信号与系统实验4
信号与系统实验(MATLAB 西电版)实验4 离散时间信号的时域基本运算_OK

图 4.5 序列及其平移
2021/7/3
16
实验4 离散时间信号的时域基本运算
2.
已知序列f(k)={2,3,1,2,3,4,3,1},对应的k值为 -3≤k≤4 f1(k)=f(k-2),f2(k)=f(-k),f3(k)=f(k-1)ε(k), f4(k)=f(-k+2),f5(k)=f(k+1), f6(k)=f(k-2)ε(k),f7(k)=f(k+2)ε(k)
5) MATLAB x1=-2:2; %序列1 k1=-2:2; k0=2; k=k1+k0; f=x1; stem(k,f,′filled′); axis([min(k)-1,max(k)+1,min(f)-0.5,max(f)+0.5]); 序列及其平移如图4.5
2021/7/3
15
实验4 离散时间信号的时域基本运算
2021/7/3
17
实验4 离散时间信号的时域基本运算
(1) 在计算机中输入程序,验证并记录实验结果,经过 (2) 对于设计性实验,应自行编制完整的实验程序,重复 验证性实验的过程,并在实验报告中给出完整的自编程序。
2021/7/3
18
axis([min(k)-1,max(k)+1,min(f)-0.5,max(f)+0.5]);
序列及其翻转如图4.3所示。
2021/7/3
11
实验4 离散时间信号的时域基本运算
图 4.3 序列及其翻转
2021/7/3
12
实验4 离散时间信号的时域基本运算
4)
MATLAB
x1=-2:2;
%序列1
两个序列的乘法如图4.2
2021/7/3
信号与系统实验四实验报告

实验四 时域抽样与频域抽样一、实验目的加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。
掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。
加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。
二、 实验原理时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率sam f 大于等于2倍的信号最高频率m f ,即m sam f f 2≥。
时域抽样是把连续信号x (t )变成适于数字系统处理的离散信号x [k ] ;信号重建是将离散信号x [k ]转换为连续时间信号x (t )。
非周期离散信号的频谱是连续的周期谱。
计算机在分析离散信号的频谱时,必须将其连续频谱离散化。
频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件。
三.实验内容1. 为了观察连续信号时域抽样时抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进行抽样,试画出抽样后序列的波形,并分析产生不同波形的原因,提出改进措施。
)102cos()(1t t x ⨯=π答: 函数代码为: t0 = 0:0.001:0.1;x0 =cos(2*pi*10*t0);plot(t0,x0,'r')hold onFs =50;t=0:1/Fs:0.1;x=cos(2*pi*10*t); stem(t,x); hold offtitle('连续信号及其抽样信号')函数图像为:)502cos()(2t t x ⨯=π同理,函数图像为:)0102cos()(3t t x ⨯=π同理,函数图像为:由以上的三图可知,第一个图的离散序列,基本可以显示出原来信号,可以通过低通滤波恢复,因为信号的频率为20HZ,而采样频率为50>2*20,故可以恢复,但是第二个和第三个信号的评论分别为50和100HZ,因此理论上是不能够恢复的,需要增大采样频率,解决的方案为,第二个信号的采样频率改为400HZ,而第三个的采样频率改为1000HZ,这样可以很好的采样,如下图所示:2. 产生幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘制波形。
(仅供参考)信号与系统第四章习题答案

e −sT
=
−sT
2 − 4e 2
+ 2e −sT
Ts 2
(f) x(t) = sin πt[ε (t)− ε (t − π )]
sin π tε (t ) ↔
π s2 + π 2
L[sin
πtε (t
−π
)]
=
L e jπt
− 2
e− jπt j
ε (t
−π
)
∫ ∫ =
1 2j
∞ π
e
jπt e−st dt
4.3 图 4.2 所示的每一个零极点图,确定满足下述情况的收敛域。
(1) f (t) 的傅里叶变换存在
(2) f (t )e 2t 的傅里叶变换存在
(3) f (t) = 0, t > 0
(4) f (t) = 0, t < 5
【知识点窍】主要考察拉普拉斯变换的零极点分布特性。 【逻辑推理】首先由零极点写出拉普拉斯变换式,再利用反变换求取其原信号,即可求取其收
= cosϕ eω0tj + e−ω0tj − sin ϕ eω0tj − e−ω0tj
2
2j
=
cos 2
ϕ
−
sin 2
ϕ j
e
ω0 t j
+
cosϕ 2
+
sin ϕ 2j
e −ω 0tj
F(s) =
L
cosϕ 2
−
sin ϕ 2j
eω0tj
+
cos 2
ϕ
+
sin ϕ 2j
e
−ω0
t
j
ε
(t
)
∫ ∫ =
数字信号处理EXPIV型教学实验系统实验四常规实验exp4_常规

第四章常规实验指导实验一常用指令实验一、实验目的1、了解DSP开发系统的组成和结构;2、熟悉DSP开发系统的连接;3、熟悉CCS的开发界面;4、熟悉C54X系列的寻址系统;5、熟悉常用C54X系列指令的用法。
二、实验设备计算机,CCS 2.0版软件,DSP仿真器,实验箱。
三、实验步骤与内容1、系统连接进行DSP实验之前,先必须连接好仿真器、实验箱及计算机,连接方法如下所示:2、上电复位在硬件安装完成后,确认安装正确、各实验部件及电源连接正常后,接通仿真器电源,启动计算机,此时,仿真器上的“红色小灯”应点亮,否则DSP开发系统有问题。
3、运行CCS程序待计算机启动成功后,实验箱后面220V输入电源开关置“ON”,实验箱上电,启动CCS,此时仿真器上的“绿色小灯”应点亮,并且CCS正常启动,表明系统连接正常;否则仿真器的连接、JTAG接口或CCS相关设置存在问题,掉电,检查仿真器的连接、JTAG 接口连接,或检查CCS相关设置是否正确。
注:如在此出现问题,可能是系统没有正常复位或连接错误,应重新检查系统硬件并复位;也可能是软件安装或设置有问题,应尝试调整软件系统设置,具体仿真器和仿真软件CCS的应用方法参见第三章。
●成功运行程序后,首先应熟悉CCS的用户界面●学会CCS环境下程序编写、调试、编译、装载,学习如何使用观察窗口等。
4、修改样例程序,尝试DSP其他的指令。
注:实验系统连接及CCS相关设置是以后所有实验的基础,在以下实验中这部分内容将不再复述。
5、填写实验报告。
6、样例程序实验操作说明仿真口选择开关K9拨到右侧,即仿真器选择连接右边的CPU:CPU2;启动CCS 2.0,在Project Open菜单打开exp01_cpu2目录下面的工程文件“exp01.pjt”注意:实验程序所在的目录不能包含中文,目录不能过深,如果想重新编译程序,去掉所有文件的只读属性。
用下拉菜单中Project/Open,打开“exp01.pjt”,双击“Source”,可查看源程序在File Load Program菜单下加载exp01_cpu2\debug目录下的exp01.out文件:加载完毕,单击“Run”运行程序;实验结果:可见指示灯D1定频率闪烁;单击“Halt”暂停程序运行,则指示灯停止闪烁,如再单击“Run”,则指示灯D1又开始闪烁;注:指示灯D1在CPLD单元的右上方关闭所有窗口,本实验完毕。
《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。
二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。
傅里叶级数有三角形式和指数形式两种。
1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。
Matlab中进行数值积分运算的函数有quad函数和int函数。
其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。
因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。
quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。
其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。
《信号与系统》离散信号的频域分析实验报告

信息科学与工程学院《信号与系统》实验报告四专业班级电信 09-班姓名学号实验时间 2011 年月日指导教师陈华丽成绩实验名称离散信号的频域分析实验目的1. 掌握离散信号谱分析的方法:序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换,进一步理解这些变换之间的关系;2. 掌握序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换的Matlab实现;3. 熟悉FFT算法原理和FFT子程序的应用。
4. 学习用FFT对连续信号和离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。
实验内容1.对连续信号)()sin()(0tutAetx taΩα-=(128.444=A,πα250=,πΩ250=)进行理想采样,可得采样序列50)()sin()()(0≤≤==-nnunTAenTxnx nTaΩα。
图1给出了)(txa的幅频特性曲线,由此图可以确定对)(txa采用的采样频率。
分别取采样频率为1KHz、300Hz和200Hz,画出所得采样序列)(nx的幅频特性)(ωj eX。
并观察是否存在频谱混叠。
图1 连续信号)()sin()(0tutAetx taΩα-=2. 设)52.0cos()48.0cos()(nnnxππ+=(1)取)(nx(100≤≤n)时,求)(nx的FFT变换)(kX,并绘出其幅度曲线。
(2)将(1)中的)(nx以补零方式加长到200≤≤n,求)(kX并绘出其幅度曲线。
(3)取)(nx(1000≤≤n),求)(kX并绘出其幅度曲线。
(4)观察上述三种情况下,)(nx的幅度曲线是否一致?为什么?3. (1)编制信号产生子程序,产生以下典型信号供谱分析用。
11,03()8,470,n nx n n nn+≤≤⎧⎪=-≤≤⎨⎪⎩其它2()cos4x n nπ=3()sin8x n nπ=4()cos8cos16cos20x t t t tπππ=++10.80.60.40.20100200300400500xa(jf)f /Hz(2)对信号1()x n ,2()x n ,3()x n 进行两次谱分析,FFT 的变换区间N 分别取8和16,观察两次的结果是否一致?为什么?(3)连续信号4()x n 的采样频率64s f Hz =,16,32,64N =。
信号与系统实验教程只有答案

信号与系统实验教程(只有答案))(实验报告目录实验一信号与系统的时域分析 (2)三、实验内容及步骤 (2)实验二连续时间信号的频域分析 (14)三、实验内容及步骤 (14)实验三连续时间LTI系统的频域分析 (35)三、实验内容及步骤 (35)实验四通信系统仿真 (42)三、实验内容及步骤 (42)实验五连续时间LTI系统的复频域分析 (51)三、实验内容及步骤 (51)实验一信号与系统的时域分析三、实验内容及步骤实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。
实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。
并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。
实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。
Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:Q1-2:修改程序Program1_1,并以Q1_2为文件名存盘,产生实指数信号x(t)=e-0.5t。
要求在图形中加上网格线,并使用函数axis()控制图形的时间范围在0~2秒之间。
然后执行该程序,保存所的图形。
修改Program1_1后得到的程序Q1_2如下:信号x(t)=e-0.5t的波形图clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = exp(-0.5*t); % Generate the signalplot(t,x)grid on;axis ([0 2 0 1 ])title('Sinusoidal signal x(t)')xlabel('Time t (sec)')Q1-3:修改程序Program1_1,并以Q1_3为文件名存盘,使之能够仿真从键盘上任意输入的一个连续时间信号,并利用该程序仿真信号x(t)=e-2t。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统实验实验四周期信号的傅里叶级数
一、实验目的
1、分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。
2、观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。
3、掌握用傅里叶级数进行谐波分析的方法。
4、观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉冲信号。
二.实验内容
1.信号的分解与合成Matlab仿真实验
1.1方波信号的分解
思考:将频率为50Hz幅值为3的方波进行分解,给出前5项谐波,并在不同坐标系和同一坐标系下绘制各次谐波波形。
程序如下:
t=0:0.0001:0.02;
y=zeros(10,max(size(t)));
x=zeros(10,max(size(t)));
for k=1:2:9
x1=3*(sin(k*100*pi*t)/k);
x(k,:)=x(k,:)+x1;
y((k+1)/2,:)=x(k,:);
end
subplot(2,1,1);
plot(t,y(1:5,:));
grid;
halft=ceil(length(t)/2);
subplot(2,1,2);
mesh(t(1:halft),[1:10],y(:,1:halft));
图形如下:
1.2方波信号的合成
思考:
(1)参考实验原理内容解释下面程序中“f1=f1+cos(pi*n*t)*sinc(n/2)”;观察N 值改变时合成波形的变化。
答:通过数字滤波器将矩形脉冲器分解成各谐波分量并且叠加合成原矩形脉冲信号。
当N 越大,合成波形幅值越平滑。
(2)参考下面程序分别对⎩⎨⎧<<<=2||1 ,01|| ,1)(1t t t x 和⎪⎩⎪⎨⎧<<<=1||21 ,021|| ,1)(2t t t x 两个周期为2
的方波进行合成,注意比较:
①原方波与合成方波;
答:图形中有表示。
②两个方波合成有何不同;
答:两个合成方波的周期不同。
③当傅里叶级数项数增加时合成方波的变化。
答:当傅里叶级数项数增加时,合成波的幅值也越来越平滑,越来越与原波形接近。
(1)
⎪⎩
⎪⎨⎧<
<<=1||21 ,021|| ,1)(2t t t x 的程序如下: t=-4.5:0.001:5.5;
t1=-4.499:0.001:5.5;
x=[ones(1,1000),zeros(1,1000)]
x=[x,x,x,x,x];
subplot(1,2,1);
plot(t1,x,'linewidth',1.5); axis([-4.5,5.5,-0.5,1.5]);
N=10;
c0=0.5;
f1=c0*ones(1,length(t));
for n=1:N
f1=f1+cos(pi*n*t)*sinc(n/2);
end
subplot(1,2,2);
plot(t,f1,'r','linewidth',1.5); axis([-4.5,5.5,-0.5,1.5]);
图形如下:
(2)
⎩⎨⎧<<<=2||1 ,01|| ,1)(1t t t x 的程序如下:
t=-4.5:0.001:5.5;
t1=-4.499:0.001:5.5;
x=[ones(1,1000),zeros(1,1000)]
x=[x,x,x,x,x];
subplot(1,2,1);
plot(2*t1,x,'linewidth',1.5); axis([-4.5,5.5,-0.5,1.5]);
N=10;
c0=0.5;
f1=c0*ones(1,length(t));
for n=1:N
f1=f1+cos(pi*n*0.5*t)*sinc(n/2);
end
subplot(1,2,2);
plot(t,f1,'r','linewidth',1.5); axis([-4.5,5.5,-0.5,1.5]);
图形如下:。