含参一元一次方程的解法.doc
《含参数的一元一次方程的解法》教学设计

教学过程
教学环节学生学习活动环节一:引入
我们现在进入了复习阶段,回顾本册书的内容,除了最后一章的几何初步,我们首先学习了数及数的混合运算,之后是式,也就有了字母的参与,自从字母来了之后,我们就不断和字母打交道,你能列举一道有关字母的小例子吗?当然字母的出现使问题更具一般性,同时要求我们具备分类讨论的意识。
再往后学习了方程,具体的方程你会解,但含字母系数的方程,也即含参方程又怎样呢?这就是我们这节课的主要内容。
回顾第13册书的几大块;
列举含字母的小例子
学生能否对一元一次正确理解,从而列出关于字母m 的关系式。
将图形圈视为参数即可
找一学生板演第5题后面向同学讲解,让学生评价他的解法,同学们也可补充其他解法,如方程组、或由方程一解出a,再将a代入第二个方程从而求出x.并比较优略。
老师再将同解改为第一个方程的解是第二个方程解的3倍少2,分别求两个解,再将前3种方法比较优略,从而找到通法。
17的约数有4个,学生能否将两个负值找出。
独立思考之后讨论,对比方程mx=n 的三种解的情况,对“无论k为何值”进行剖析,及如何利用它进行分析。
学生总结归纳本
节课的收获
作业:1、总结本节内容并改错;
2、本节对应练习。
含参一元一次方程的解法

B. 8 9Leabharlann 5 C. 3D.
5 3
2.解方程: 0.1 x 3 0.4 x 1 20 0.2 0.5
a 3x a 1 5x 1 4.已知关于x的方程 3 x 2 x 4 x与 2 12 8 有相同的解,求a的值及方程的解。
题型三 含字母系数的 含字母系数的一元一次方程 元 次方程 巩固练习 5.已知关于x的方程 2a ( x 1) (5 a ) x 3b 无解,那 么a=_____,b=____。
题型四 绝对值方程 巩固练习 7.解方程: 3x 5 4 8
6.如果关于x的方程 求k值 值。
含参一元一次方程的解法 含参 元 次方程的解法
题型一 复杂一元一次方程 巩固练习 1.解方程: 解方程 2x 5 3 x 1 6 4
题型 两个 题型二 两个一元一次方程解的关系问题 元 次方程解的关系问题 巩固练习 3.若方程 3 2 x 2 2 3 x 的解与关于x的方程 6 2k 2 x 3 的解相同,则 , k的值为( )
2( kx 3) 1 5(2 x 3) 有无数个解, 3 2 6
8.方程 x 1 x 4 7的解是_______。
1
一元一次方程的解法-word文档

一元一次方程的解法
小编导语:初一的同学正在学习一元一次方程的课程,出一次接触,想必有很多问题需要了解,小编整理了一元一次方程的解法,希望对同学们的学习有所帮助!
使方程左右两边相等的未知数的值叫做方程的解。
一般解法:
1.去分母:在方程两边都乘以各分母的最小公倍数;
2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)
3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号
4.合并同类项:把方程化成ax=b(a0)的形式;
5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.
注:以上便是小编整理的关于一元一次方程的解法,要想更加透彻系统的学好一元一次方程,就要求同学们在理解基本概念和知识的基础上,勤加练习和查缺补漏,祝大家学习进步,加油!
初一数学一元一次方程相关链接》》》》
一元一次方程ppt 二元一次方程组教案一元一次方程教案一元一次方程的概念
一元一次方程应用题一元一次方程练习题一
元一次方程练习题及答案一元一次方程应用题归类。
第6讲含参一元一次方程的解法尖子班学生版

第6讲含参一元一次方程的解法尖子班学生版一元一次方程是指只含有一个未知数的一次方程,形式为 ax + b = 0 , 其中 a 和 b 为已知数,a ≠ 0。
解一元一次方程通常有以下几种方法:图解法、代数法和方程变形法。
1.图解法:将方程的左右两边绘制成直线,利用直线的交点求解。
首先,以方程的形式 ax + b = 0 ,可以将其视为 y = ax + b 的特殊形式。
画出 y = ax + b 的图像,此时,直线与 x 轴的交点即为方程的解。
举个例子:假设a=2,b=-3、则方程为2x-3=0。
将其转化为y=2x-3的形式。
首先计算y的值,然后找到x轴与直线的交点,即可确定方程的解。
2.代数法:通过代数运算对方程进行变形,找到解的值。
首先,将方程 ax + b = 0 左右两边同时加上 b,得到 ax = -b。
然后,将方程两边同时乘以 a 的倒数 (1/a),得到 x = -b/a。
将 -b/a 的值代入方程中,可以验证方程的解是否正确。
举个例子:假设a=2,b=-3、则方程为2x-3=0。
首先将方程两边同时加上3,得到2x=3、然后将方程两边同时除以2,得到x=3/2,即方程的解为x=1.53.方程变形法:通过对方程进行变形,变成更简单的等价方程,然后通过求解等价方程,得到原方程的解。
举个例子:假设a=2,b=-3、则方程为2x-3=0。
首先将方程两边同时加上3,得到2x=3、然后将方程两边同时除以2,得到x=3/2,即方程的解为x=1.5通过以上方法,可以解决一元一次方程的问题。
同时,通过练习和实践,可以提高解题的速度和准确性。
对于尖子班的学生来说,掌握这些解法是非常重要的。
在学习数学中的其他高阶主题,如二次方程、不等式、方程组等,都需要对一元一次方程的解法有深入的理解和掌握。
在解题过程中,注意细心和逻辑性的思考是非常重要的。
同时,通过多做一些练习题和应用题,可以加强对一元一次方程解法的理解和应用能力。
一元一次方程含参问题

例5、若a,b为定值,关于x的一元一次方 2kx a x bk 1 程 ,无论k为何值 3 6 时,它的解总是x=1,求a,b的值。 解:将x=1代入 2kx a x bk
3 2k a 1 bk 1 3 6 6 1
化简得:(4+b)k=7-2a ① ∵无论ห้องสมุดไป่ตู้为何值时,原方程的解总是x=1 ∴无论k为何值时,①总成立 ∴4+b=0且7-2a=0,解得a=-4,b=3.5
4、整数解问题
例6、已知关于x的方程9x+3=kx+14有整数解, 求整数k。
解:由题意知:(9-k)x=11
11 x 9k
∵x,k均为整数 ∴9-k= ±1, ±11 ∴k=-2,8,10,20
练习: 2 (1)关于x的方程 (n 1) x (m 1) x 3 0 是一元一次方程 ①则m,n应满足的条件为:m ≠1 ,n =1 ; ②若此方程的根为整数,求整数m=-2,0,2,4 。
练习: (1)已知关于x的方程2a(x-1)=(5-a)x+3b有无 数个解,则a= 5 ,b= 10 。
3
2
(2)已知关于x的方程a(2x-1)=3x-2无解,则 a= 3 。 (3)(3a 2b) x ax b 0 是关于x的一元 一次方程,且x有唯一值,则x= 3 。
2
9
2
2
一、含有参数的一元一次方程
2、同解方程
ax 2 0 例2、关于x的方程4x-1=-5与 3
的解相同,求a的值;若解互为倒数,互 为相反数时,求a的值 练习:当m= 4x-2m=3x-1的解是x=2x-3m的解的2倍。
1 4 时,关于x的方程
含参一元一次方程的解法

含参一元一次方程的解法知识回顾1.一元一次方程:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的整式方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.2.解一元一次方程的一般步骤:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1.这五个步骤在解一元一次方程中,有时可能用不到,有时可能重复用,也不一定按顺序进行,要根据方程的特点灵活运用.3.易错点1:去括号:括号前是负号时,括号里各项均要变号.易错点2:去分母:漏乘不含分母的项.易错点3:移项忘记变号.基础巩固【巩固1】若是关于x的一元一次方程,则.【巩固2】方程去分母正确的是()A.B.C.D.【巩固3】解方程1.1 一元一次方程的巧解 求解一元一次方程的一般步骤是:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1.在求解的过程中要要根据方程的特点灵活运用.对于复杂的一元一次方程,在求解过程中通常会采用一些特殊的求解方法,需要同学们掌握,如:解一元一次方程中的应用.具体归纳起来,巧解的方法主要有以下三种:⑴提取公因式;⑵对系数为分数的一元一次方程的系数进行裂项;⑶进行拆项和添项,从而化简原方程.【例1】 ⑴⑵【例2】 解方程:⑴⑵()()1123233211191313x x x -+-+=知识导航经典例题1.2同解方程知识导航若两个一元一次方程的解相同,则称它们是同解方程.同解方程一般有两种解法:⑴只有一个方程含有参数,另外一个方程可以直接求解.此时,直接求得两个方程的公共解,然后代入需要求参数的方程,能够最快的得到答案.⑵两个方程都含有参数,无法直接求解.此时,由于两个方程的解之间有等量关系,因此,可以先分别用参数来表示这两个方程的解,再通过数量关系列等式从而求得参数,这是求解同解方程的最一般方法.注意:⑴两个解的数量关系有很多种,比如相等、互为相反数、多1、2倍等.(2)一元一次方程的公共根看似简单,其实却是一元二次方程公共根问题的前铺和基础.经典例题【例3】⑴若方程与有相同的解,求a得值.;⑵若和是关于x的同解方程,求的值.【例4】x的一元一次方程,且它们的解互为相反数,求m,n分别是多少?关于x的方程的解是多少?⑵当x的方程y的方程的解得2倍.1.3含参方程知识导航当方程的系数用字母表示时,这样的方程称为含字母系数的方程,含字母系数的方程总能化成的形式,方程的解根据的取值范围分类讨论.1.当时,方程有唯一解.2.当时,方程有无数个解,解是任意数.3.当且时,方程无解.经典例题【例5】解关于x的方程【例6】⑴若方程没有解,则a的值为.⑵若方程有无数解,则的值是.⑶当时,关于x的方程是一元一次方程.若该方程的唯一解是,求p得值.⑷已知:关于的方程有无数多组解,试求的值.1.4绝对值方程知识导航解绝对值方程的一般步骤:⑴分类讨论去绝对值;⑵分别求解两个方程;⑶综合两个方程的解;⑷验证.经典例题【例7】解绝对值方程:⑴⑵1.5课后习题【演练1】解方程:【演练2】【演练3】与方程的解相同,则a 的值为 .⑵若关于x 的解互为相反数,则= .⑶若关于x 和a 得值.【演练4】解关于x【演练5】⑴已知关于x.⑵若关于x的方程有唯一解,则题中的参数应满足的条件是.。
一元一次方程含参问题

第⼗讲⼀元⼀次⽅程含参问题⼀解的关系求参数1⼀含参不含参⽅法先解出不含参⽅程的解根据解的关系求出含参⽅程的解再代⼊求参e gl关于x的⽅程2x31和YR k3X有相同的解求k由2x31解得x2代⼊X k3X得2k3X2解得k i92关于x的⽅程恐x in与X122x1的解互为倒数求m由x122X1解得x j则X x⼗号的解为x3代⼊得33in解得m f2两含参⽅法解出两个⽅程的解根据解的关系到等式g关于X的⽅程2x1m-2m2的解⽐⽅程5x11m4X1t m的解⼤2求m的值⽅程2x1m-2m2解得x2⽅程5X11m4X1t m解得x2m9由两⽅程解的关系得2-mz2m9216解得⼏⼆5⼆解的个数求参关于x的⽅程⽐功解的个数①at01为任意实数时x有唯⼀解②a0b0时x有⽆数解③a0bt0时x⽆解e gl关我的⽅程ax1⼆0它的解的个数是多少ax-1①a0时X⽆解②at0时x有唯⼀解eg2关于x的⽅程axt53X1它的解的个数是多少a x3X-1-5a3x-6D a30即a3时X⽆解②a3to即at3时x有唯⼀解eg3关于⼒的⽅程mxt43X n分别求出mn为何值时⽅程有①唯解20元数解30⽆解mx3X n4m3X n4①当m3to即m3⼏为任意实数时ㄨ有唯⼀解②当m30即m3n40即n-4x有⽆数解③当m30即m3n4to即⼏⼗-4x⽆解三整体法求解⽅程的数学形式⼀样则解⼀样egl关于x的⽅程2x12的解是ㄨ2则关刊的⽅程24-12的解是⽕2关于X的⽅程x b C的解是ㄨ2则关刊的⽅程a y b C的解是y25 egz已知关于X的⽅程a X tb C的解是ㄨ5则关于ㄨ的⽅程a2b的解是ㄨ22X5x2593已知关我的⽅程acxtb C的解是x5则关于⼒的⽅程a2ㄨt b1C 的解是X22X153X2994已知关于x的⽅程Ījxt32九⼗⼝的解是ㄨ5则关刊的⽅程i y t332y3t b的解是y2y t35y2四整数解问题⽅法把含参⽅程解出来找分⼦的约数不要漏了负的91关于⼒的⽅程ax7的解是整数求整数ax da-7-1 1.7egz关我的⽅程x7tax的解是整数求整数aX a1-a-7-1.1.7a8 2.0-6eg了已知关我的⽅程2ax13⼗九的解是整数求整数a13X z a12a1-13-1113a-6.0 1.794已知关我的⽅程a x_x4的解是正整数求整魏的值x4a1G1124a23595已知关于ㄨ的⽅程a1x6的解是正整数求正整数a6X a1at1 1.2.3.6a0舍去 1.2.5五错解问题将错就错egl语⽂⽼师在解关于ㄨ的⽅程2a2x5ㄨ时误将等号前⼆2x看作x解出解为⼒-1则a的值是-3原⽅程的解为X⼆千错解⽅程为2a x_x将x-1代⼊得2a-15ㄨ-1解得a-3原⽅程为-6-2x5解得x-67egz英语⽼师在解⽅程i那么去分⺟时⽅程右边-1漏乘了3因⽽求得⽅程的解为X-2请你帮这位⽼师求出的值并且求出原⽅程正确的解错解⽅程为2x1x a1将x-2代⼊得2ㄨ-2-1-2t a1解得a-2原⽅程为i今2-1解得ㄨ-4。
一元一次方程含参问题

一元一次方程含参问题
基本概念
一元一次方程含参问题是指在形如ax + b = c的一元一次方程中,将系数a、b和c中的某个或某些项用参数表示,并研究方程解随参数的变化而变化的问题。
解法
解一元一次方程含参问题的基本思路是:
1. 将含参数的方程表示为一元一次方程形式;
2. 根据方程的系数和常数项的变化情况,讨论方程解的取值范围;
3. 根据参数的取值范围,确定方程在不同条件下的解。
例题
1. 已知一元一次方程8x + a = 10,其中参数a的取值范围为[1, 5],求方程的解。
- 当a = 1时,方程化简为8x + 1 = 10,解得x = 1。
- 当a = 5时,方程化简为8x + 5 = 10,解得x = 1/2。
因此,当a取值范围为[1, 5]时,方程的解为x = 1或x = 1/2。
2. 已知一元一次方程2x + 3y = m,其中参数m的取值范围为[1, 10],求方程的解。
- 当m = 1时,方程化简为2x + 3y = 1,解的取值范围较广。
- 当m = 10时,方程化简为2x + 3y = 10,解的取值范围较窄。
因此,当m取值范围为[1, 10]时,方程的解的取值范围也会相
应变化。
总结
一元一次方程含参问题是通过引入参数,使一元一次方程的解与参数的取值相联系的问题。
解决这类问题需要将含参数的方程化简为一元一次方程,然后根据参数的取值范围讨论方程的解的取值范围。
通过掌握一元一次方程含参问题的解法和应用,可以进一步提高数学问题的分析解决能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识回顾
1.一元一次方程:只含有一个未知数,并且未知数的最高次数是1,系数不等于0 的整式方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次
数.
2.解一元一次方程的一般步骤:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1.
这五个步骤在解一元一次方程中,有时可能用不到,有时可能重复用,也不一定按顺序
进行,要根据方程的特点灵活运用.
3.易错点 1:去括号:括号前是负号时,括号里各项均要变号.
易错点 2:去分母:漏乘不含分母的项.
易错点 3:移项忘记变号.
基础巩固
【巩固 1】若是关于x的一元一次方程,则.
【巩固2】方程去分母正确的是()
A.C.B.
D .
【巩固3】解方程
一元一次方程的巧解
知识导航
求解一元一次方程的一般步骤是:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知
数的系数化为1.在求解的过程中要要根据方程的特点灵活运用.
对于复杂的一元一次方程,在求解过程中通常会采用一些特殊的求解方法,需要同学们掌握,如:解一元一次方程中的应用.
具体归纳起来,巧解的方法主要有以下三种:⑴提取公因式;⑵对系数为分数的一元一次方程
的系数进行裂项;⑶进行拆项和添项,从而化简原方程.
经典例题
【例1】 ⑴
⑵
【例 2】 解方程:
⑴
⑵
1 1
2
3 11
2 x 3
3 2x
x
19
13
13
同解方程
知识导航
若两个一元一次方程的解相同,则称它们是同解方程.同解方程一般有两种解法:
⑴只有一个方程含有参数, 另外一个方程可以直接求解. 此时,直接求得两个方程的公共解,
然后代入需要求参数的方程,能够最快的得到答案 . ⑵两个方程都含有参数,无法直接求解.此时,由于两个方程的解之间有等量关系,因此,
可以先分别用参数来表示这两个方程的解, 再通过数量关系列等式从而求得参数, 同解方程的最一般方法.
注意 : ⑴两个解的数量关系有很多种,比如相等、互为相反数、多 1、 2 倍等.
这是求解
(2) 一元一次方程的公共根看似简单,其实却是一元二次方程公共根问题的前铺和基础.
经典例题
【例 3】⑴若方程与有相同的解,求 a 得值.;
⑵若和是关于x的同解方程,求的值.
【例 4】⑴已知:与都是关于x 的一元一次方程,且它们的解互为相反数,求m,n 分别是多少关于x 的方程的解
是多少
⑵当时,关于 x 的方程的解是关于y 的方程
的解得 2 倍.
含参方程
知识导航
当方程的系数用字母表示时,这样的方程称为含字母系数的方程,含字母系数的方程总能化成的形式,方程的解根据的取值范围分类讨论.
1.当时,方程有唯一解.
2.当时,方程有无数个解,解是任意数.
3.当且时,方程无解.
经典例题
【例 5】解关于x的方程
【例 6】⑴若方程没有解,则 a 的值为.
⑵若方程有无数解,则的值是.
⑶当时,关于x 的方程是一元一次方程.若该方程的唯一解是,求p 得值.
⑷已知:关于的方程有无数多组解,试求的值.
绝对值方程
知识导航
解绝对值方程的一般步骤:⑴分类讨论去绝对值;⑵分别求解两个方程;⑶综合两个方程的解;
⑷验证.
经典例题
【例 7】解绝对值方程:
⑴⑵
课后习题
【演练 1】解方程:
【演练 2】解方程:
【演练3】⑴方程与方程的解相同,则 a 的值为.
⑵若关于
⑶若关于x 的方程
x 的方程
与
和
的解互为相反数,则
,求 a 得值.
= .
【演练 4】解关于x的方程:
【演练5】⑴已知关于x 的方程
无解,那么,
.
⑵若关于 x 的方程有唯一解,则题中的参数应满足的条件是
.。