公务员考试数量关系公式整理

合集下载

行测数量关系公式大全

行测数量关系公式大全

行测数量关系公式大全一、比例关系公式:1.同比例的两个量之积等于它们的一平方。

(a/b=c/d=>a*d=b*c)2.两个量成反比例,其乘积等于常数。

(a/b=c/d=>a*b=c*d)二、百分数关系公式:1.百分数x%等于小数x/100。

(x%=x/100)2.数x占总数y的百分比等于数x与y之比乘以100%。

(x/y×100%)3.两个百分比相加、相减等于数与数相加、相减。

三、平均数关系公式:1.平均数=和/个数。

2.和=平均数×个数。

四、利率、利息和本金关系公式:1.简单利息=本金×年利率×时间。

2.平均利率=总利息/总本金五、速度、时间和距离关系公式:1.速度=距离/时间。

2.时间=距离/速度。

3.距离=速度×时间。

六、面积和体积关系公式:1.长方形面积=长×宽。

2.正方形面积=边长×边长。

3.圆面积=π×半径的平方。

4.圆柱体体积=底面积×高。

5.球体体积=4/3×π×半径的立方。

6.锥体体积=1/3×底面积×高。

七、等差数列关系公式:1.第n项=首项+(n-1)×公差。

2.前n项和=(首项+末项)×n/2八、等比数列关系公式:1.第n项=首项×公比的(n-1)次方。

2.前n项和=(首项×(公比的n次方-1))/(公比-1)。

公考数量关系公式汇总

公考数量关系公式汇总

公考数量关系公式汇总
在公务员考试中,数量关系题目是一种常见题型,其解题思路主要是通过建立数学模型,运用数量关系公式进行解题。

以下是一些常见的数量关系公式汇总:
1. 百分数公式:
a% = (a/100) × b
2. 比例公式:
a:b = c:d
3. 速度、时间、距离关系公式:
速度 = 距离 / 时间
时间 = 距离 / 速度
距离 = 速度× 时间
4. 工作效率公式:
工作量 = 工作效率× 时间
5. 利息计算公式:
利息 = 本金× 利率× 时间
6. 折扣计算公式:
实际价格 = 原价× (1 - 折扣率)
7. 简单利益公式:
利益 = 本金× 利率
8. 等差数列求和公式:
等差数列前n项和 = (首项 + 末项) × 项数 / 2
9. 等比数列求和公式:
等比数列前n项和 = 首项× (1 - 公比^n) / (1 - 公比) 10. 平均数公式:
平均数 = 总和 / 个数
以上是一些常见的公考数量关系公式,通过熟练掌握和灵活运用这些公式,可以帮助解决各种数量关系题目。

在解题过程中,还需要注意理解题意、仔细分析题目要求,将问题转化为数学表达式并进行求解。

公务员行测数量关系速算公式归纳

公务员行测数量关系速算公式归纳

公务员行测数量关系速算公式归纳在公务员行测考试中,数量关系部分往往是让众多考生感到头疼的模块。

然而,掌握一些实用的速算公式,能够帮助我们在考场上快速解题,提高答题效率和准确率。

接下来,就为大家归纳一下常见的公务员行测数量关系速算公式。

一、行程问题1、相遇问题路程和=速度和 ×相遇时间相遇时间=路程和 ÷速度和速度和=路程和 ÷相遇时间例如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 米/秒,乙的速度为 3 米/秒,经过 10 秒相遇,那么 A、B 两地的距离就是(5 + 3)× 10 = 80 米。

2、追及问题路程差=速度差 ×追及时间追及时间=路程差 ÷速度差速度差=路程差 ÷追及时间比如:甲在乙后面 20 米,甲的速度为 7 米/秒,乙的速度为 5 米/秒,那么甲追上乙所需的时间就是 20 ÷(7 5)= 10 秒。

3、流水行船问题顺水速度=船速+水速逆水速度=船速水速船速=(顺水速度+逆水速度)÷ 2水速=(顺水速度逆水速度)÷ 2假设一艘船在静水中的速度为 15 千米/小时,水流速度为 3 千米/小时,那么顺水速度就是 15 + 3 = 18 千米/小时,逆水速度就是 15 3 =12 千米/小时。

二、工程问题工作总量=工作效率 ×工作时间工作效率=工作总量 ÷工作时间工作时间=工作总量 ÷工作效率例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,那么两人合作完成这项工程需要的时间就是 1 ÷(1/10 + 1/15)=6 天。

三、利润问题利润=售价成本利润率=利润 ÷成本 × 100%售价=成本 ×(1 +利润率)成本=售价 ÷(1 +利润率)比如:一件商品的成本是 80 元,售价是 100 元,那么利润就是 10080 = 20 元,利润率就是 20 ÷ 80 × 100% = 25%。

公务员考试数量关系公式整理

公务员考试数量关系公式整理

代入排除法范围:1.典型题:年龄、余数、不定方程、多位数。

2.看选项:选项为一组数、可转化为一组数(选项信息充分)。

3.剩两项:只剩两项时,代一项即得答案。

4.超复杂:题干长、主体多、关系乱。

方法:1.先排除:尾数、奇偶、倍数。

2.在代入:最值、好算。

数字特性一、奇偶特性:范围:1.知和求差、知差求和:和差同性。

2.不定方程:一般先考虑奇偶性。

注意是“先”考虑。

3.A是B的2倍,将A平均分成两份:A为偶数。

4.质数:逢质必2.方法:1.加减法:同奇同偶则为偶,一奇一偶则为奇。

a+b和a-b的奇偶性相同。

2.乘法:一偶则偶,全奇为奇。

4x、6x必为偶数,3x、5x不确定。

二、倍数特性1.整除型(求总体):若A=B×C(B、C均为整数),则A能被B整除且A能被C整除。

试用范围:用于求总体,如工作量=效率×时间,S=VT,总价=数量×单价。

2.整除判定法则:口诀法:a)3/9看各位和,各位和能被3/9整除,这个数就能被3/9整除。

例:12345,能被3整除不能被9整除。

b)4/8看末2/3位,末2/3位能被4/8整除,这个数就能被4/8整除。

例:12124,能被4整除不能被8整除。

c)2/5看末位能否被2/5整除。

2看末位能否被2整除,即是不是偶数,5是看尾数是不是0或5。

拆分法:要验证是否是m的倍数,只需拆分成m的若干被+-小数字n,若小数字n能被m整除,原数即能被m整除。

例:217能否被7整除?217=210+7,所以可以被7整除。

复杂倍数用因式分解:判断一个数是否能被整除,这个数拆解后的数是否能被整除,拆分的数必须互质。

3.比例型:a)某班男女生比例为3:5,即可把男生看成3份,女生看成5份。

男生是3的倍数,女生是5的倍数,全班人数是5+3=8的倍数,男生女生差值是5-3=2的倍数b)A/B=M/N(M、N互质)A是M的倍数,B是N的倍数,A+B是M+N的倍数,A-B是M-N的倍数。

2024国考行测资料公式汇总

2024国考行测资料公式汇总

2024国考行测资料公式汇总一、概述随着国家发展和改革的不断推进,国家公务员考试作为选拔和录用优秀人才的重要途径,备受关注和热议。

而国家公务员考试中的行政职业能力测验(简称行测),作为其中的一项重要考试科目,涵盖了诸多知识点和应试技巧。

其中,数学实在是行测中的一大难点,而其中的公式更是让考生头疼的部分。

我们特整理了以下2024国考行测资料公式,以便考生备考时能够更好地复习和掌握相关知识点。

二、数量关系题目公式1. 平均值计算公式平均值 = 总值 / 个数2. 比例计算公式两者之比 = 较多者 / 较少者3. 反比例计算公式两者之比 = 较少者 / 较多者4. 增减百分比计算公式百分比增加 = (增加值 / 原值) * 100百分比减少 = (减少值 / 原值) * 1005. 资料图计算公式根据柱状图、折线图或饼状图进行计算6. 存在关系计算公式混合物的平均浓度 = (已知浓度1 * 体积1 + 已知浓度2 * 体积2) / (体积1 + 体积2)三、判断推理题目公式1. 判断题公式真命题的否定为假命题假命题的否定为真命题2. 排序题公式正序排列:A<B<C逆序排列:A>B>C3. 相同字母代表相同物品四、言语理解与表达题目公式1. 近义词、反义词近义词:意思相近的词反义词:意思相反的词2. 词类变化名词→形容词→动词→副词→数词→代词→连词→介词→感叹词3. 词语搭配正词相反:冷热、高低动名结合:吃饭、送信五、综合分析题目公式1. 逻辑判断公式A→B 非B→非AA→B 非A→非B2. 选择判断公式对A的肯定是否定了B的否定3. 数字推理公式数字之和、差、乘积、商之间的规律4. 资料分析公式根据给出的数据进行图表和数据的计算和分析六、总结以上整理的2024国考行测资料公式只是行测知识点的冰山一角,但通过对这些公式的学习和掌握,能让考生更快地应对行测考试中的数量关系、判断推理、言语理解与表达、综合分析等题目类型。

公务员事业编考试行测数量关系公式汇总

公务员事业编考试行测数量关系公式汇总

行测数量关系公式汇总工作量=工作效率×工作时间; 工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。

★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N 边行每边有a 人,则一共有N(a-1)人。

4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-45.方阵:总人数=N 2N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。

线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。

公务员数量关系部分公式大全

公务员数量关系部分公式大全

常用数学公式汇总一、基础代数公式1. 平方差公式:(a +b )·(a -b )=a 2-b 22. 完全平方公式:(a±b )2=a 2±2ab +b2 3. 完全立方公式:(a ±b)3=(a±b)(a 2ab+b 2) 4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2)5. a m ·a n =am +na m ÷a n =a m -n (a m )n =a mn (ab)n =a n ·b n二、等差数列 (1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ;(3)项数n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)三、等比数列 (1)a n =a 1qn -1;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)四、不等式(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3((3)abc c b a 3222≥++ abc c b a 33≥++推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。

公务员考试之数量关系中常考的公式

公务员考试之数量关系中常考的公式

常考的数量关系公式汇总No.1 奇偶判定奇数±奇数=偶数;偶数±偶数=偶数偶数±奇数=奇数;奇数±偶数=奇数奇数x奇数=奇数;奇数x偶数=偶数偶数x奇数=偶数;偶数x偶数=偶数No.2 计算公式平方差公式:完全平方公式:立方和与立方差公式:No.3 数字变化对任意两数a、b,如果a-b>0,则a>b;如果a-b<0,则a<b;如果a-b=0,则a=b当a、b为任意两正数时,如果a/b>1,则a>b;如果a/b<1,则a<b;如果a/b=1,则a=b当a、b为任意两负数时,如果a/b>1,则a<b;如果a/b<1,则a>b;如果a/b=1,则a=b对任意两数a、b,当很难直接用作差法或者作商法比较大小时,我们通常选取中间值c,如果a>c,且c>b,则我们说a>bNo.4 整除判定2,4,8整除及其余数判定法则一个数字能被2(或5)整除,当且仅当末一位数字能被2(或5)整除一个数字能被4(或25)整除,当且仅当末两位数字能被4(或25)整除一个数字能被8(或125)整除,当且仅当末三位数字能被8(或125)整除3,9整除判定基本法则一个数字能被3整除,当且仅当其各位数字之和能被3整除一个数字能被9整除,当且仅当其各位数字之和能被9整除7整除判定基本法则一个数是7的倍数,当且仅当其末位数的2倍,与剩下的数的差为7的倍数11整除判定基本法则一个数是11的倍数,当且仅当其奇数位之和与偶数位之和做的差为11的倍数,则这个数就是11的倍数No.5 工程问题工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率总工作量=各分工作量之和注:在解决实际问题时,常设总工作量为1No.6 行程问题(1)火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)(2) 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间(3)队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间;队尾→队首:队伍长度=(人速-队伍速度)×时间(4)流水行船问题公式:顺速=船速+水速,逆速=船速-水速(5)往返相遇问题公式:两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2) 左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N次追上相遇,路程差=(2N-1)×全程同一点出发:第N次迎面相遇,路程和=2N×全程;第N次追上相遇,路程差=2N×全程No.7 利润问题利润=销售价(卖出价)-成本利润率=利润÷成本=(销售价-成本)÷成本=销售价÷成本-1总利润=单利润×销量售价=进价+利润=原价×折扣销售价=成本×(1+利润率)成本=销售价÷(1+利润率)No.8 钟表问题钟面上按“时”分为12大格,按“分”分为60小格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公务员考试数量关系公式整理
代入排除法
范围:
1.典型题:年龄、余数、不定方程、多位数。

2.看选项:选项为一组数、可转化为一组数(选项信息充分)。

3.剩两项:只剩两项时,代一项即得答案。

4.超复杂:题干长、主体多、关系乱。

方法:
1.先排除:尾数、奇偶、倍数。

2.在代入:最值、好算。

数字特性
一、奇偶特性:
范围:
1.知和求差、知差求和:和差同性。

2.不定方程:一般先考虑奇偶性。

注意是“先”考虑。

3.A是B的2倍,将A平均分成两份:A为偶数。

4.质数:逢质必2.
方法:
1.加减法:同奇同偶则为偶,一奇一偶则为奇。

a+b和a-b的奇偶性相同。

2.乘法:一偶则偶,全奇为奇。

4x、6x必为偶数,3x、5x不确定。

二、倍数特性
1.整除型(求总体):
若A=B×C(B、C均为整数),则A能被B整除且A能被C整除。

试用范围:用于求总体,如工作量=效率×时间,S=VT,总价=数量×单价。

2.整除判定法则:
口诀法:
a)3/9看各位和,各位和能被3/9整除,这个数就能被3/9整除。

例:
12345,能被3整除不能被9整除。

b)4/8看末2/3位,末2/3位能被4/8整除,这个数就能被4/8整除。

例:
12124,能被4整除不能被8整除。

c)2/5看末位能否被2/5整除。

2看末位能否被2整除,即是不是偶数,5是
看尾数是不是0或5。

拆分法:
要验证是否是m的倍数,只需拆分成m的若干被+-小数字n,若小数字n能被m整除,原数即能被m整除。

例:217能否被7整除?217=210+7,因此能够被7整除。

复杂倍数用因式分解:
判断一个数是否能被整除,这个数拆解后的数是否能被整除,拆分的数必须互质。

3.比例型:
a)某班男女生比例为3:5,即可把男生看成3份,女生看成5份。

男生是3的倍数,女生是5的倍数,全班人数是5+3=8的倍数,男生女生差值是5-3=2的倍数
b)A/B=M/N(M、N互质)
A是M的倍数,B是N的倍数,A+B是M+N的倍数,A-B是M-N的倍数。

c)做题逻辑:
想:看到比例要想到使用倍数特性。

看:直接看问题,倍数特性是技巧性方法,无需分析题目,找出与问题相关的比例。

干:找到做题方法,直接秒殺。

方程法
一、普通方程:
找等量,设未知数,列方程,解方程。

设未知数的技巧:
1.设小不设大(减少分数计算)。

2.设中间值(方便列式)。

3.问谁设谁(避免陷阱)
二、不定方程
1.未知数必须是整数的不定方程:
a)不定方程ax+by=m
方法:分析奇偶、尾数、倍数等数字特性,尝试带入排除。

奇偶:a、b恰好一奇一偶。

尾数:a或b的尾数是5或0。

倍数:a或b与m有公因子。

b)不定方程组a1x+b1y+c1z=m a2x+b2y+c2z=n
方法:先消元转化为不定方程,再按不定方程求解。

2.未知数能够不是整数的不定方程:
a)未知数能够不是整数(时间、金钱)的方程。

属于非限方程,只能考查方程组求总
体,一般的方法是凑和赋0。

b)赋0法:
未知数个数多于方程个数,且未知数能够不是整数。

答案是一个算式的值,而非单一未知数的值,即必须是N×(x+y+z)的形式。

操作:赋其中的一个未知数为0,从而快速计算出其它未知数。

赋0法只限用于求总体的情况,如果求单一值则不适用。

工程问题
一、工程量=效率×时间,效率=工程量÷时间,时间=工程量÷效率。

注意:工程问题在于找对切入点。

二、工程问题切入点:
1.给定时间型(完工时间):
赋值工作量为完工时间的最小公倍数。

2.给效率型:
具体值→列方程,效率比→赋值销量为对应的比值。

行程问题
一、行程问题的三量关系:路程=速度×时间,速度=路程÷时间,时间=路程÷速
度。

二、火车过桥问题。

总路程=火车车身长度+桥长=火车速度×过桥时间。

相关文档
最新文档