最新运筹学学年期末考试题A卷及答案

合集下载

运筹学2024学年期末考试题A卷及答案

运筹学2024学年期末考试题A卷及答案

运筹学2024学年期末考试题A卷及答案一、选择题(每题5分,共25分)1. 运筹学的主要研究方法是()A. 定性分析B. 定量分析C. 定性分析与定量分析相结合D. 案例分析答案:C2. 下列哪个不是运筹学的基本分支?()A. 线性规划B. 非线性规划C. 动态规划D. 英语翻译答案:D3. 在线性规划问题中,约束条件是()A. 等式约束B. 不等式约束C. 等式与不等式约束D. 以上都对答案:D4. 下列哪个算法适用于解决非线性规划问题?()A. 单纯形法B. 拉格朗日乘数法C. 牛顿法D. 二分法答案:C5. 在库存管理中,EOQ模型适用于()A. 确定性库存系统B. 随机库存系统C. 连续库存系统D. 离散库存系统答案:A二、填空题(每题5分,共25分)6. 运筹学起源于__________战争期间。

答案:第二次世界大战7. 线性规划问题的标准形式是:max(或min)__________,s.t.__________。

答案:目标函数;约束条件8. 在非线性规划问题中,若目标函数和约束条件均为凸函数,则该问题为__________规划问题。

答案:凸规划9. 库存管理中的ABC分类法是根据__________、__________和__________三个指标进行的。

答案:重要性、价值、需求量10. 在排队论中,顾客到达和服务时间的分布通常假设为__________分布。

答案:负指数分布三、计算题(每题15分,共60分)11. 某工厂生产A、B两种产品,生产一个A产品需要2个工时和3个原材料,生产一个B产品需要1个工时和2个原材料。

工厂每周可利用的工时为120小时,原材料为150个。

A产品的利润为30元,B产品的利润为20元。

请制定生产计划,以使工厂获得最大利润。

答案:生产A产品20个,B产品50个,最大利润为1300元。

12. 某公司有两种投资方案:方案一需投资100万元,年收益率为10%;方案二需投资150万元,年收益率为12%。

运筹学期末试题及答案

运筹学期末试题及答案

运筹学期末试题及答案一、选择题(每题2分,共20分)1. 线性规划问题的基本解是:A. 唯一解B. 可行域的顶点C. 可行域的内部点D. 可行域的边界点2. 以下哪项不是运筹学中的常用数学工具?A. 线性代数B. 微积分C. 概率论D. 量子力学3. 单纯形法是解决哪种类型问题的算法?A. 整数规划B. 非线性规划C. 线性规划D. 动态规划4. 以下哪个是网络流问题中的术语?A. 节点B. 弧C. 流量D. 所有以上5. 以下哪个不是运筹学中的优化问题?A. 最大化问题B. 最小化问题C. 等值问题D. 线性规划问题...(此处省略其他选择题)二、简答题(每题10分,共30分)1. 简述线性规划问题的基本构成要素。

2. 解释单纯形法的基本思想及其在解决线性规划问题中的应用。

3. 描述网络流问题中的最短路径算法,并简述其基本原理。

三、计算题(每题25分,共50分)1. 给定以下线性规划问题:Max Z = 3x1 + 5x2s.t.2x1 + x2 ≤ 10x1 + 3x2 ≤ 15x1, x2 ≥ 0请找出该问题的最优解,并计算最大值。

2. 考虑一个网络流问题,其中有三个节点A、B、C,以及四条边。

边的容量和成本如下表所示:| 起点 | 终点 | 容量 | 成本 ||||||| A | B | 10 | 2 || A | C | 5 | 3 || B | C | 8 | 1 || C | B | 3 | 4 |假设从节点A到节点B的需求量为8,从节点A到节点C的需求量为5。

使用最小成本流算法求解此问题,并计算总成本。

四、论述题(每题30分,共30分)1. 论述运筹学在现代企业管理中的应用,并给出至少两个实际案例。

运筹学期末试题答案一、选择题答案:1. B2. D3. C4. D5. C...(此处省略其他选择题答案)二、简答题答案:1. 线性规划问题的基本构成要素包括目标函数、约束条件和变量。

最新运筹学试题及答案(共两套)

最新运筹学试题及答案(共两套)

运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。

每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。

运筹学上年的期末考试试题A卷

运筹学上年的期末考试试题A卷

仅供参考一、简答题(每小题3分,共21分)1.线性规划问题在何条件下无解?2.整数规划问题有否无穷多组最优解?3.动态规划问题一定会有解吗?它是否会有多组最优解?4.一个线性规划问题若无可行解,则其对偶问题的解的情况如何?5.图论中的欧拉图一定是哈米尔图吗?哈米尔顿图一守是欧拉图吗?6.一个网络最大流问题在何条件下存在“增广链”?则请写出其相应的割平面方程,并指出下一步该如何求解?二、(共34分)Max Z=7x1+9x23x1+4x2≤24 b1(LP)8x1+3x2≤24 b2X1,x2≥0(1)请用单纯形法求解(2)(LP)是否有无穷多组最优解?若有,请求出另一组解,若无请简要说明理由。

(3)请指出b1、b2对应的影子价格?(4)其对偶问题(DLP)是否有最优解?(5)若b1由24变为18,则原问题的最优解的最优性、可能性会有何变化?若有变化,不要求坐你求出新的最优解,但是要求你简述如何做能够最方便地求出新的最优解?(不必求解,简述思想即可)三、(共7分)请写出下述问题的对偶问题。

Max Z =-9x1+7x2-8x37x1-5x2+4x3≤84x1+5x2-3x3≥5-3x1+4x2+2x3=-3X1无限制,x2 ≥0,x3≤0四、(共8分)请自编一个有关目标线性规划问题的实例,并列出数学模型。

(不必求解)五、(共10分)对下述4人于4种活的问题,要求每人干一种活,每种活一人干,希望总耗时最少,则六、(共12分)某厂有车600台,计划用3年,已知每年可能有两种生产任务;甲任务:获利1500元/台,年,设备损坏率40%乙任务:获利1200元/台,年,设备损坏率10%问:如何安排获利最高?七、(每小题4分,共8分)1.画出其最小生成树2.求出从V1到V7的最短路。

运筹学试卷A卷+答案

运筹学试卷A卷+答案

学年度第一学期期末考试《运筹学》(八)卷专业班级姓名学号一、单选题(每题的备选答案中只有一个最佳答案,每题2分,共30分)I、运筹学的主要内容包括:()A.线性规划B.非线性规划C.存贮论D.以上都是2、下面是运筹学的实践案例的是:()A.丁谓修守B.田忌赛马C.二战间,英国雷达站与防空系统的协调配合D.以上都是3、规划论的内容不包括:()A.线性规划B.非线性规划C.动态规划D.网络分析4、关于运筹学的原意,卜冽说法不正确的是:Λ.作业研究B.运作管理C.作战研究D.操作研究5,运筹学模型:A.在任何条件下均有效B.只有符合模型的简化条件时才有效C.可以解答管理部门提出的任何问题D.是定性决策的主要工具6、最早运用运筹学理论的是:Λ.二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B.美国最早将运筹学运用到农业和人口规划问逸上C.二次世界大战后,英国政府将运筹学运用到政府制定计划D.50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上7、下列哪些不是运筹学的研究范用:A.库存控制B.动态规划C.排队论D.系统设计8、对运筹学模型的下列说法,正确的是:A.在任何条件下均有效B.只有符合模型的简化条件时才有效C.可以解答管理部门提出的任何问题D.是定性决策的主要工具9、线性规划具有多重最优解是指()A.目标函数系数与某约束系数对应成比例B.最优表中存在非基变量的检验数为零C.可行解集合无界D.基变量全部大丁•零10.图解法通常用于求解有()个变量的线性规划问题。

A.1B.2C.4D.5Ik以下不属于运筹学求解目标的是:A.最优解B.次优解C.满意解D.劣解12、线性规划问返的最优解()为可行解。

A.一定B.不一定C.一定不D.无法判断13、将线性规划问感转化为标准形式时,下列说法不正确的是:A.如为求Z的最小值,需转化为求-Z的垠大值B.如约束条件为W,则要增加一个松驰变量C.如约束条件为2,则要减去一个剩余变量D.如约束条件为=,则要增加一个人工变易14、关于图解法,下列结论最正确的是:A.线性规划的可行域为凸集。

《运筹学》_期末考试_试卷A_答案

《运筹学》_期末考试_试卷A_答案

页眉内容《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。

2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。

3. 如果一个线性规划问题有可行解,那么它必有最优解。

4.对偶问题的对偶问题一定是原问题。

5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。

6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。

7. 度为0的点称为悬挂点。

8. 表上作业法实质上就是求解运输问题的单纯形法。

9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日。

如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。

(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0五、求解下面运输问题。

运筹学试题及答案(两套)

运筹学试题及答案(两套)

运筹学试题及答案(两套)运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。

每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3)B.(3, 4, 0, 0)C.(2, 0, 1, 0)D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=dpdpZ B.) (m in 22211+ -+- + =d dpdpZ C.) (m in 2211+ --- + =d dpdpZ D.) (m in 22211+ --+ + =d dpdZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。

运筹学试卷A试题

运筹学试卷A试题

D、分支定界法在处理整数规划问题时,借用线性规划单纯形法的基本思想,在求相应的线性模型解的同时,逐步加入对各变量的整数要求限制,从而把原整数规划问题通过分支迭代求出最优解。

7、下列变量组是一个闭回路的有()A、{x21,x11,x12,x32,x33,x23}B、{ x11,x12,x23,x34,x41,x13}C、{x21,x13,x34,x41,x12,x14}D、{ x12,x22,x32,x33,x23,x21}8、工序(i,j)的最早开工时间T ES(i,j)等于()A、T E(i)B、max{ T Es(k)+ t ki }C、T L(i)D、min{ T L(j)- t ij }9、对于不确定型的决策,某人采用悲观主义准则进行决策,则应在收益表中()A、大中取小B、大中取大C、小中取小D、小中取大10、以下哪项是决策结果的方法程序()A、收集信息-确定目标-提出方案-方案优化-决策B、确定目标-收集信息-决策-提出方案-优化方案C、确定目标-收集信息-提出方案-方案优化-决策D、确定目标-提出方案-收集信息-方案优化-决策单项选择题答题表二、判断题,正确打√,错误打×, 并将修改建议简写在对应题号下的改错栏。

(20分,每题2分)1、线性规划问题的每一个基可行解对应可行域的一个顶点。

(√)2、图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

(√)3、线性规划模型中增加一个约束条件,可行区域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。

(√)4、紧前工序是前道工序,后序工序是紧后工序。

( )5、在折衷主义准则中,乐观系数α的确定与决策者对风险的偏好有关。

( )6、旅行售货员问题是遍历每一条边的问题。

( )7、按最小元素法给出的初始基可行解,从每一空格出发可以找出而且仅能找出唯一的闭回路。

(√)8、在目标规划模型中,正偏差变量应取正值,负偏差变量应取负值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学2015年学年第二学期期末考试题(a 卷)注意事项:1、答题前,考生务必将自己的姓名、班级填写在答题卡上。

2、答案用钢笔或圆珠笔写在答题卡上,答在试卷上不给分。

3、考试结束,将试卷和答题卡一并交回。

一、 单项选择题(每小题1分,共10分)1:在下面的数学模型中,属于线性规划模型的为( ) ⎪⎩⎪⎨⎧≥≤+=0Y ,X 3XY .t .s Y X 4S max .A ⎪⎩⎪⎨⎧≥-≥-+=0Y ,X 1Y X 2.t .s Y X 3S min .B ⎪⎩⎪⎨⎧≥≤-+=0Y ,X 2Y X .t .s Y X S max .C 22 ⎪⎩⎪⎨⎧≥≥+=0Y ,X 3Y X .t .s XY2S min.D 2.线性规划问题若有最优解,则一定可以在可行域的 ( )上达到。

A .内点 B .顶点 C .外点 D .几何点 3:在线性规划模型中,没有非负约束的变量称为 ( )A .多余变量B .松弛变量 C.自由变量 D .人工变量4:若线性规划问题的最优解同时在可行解域的两个顶点处达到,那么该线性规划问题最优解为( )A.两个B.零个C.无穷多个D.有限多个 5:原问题与对偶问题的最优( )相同。

A .解B .目标值C . 解结构D .解的分量个数 6:若原问题中i x 为自由变量,那么对偶问题中的第i 个约束一定为 ( )A .等式约束B .“≤”型约束C .“≥”约束D .无法确定7:若运输问题已求得最优解,此时所求出的检验数一定是全部( ) A .小于或等于零 B .大于零 C .小于零 D .大于或等于零 8:对于m 个发点、n 个收点的运输问题,叙述错误的是( ) A .该问题的系数矩阵有m ×n 列 B .该问题的系数矩阵有m+n 行C .该问题的系数矩阵的秩必为m+n-1D .该问题的最优解必唯一 9:关于动态规划问题的下列命题中错误的是( ) A 、动态规划分阶段顺序不同,则结果不同 B 、状态对决策有影响C 、动态规划中,定义状态时应保证在各个阶段中所做决策的相对独立性D 、动态规划的求解过程都可以用列表形式实现10:若P 为网络G 的一条流量增广链,则P 中所有正向弧都为G 的( ) A .对边 B .饱和边 C .邻边 D .不饱和边二、 判断题(每小题1分,共10分)1:图解法和单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

(√) 2:单纯形法的迭代计算过程是从一个可行解转换到目标函数值更大的另一个可行解。

(× ) 3:一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。

(√ ) 4:若线性规划问题中的,i j b c 值同时发生改变,反映到最终单纯形表中,不会出现原问题与对偶问题均为非可行基的情况。

(×) 5:若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优解。

(√ ) 6:运输问题的表上作业法实质上就是求解运输问题的单纯形法。

(√ ) 7:对于动态规划问题,应用顺推或逆推解法可能会得出不同的最优解。

(× ) 8:动态规划的基本方程是将一个多阶段的决策问题转化为一系列具有递推关系的单阶段的决策问题。

(√ )9:图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点与点的相对位置、点与点连线的长短曲直等都要严格注意。

(× ) 10:网络最短路线问题和最短树问题实质上是一个问题。

(× ) 三、 填空题(每空1分,共15分)1:线性规划中,满足非负条件的基本解称为___基本可行解_____,对应的基称为___可行基_____。

2:线性规划的目标函数的系数是其对偶问题的__右端常数______;而若线性规划为最大化问题,则对偶问题为___最小化问题_____。

3:在运输问题模型中,1m n +-个变量构成基变量的充要条件是__不含闭回路______。

4:动态规划方法的步骤可以总结为:逆序求解____最优目标函数____,顺序求____最优策略、____、___最优路线_____和___最优目标函数值_____。

5:工程路线问题也称为最短路问题,根据问题的不同分为定步数问题和不定步数问题;对不定步数问题,用迭代法求解,有____函数____迭代法和____策略____迭代法两种方法。

6:在图论方法中,通常用____点____表示人们研究的对象,用___边_____表示对象之间的某种联系。

7:一个_____无圈___且____连通____的图称为树。

四、计算题(每小题15分,45分)1:考虑线性规划问题:1231231231231236max 2433420408022..32,0,z x x x x x x x x x s t x x x x x x =++++⎧⎪+ ≤≤≤+ ⎪⎨++≥⎪⎪⎩ (a ):写出其对偶问题;(b ):用单纯形方法求解原问题; (c ):用对偶单纯形方法求解其对偶问题; (d ):比较(b )(c )计算结果。

1:解 a ):其对偶问题为123123123123123min 604080324..2222,3,40z y y y y y y y y y s t y y y y y y =++++⎧⎪+ + 3⎪⎨++≥≥≥≥⎪⎪⎩------(3分)------(5分)------(5分)d ):对偶问题的实质是将单纯形法应用于对偶问题的求解,又对偶问题的对偶即原问题,因此(b )、(c )的计算结果完全相同。

--------(2分)2:某公司打算在三个不同的地区设置4个销售点,根据市场预测部门的估计,在不同的地区设置不同数量的销售店,每月可得到的利润如下表所示。

试问各个地区应如何设置销3:对下图中的网络,分别用破圈法和生长法求最短树。

3:解 破圈法 (1):取圈3121,,,v v v v ,去掉边13[,]v v 。

(2):取圈2432,,,v v v v ,去掉边24[,]v v 。

(3):取圈2352,,,v v v v ,去掉边25[,]v v 。

(4):取圈34553,,,,v v v v v ,去掉边34[,]v v 。

在图中已无圈,此时,6p =,而15q p =-=,因此所得的是最短树。

结果如下图,其树的总长度为12。

.------(6分).------(3分)生长法根据生长法的基本原理,得以下计算表据此也得到与破圈法相同的最短树。

.------(6分)五、简答题(每小题10分,共20分)1.试述单纯形法的计算步骤,并说明如何在单纯形表上判断问题是具有唯一最优解、无穷多最优解和无有限最优解。

解:1:单纯形法的计算步骤第一步:找出初始可行解,建立初始单纯形表。

第二步:判断最优,检验各非基变量jx 的检验数1j B j jC B P C σ-=-。

若所有的j σ≤,则基B 为最优基,相应的基可行解即为基本最优解,计算停止。

若所有的检验数j σ≤,又存在某个非基变量的检验数所有的0k σ=,则线性规划问题有无穷多最优解。

若有某个非基变量的检验数j σ>,并且所对应的列向量的全部分量都非正,则该线性规划问题的目标函数值无上界,既无界解,停止计算。

第三步:换基迭代当存在0k σ>,选k x 进基来改善目标函数。

若检验数大于0的非基变量不止一个,则可以任选其中之一来作为进基变量。

进基变量kx 确定后,按最小比值原则选择出基变量rx 。

若比值最小的不止一个,选择其中之一出基。

做主元变换。

反复进行上述过程就可以找到最优解或判断出没有有限最优解。

------(3分)2.简述最小费用最大流问题的提法以及用对偶法求解最小费用最大流的原理和步骤。

解:2:最大流问题就是在一定条件下,要求流过网络的物流、能量流或信息流等流量最大的问题。

如果已知流过弧(,)i j v v 的单位流量要发生ijc 的费用,要求使总费用为最小的最大流流量分配方法。

即在上述最大流问题上还应增加关于费用的目标:min ij ijx c ∑。

这种问题称为最小费用最大流问题。

模型可以描述为:min max 0,..0ij ij ij ji ij j ij j x c ffi s x x i s t s t fi x b t⎧=⎧⎪⎪-=≠⎨⎪⎨⎪-=⎩⎪⎪⎩≤≤∑∑∑采用对偶法求解最大流最小费用问题,其原理为:用福德—富克逊算法求出网络的最大流量,然后用Ford 算法找出从起点sv 到终点tv 的最短增广链。

在该增广链上,找出最大调整量ε,并调整流量,得到一个可行流。

则此可行流的费用最小。

如果此时流量等于最大流量,则目前的流就是最小费用最大流,否则应继续调整。

对偶法的步骤归纳如下:第0步:用最大流方法找出网络最大流量max f ,并以0流作为初始可行流。

第一步:对于当前可行流,绘制其扩展费用网络图。

第二步:用Ford 算法求出扩展费用网络图中从s v 到t v 的最短路。

第三步:在最短路线对应的原网络中的增广链上,调整流量,得到新的可行流。

第四步:绘制可行流图。

若可行流的流量等于最大流量maxf ,则已找到最小费用最大流,算法结束;否则从第一步开始重复上述过程。

相关文档
最新文档