光材料在荧光显示领域得到广泛应用,如
LED照明、荧光屏幕、荧光打印等。
此外,稀土荧光材料还在生物医学领域具有
重要的应用,如荧光标记、荧光成像、荧光传感等,为生物医学诊断和治疗提供了重要的技术支持。
随着科学技术的不断发展,人们对稀土荧光材料的研究也在不断深入。
目前,
人们正在努力开发新型的稀土荧光材料,以满足不同领域的需求。
在材料合成、结构表征、荧光性能调控等方面取得了许多重要进展,为稀土荧光材料的设计和应用提供了新的思路和方法。
总的来说,稀土荧光材料具有独特的荧光性能和广泛的应用前景,对于推动材
料科学和应用技术的发展具有重要意义。
未来,随着人们对稀土荧光材料的深入研究和应用,相信它们将在更多领域展现出重要的作用,为人类社会的发展做出新的贡献。
稀土元素发光特性及其应用(精)

ty.
Keywords:rare_earth;luminescence material;laster material;fluorescence material
激光在医学上可当成/手术刀0用于眼科和牙科等外科手术.例如钬激光器[8]便可用于治疗青光眼.手术时,医生向结膜皮层插入一根石英光纤针,将钬激光器发射的激光输送到巩膜上,通过控制,在巩膜上烧出直径为0.2-0.3毫米的小孔,让一种药液泻流到结膜和巩膜之间的腔体内,以保持正常眼压,从而治愈青光眼病.脉冲钕激光器(Nd-YAG,钕钇铝石榴石已用于牙科医疗中,并逐步取代古老的钻孔机.该激光器具有1.06微米的波长,3瓦的最大输出功率,可用于治疗硬牙组织和软牙组织,还可除去牙齿腐烂物而不会让病人感觉到疼痛.另外,稀土激光材料(如Y3Al5O12Nd还可以用于激光治疗消化道息肉(包括大肠、胃、十二指肠,贲门和食管息肉、鼻咽部囊肿、咽部血管瘤等病症,均取得很好疗效[9].
第12卷第4期
化学研究Vol.12 No.42001年12月C HE MICAL RESEARC H Dec.2001
的La3+离和4f层全满的Lu3+离子以及4f层半充满的Gd3+离子为无色,其他稀土离子的颜色以Gd3+离子为对称轴,其颜色具体为[3]:
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
近年来,稀土元素作为光学高新材料的原料宝库,其价值和应用日益受到广泛的关注,世界各国都把目光投向稀土元素功能的开发上,稀土元素被称为21世纪的战略元素.稀土元素性质相似,最初是从相当稀少的矿物中,以氧化物的形态发现的.以前常把氧化物称为土,因此得名稀土.稀土元素属于元素周期表中ÓB族,它包括钪(Sc和钇(r和镧系元素在内,一共17种元素.镧系元素镧(La、铈(Ce、镨(Pr、钕(Nd、钷(Pm、钐(Sm、铕(Eu、钆(Gd、铽(Tb、镝(Dy、钬(Ho、铒(Er、铥(Tm、镱(Yb、镥(Lu.
第三章:稀土元素的光谱特征及

例如: Sm3+ Eu3+ Tm3+Yb3+的配合物中易出现
b. f-f跃迁光谱是类线性的光谱 谱带尖锐的原因是:处于内层的4f电子受到5s
和5p电子的屏蔽,受环境的影响较小,所以自由 离子的光谱是类原子的线性光谱。
[Kr]4d104fn5S25P65d0-16S2 于d-d跃迁吸收光谱有所区别: 由于d电子是处于外层,易受环境的影响使谱
带变宽。
如稀土离子的f-f 跃迁谱带的分裂为100cm-1左 右,而过渡金属元素的d-d跃迁谱带的分裂
4I15/2 4F9/2
6F1/2 6F56/H2 6F56/F23/72/2
6H7/2 6H9/2 6H11/2 6H13/2
6H15/2 Dy
§3-2稀土离子的吸收光谱 稀土离子的吸收光谱的产生归因于三种情
况: 来自fn组态内的能级间跃迁即f-f跃迁; 组态间的能级间跃迁即f-d跃迁; 电荷跃迁如配体向金属离子的电荷跃迁。
Er3+ (4f11) 364-652 微红
Ho3+ (4f10) 287-641 粉红
黄
Dy3+ (4f9 ) 350-910 黄
Tb3+ (4f8) 284-477 无色
Sm2+ (4f6)
红褐色
Yb2+ (4f14)
绿色
从上表可看出: RE3+的颜色,其中4fn ,4f14-n组态的离子有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
975
360-780 364-652
无色
绿色 微红
Pm3+(4f4) 548-735
Sm3+(4f5) 362-402 Eu3+ (4f6) 375-394 Gd3+ (4f7) 272-275 Eu2+ (4f7) 黄色
粉红
黄 黄 无色 无色
Ho3+ (4f10)
Dy3+ (4f9 ) Tb3+ (4f8) Sm2+ (4f6) Yb2+ (4f14)
元素
吸收范围(nm) 颜色 无
பைடு நூலகம்
元素
吸收范围(nm) 无
颜色 无色
La3+(4f0) 无
Lu3+ (4f14)
Ce3+ (4f1) 210-251
Pr3+ (4f2) 444 -588 Nd3+ (4f3) 354-868
无色
绿色 微红
Yb3+ (4f13)
Tm3+ (4f12) Er3+ (4f11)
c.中心离子与配体的距离和配位数: 中心离子与配体的距离和配位数对谱带的 位移及方向均产生影响,从下表数据可看出: 中心离子与配位原子之间的距离越短,配 位数越小,谱带向低波数方向位移越大。 例如:在Pr3+,Nd 3+的氧基丁二酸盐配 合物中,随着氧基丁二酸盐逐步取代水合离子 中的水分子时,使RE-O 之间的平均距离减小, 谱带向长波方向位移, (1-β,)增大,配 位数(CN)减小。
4F 9/2
18
16 14 12
6F 3/2
10
8 6 4 2 Pr
1G 4 3F 3F4 3 3F 2 3H 6 3H 5 3H 4
6F 6H 7/2 5/2
6H 7/2 6H 9/2 6H 11/2 6H 13/2 6H 15/2
Sm
Eu
Tb
Dy
三价稀土离子的能级图
§3-2稀土离子的吸收光谱 稀土离子的吸收光谱的产生归因于三种情 况: 来自fn组态内的能级间跃迁即f-f跃迁; 组态间的能级间跃迁即f-d跃迁; 电荷跃迁如配体向金属离子的电荷跃迁。 1.f-f跃迁光谱: 指 fn组态内不同J能级间跃迁产生的光谱。
f-f跃迁光谱的特点: a.f-f电偶极跃迁宇称选则规则禁阻。 因此不能观察到气态稀土离子的f-f电 偶极跃迁吸收光谱。 但在液体和固体中由于受配体场的微 扰,可观察到响应的谱带,但强度很弱 (相对于d-d跃迁) 摩尔消光系数 Є=0.5. (l/molcm)。
b. f-f跃迁光谱是类线性的光谱 谱带尖锐的原因是:处于内层的4f电子 受到5s 和5p电子的屏蔽,受环境的影响较 小,所以自由离子的光谱是类原子的线性 光谱。[Kr]4d104fn5S25P65d0-16S2 于d-d跃迁吸收光谱有所区别: 由于d电子是处于外层,易受环境的影 响使谱带变宽。 如稀土离子的f-f 跃迁谱带的分裂为 100cm-1左右,而过渡金属元素的d-d跃迁 谱带的分裂1000~3000cm-1左右。
2.f-d跃迁光谱 稀土离子的f-d跃迁光谱不同于f-f跃迁光 谱。 4f n → 4f n-15d1跃迁是组态间的跃迁。 这种跃迁是宇称选律规则允许的,因此 4fn→4fn-15d1跃迁强度较大。 摩尔消光系数 Є=50-800 l/molcm。 稀土离子(III)的4fn → 4fn-15d1 跃迁吸收带一般出现在紫外光区。 并具有以下 特点:
Φ0 Φ0 Φ0 Φ0
Tm3+/Tm2+<-1.51 v Sm3+/Sm2+=-1.51 v Yb3+/Yb2+=-1.21 v Eu3+/Eu2+=-0.429 v
氯化物的第一电荷跃迁谱带的位置: Eu3+ (33200cm-1)< Yb3+ (36700cm-1)< Sm3+(43100cm-1)< Tm3+ (46800cm-1). 电荷跃迁不仅可以出现在稀土配合物中, 在过渡金属配合物中也可出现。 如:MnO4-离子中,Mn(VII)无3d电子, 所以不可能发生d-d跃迁,它显色的主要原因 就是电荷跃迁。
E2F5/2为基态
E3H4为基态
X103cm-1
5D 3
24 22 20
3P 2
5D 3 5D 2 4G 7/2 4G 5/2 5D 1 5D 0 6F 1/2 6F 11/2 6F 9/2 6F 7/2 6H 15/2 6H 13/2 6H 11/2 6H 9/2 6H 7/2 6H 5/2 7F 6 7F 5 7F 4 7 F3 7F 7 2 F 1 7F 0 7F 0 7F 1 7F 2 7F 3 7F 4 7F 5 7F 6 6F 5/2 4I 5D 4 15/2
§3-3稀土配合物的吸收光谱 当稀土离子与配体形成配合物时,配 体场对稀土离子的f-f跃迁光谱产生一定 的影响,通常使f-f跃迁谱带位置发生移 动,同时也会改变谱带的强度。 下面我们将从这两个方面分别讨论稀 土配合物的吸收光谱。
1.配合物的谱带位移(电子云重排效应) (1)电子云重排效应:(nephelauxetic) 当稀土离子与不同的配体形成配合物时, 稀土离子的相同J能级间的跃迁谱带发生微小的 位移,这种现象称为谱带位移或电子云重排效 应。 例如:PrCl63-、PrBr63-和Pr(H2O)63+的 3H → 1D 的跃迁谱带的位置( σ)出现在: 4 2 16890,16810,16780cm-1 处,即电子云重 排效应造成的。
c.谱带的范围较广 在近紫外、可见光和近红外都能得到 稀土离子的光谱。 Sc,Y,La,Lu三价离子是封闭壳层,从 基态跃迁至激发态所需能量较高,因而 它们在 200-1000nm范围内无吸收,无 色。
Ce3+ Eu3+Gd3+Tb3+ 虽然在200~1000nm范围内有吸收, 但大部分落在紫外区,所以通常也无色。 Yb3+的吸收落在近红外区所以也无色 Pr3+ Nd3+Pm3+ Sm3+ Dy3+ Ho3+ Er3+ Tm3+ 吸收在可见光区,所以有色。
电子云重排效应产生的原因: 形成配合物后中心离子与配体之间存 在着某种程度的共价作用,这种共价作用 的程度虽然较弱,但可使稀土离子的能级 发生微小的改变,引起吸收谱带发生微小 的位移。不同的配体共价作用不同,所以 引起能级的改变量不同,故谱带位移程度 不同。
共价作用产生的机理: 4f轨道直接参与分子轨道的形成及成 键,使4f轨道能级发生改变,导致谱带位 移; 配体的电子云部分转移到稀土离子的 空的6s6p轨道上形成部分共价键,同时 对4f轨道能级产生影响,使4f轨道能级发 生改变,导致谱带位移。
(2)影响电子云重排效应的因素: a.配体的性质: 稀土离子配合物电子云重排效应的 大小可定量的用电子云重排参数 (1-β,)来表示。 (1-β,)越大表示谱带位移程度 越大。
稀土配合物的(1-β,)顺序如下: F-<H2O<acac(乙酰丙酮)<bac(苯甲酰丙酮)<dipy<phen< Cl- < Br- < I- < O22b.金属离子的性质: 不同的金属离子与同一配体结合能力不同, 引起谱带位移和方向不同。金属离子与配体键和 程度越大,谱位移越大,通常谱带红移。但也有 个别紫移。
第三章:稀土元素的光谱特征及磁性
稀土元素由于具有未充满的4f电子壳层和 4f电子被外层的5s,5p电子屏蔽的特性,使稀 土元素具有极复杂的类线性光谱。吸收光谱使 稀土离子大多有色,发射光谱使许多稀土化合 物产生荧光和激光。荧光光谱将放在后面的章 节,本章主要介绍吸收光谱、激光发射光谱和 磁学性质。
[Xe]4fn5d0-16s2 [Kr]4d104fn5S25P65d0-16S2
287-641
350-910 284-477
粉红
黄 黄 无色 红褐色 绿色
从上表可看出:
RE3+的颜色,其中4fn ,4f14-n组态的离子有
相近的颜色 。 但是稀土离子的这种颜色的“规律性”并无内 在结构上的联系,因为吸收谱带的位置并不相 同,物质颜色相近是是透过的光波的混合的结 果,或许是某种巧合。
40 0 -20
RE2+
6s 4f
5d
La Pr Pm Eu Tb Ho Tm Lu Ce Nd Sm Gd Dy Er Yb
La Pr Pm Eu Tb Ho Tm Lu Ce Nd Sm Gd Dy Er Yb
3.电荷跃迁光谱 稀土离子的电荷跃迁光谱易发生在配合物 中。指配体向金属离子发生电荷跃迁而产生的 吸收光谱,是电子云从配体的分子轨道向金属 离子的轨道从新分配的结果。
b.对于给定的配体来说: 当稀土离子一定时,配体的还原性强,易给 出电子,配合物中易出现电荷跃迁吸收谱带。 如:对于Sm3+ Yb3+的环戊二烯和环辛四 烯配合物来 说,由于环辛四烯的还原性较环 戊二烯强,因此在 Sm3+ Yb3+的环辛四烯配 合物中可以看到电荷跃迁吸收谱带。
RE
RE
(2). 谱带的位置: a.配体的还原性强,配合物中易出现电荷跃迁吸收 谱带,谱带的位置越向低波数方向移动。 例如: Sm3+ Eu3+ Yb3+的Br-配合物电荷跃迁 吸收谱带的位置比Cl-的配合物电荷跃迁吸收谱 带的位置出现在较低波数处。 b.对于给定的配体来说:金属离子氧化性强,越 易获得电子,电荷跃迁吸收谱带越易出现在较 低波数处。
稀土离子(III)的f-f跃迁光谱主要是: 4fn组态:基态→激发态跃迁的造成的. 其中Sm3+ Eu3+除了基态(6H5/2, 7F0)向激 发态跃迁外,还存在着由第一、二激发态 ( Sm3+ :6H7/2 和Eu3+ :7F1 7F2)向更高能态 的跃迁。能级图.ppt Sm3+ Eu3+的这种有别于其它三价稀土离子 的情况是由于Sm3+ 的6H7/2 和Eu3+ 的7F1 7F2 能级与基态能级差太小,常温下部分离子可居于 上述能态的原因。