2 第二章_移动通信信道(二)解析
2第二章移动通信信道

2第二章移动通信信道在我们日常生活中,移动通信已经成为不可或缺的一部分。
无论是与亲朋好友通话、浏览网页,还是使用各种移动应用,都离不开移动通信的支持。
而在这背后,移动通信信道起着至关重要的作用。
移动通信信道,简单来说,就是信息从发送端到接收端所经过的路径。
这个路径可不简单,它充满了各种复杂的情况和挑战。
想象一下,当您在繁华的街头打电话,周围有车辆的嘈杂声、人群的交谈声,还有各种建筑物对信号的反射和遮挡。
这就是移动通信信道所面临的现实环境。
首先,多径传播是移动通信信道的一个重要特点。
信号从发射端发出后,可能会通过多条不同的路径到达接收端。
这些路径的长度和传播条件各不相同,导致信号到达接收端的时间和强度也有所差异。
这就像是一群人同时从不同的路线跑步到终点,有的跑得快,有的跑得慢,有的路线顺畅,有的路线曲折。
这种多径传播会引起信号的衰落和失真,影响通信质量。
信号的衰落可以分为大尺度衰落和小尺度衰落。
大尺度衰落主要是由于距离、地形等因素引起的信号强度的缓慢变化。
比如,您离基站越远,信号通常就越弱。
而小尺度衰落则是在短距离或短时间内信号强度的快速变化,这可能是由于信号的多径传播导致的相位变化等原因引起的。
除了衰落,噪声也是移动通信信道中的一个“捣乱分子”。
噪声可以来自各种来源,比如电子设备内部的热噪声、外界的电磁干扰等。
噪声会使接收到的信号变得模糊不清,就像在一幅精美的画作上撒上了一些污点。
在移动通信信道中,多普勒效应也不容忽视。
当移动终端(比如您手中的手机)和基站之间存在相对运动时,接收信号的频率会发生变化。
这就好比一辆行驶中的汽车听到的警笛声的音调会发生变化一样。
多普勒效应会导致信号的扩展和失真,对通信造成影响。
为了应对移动通信信道中的这些挑战,通信工程师们想出了各种各样的办法。
比如,采用多种调制解调技术,让信号在复杂的信道环境中能够更稳定地传输;通过编码技术增加信号的冗余度,提高纠错能力;利用分集接收技术,从多个路径接收信号,降低衰落的影响。
移动通信信道-2

N 4
a0
t
五、时延扩展和相关带宽
2、时延扩展的描述
时延功率谱:由不同时延信号分量的平均功率构成
P(τ) 归一化时延谱 P( )
0dB
时延扩展, P(τ )的均方根
P()
30dB
0
m 平均时延
Tm
相对时延值
最大多径时延, P(τ )下 降到-30dB时的时延差
2、多径传播对接收信号产生的影响 典型实例 800MHz室内环境中典型传播时延扩展为
1μs,符号速率200kbps,符号宽度?重叠率?
符号宽度5μs,重叠覆盖率20%
2.2 移动通信信道的多径传播特性
2.2.1 移动通信信道中的电波传播损耗特性 2.2.2 移动环境下的多径传播 2.2.3 多普勒频移 2.2.4 多径接收信号的统计特性(自学) 2.2.5 衰落信号幅度的特征量
2.2.5 衰落信号幅度的特征量
2.2.4 多径接收信号的统计特性(提示)
移动通信信道统计分析:对接收信号的功率或 电压包络进行定量描述。 以瑞利分布为例,接收信号的包络和相位(σ为方差):
– 包络概率密度函数(瑞利分布):
r 2 2 p(r ) 2 e
1 2
r2
r0
– 相位概率密度函数(均匀分布): p( )
深度衰落发生的次数较少,浅度衰落发生得相当频繁。 衰减20dB概率为1%,衰减30dB和40dB的概率分别为 0.1%和0.01%。
正斜率 负斜率
t1
t2
t3
t4
A
1
2
3
4
NA 4 /T
移动通信信道-2简版范文

移动通信信道-2移动通信信道-2移动通信信道是指移动通信系统中数据传输的通道,用于在移动终端和基站之间传递信息。
在数字通信领域中,常见的移动通信信道包括下行链路和上行链路。
下行链路下行链路是指从基站向移动终端传输数据的通道。
在移动通信系统中,下行链路通常由基站发起,将数据传输到移动终端。
下行链路通常采用的多路复用技术是时分多路复用(TDM)和频分多路复用(FDM)。
在时分多路复用中,基站会将一段时间划分为多个时隙,然后将数据分时传输到不同的移动终端。
这种方式能够有效地提高信道的利用率,但是对于时延敏感的应用来说,可能会引入较大的延迟。
而在频分多路复用中,不同的移动终端使用不同的频率进行传输,基站则在不同的频率输数据。
这种方式能够有效地避免时延问题,但是需要更多的频谱资源。
,在下行链路中,还常用到调制解调器来将数字信号转换成模拟信号进行传输,以及信道编码来增强传输的可靠性。
上行链路上行链路是指从移动终端向基站传输数据的通道。
在移动通信系统中,上行链路通常由移动终端发起,将数据传输到基站。
上行链路通常采用的多路复用技术是码分多路复用(CDM)和时分多址(TDMA)。
在码分多路复用中,不同的移动终端使用不同的码片对数据进行调制,然后基站在接收端使用相应的码片进行解调。
这种方式能够有效地提高信道容量和抗干扰能力。
而在时分多址中,不同的移动终端在时间上交替传输数据,基站则在接收端对不同的时间片进行分离。
这种方式能够有效地避免碰撞问题,但是可能会引入比较大的时延。
与下行链路类似,在上行链路中也常用到调制解调器和信道编码来实现信号的传输和增强可靠性。
小结移动通信信道在移动通信系统中起到了承载数据传输的重要作用。
下行链路和上行链路分别负责基站到移动终端和移动终端到基站的数据传输。
在下行链路和上行链路中,采用了不同的多路复用技术和信号处理方法来提高信道的利用率、容量和可靠性。
移动通信技术的发展使得移动终端与基站之间的数据传输变得更加高效和可靠。
移动通信(第二章)

空间选择性衰落用相干距离描述。相干距离定义为两根天 线上的信道响应保持强相关时的最大空间距离。相干距离越短, 角度扩展越大,反之,相干距离越长,角度扩展越小。 典型的角度扩展值为:室内环境 360,城市环境为 20 ,平坦 的农村为 1。
传播损耗模型
❖ Okumura模型(奥村模型) ❖ Okumura-Hata模型 ❖ Hata模型扩展 ❖ COST-231模型 ❖ COST-231-Walfish-Ikegami模型
四种主要的效应
❖ 远近效应 由于接收用户的移动性,移动用户与基站之 间的距离也在随机变化,若各移动用户发射 信号的功率一样,那么到达基站时信号的强 弱将不同,离基站近者信号强,离基站远者 信号弱。通信系统中的非线性将进一步加重 信号强弱的不平衡性,甚至出现以强压弱的 现象,即为远近效应。
四种主要的效应
✓若频率管理或系统设计不当,就会造成同
频干扰;
✓在移动通信系统中,为了提高频率利用
✓农村:K 4 .7 8 lg f2 1 8 .3 3 lg f 4 0 .9 4
传播损耗模型
❖ Hata模型扩展(适合于个人通信系统)
适用条件: 频率:1500MHz-2000MHz 距离:1km-20km 基站天线高度:30m-200m 移动台天线高度:1m-10m
传播损耗公式 :
L 5 0 ( u r b a n ) 4 6 . 3 3 3 . 9 l g ( f c ) 1 3 . 8 2 l g ( h b ) ( h m ) ( 4 4 . 9 6 . 5 5 l g ( h b ) ) l g ( d ) C M
信号损耗
❖ 多径传播引起的损耗(快衰落): 在数十波长的范围内,接收信号场强的瞬时 值呈现快速变化的特征,这是由多径传播引 起的,称作快衰落,又称作小尺度衰落。其 电平分布一般服从瑞利(Rayleigh)分布或 莱斯(Rice)分布。
第2章移动通信信道

第2章移动通信信道1.无线电波的传播有直射,反射,折射,绕射等多种途径。
2.移动通信信道研究的基本方法有理论分析,现场电波传播实测和计算机仿真三种。
3.其中反射,绕射和散射是影响移动通信中电波传播的基本形式。
4.自由空间中电波传播损耗只与工作频率f 和传播距离d 有关。
当f 或d 增大一倍时,[Lfs]将增加6dB 。
5.)(12.4r t h h d 视线传播极限距离6.电波绕过障碍物遮挡物向前传播的现象称为绕射。
绕射引起的附加传播损耗称为绕射损耗。
7.菲涅尔余隙x1=)/(2121d d d d 8.多普勒频移公式cos cos /m D f v f 其中fm 称为最大多普勒频移。
9.衰落率是指信号包络在单位时间内以正斜率通过中值电平的次数。
衰落率与发射频率,移动台的行进速度,方向及多径传播路径数有关。
当移动台的行进方向朝着或背着电波传播方向时,衰落最快。
vf v F A )3(1085.1)2//(平均衰落率公式10.移动通信信道是色散信道,即传输信号波形经过移动通信信道后会发生波形失真。
分为时延扩展,频谱扩展,角度扩展。
11.相关带宽2/1Bc 为时延扩展。
12.Bs<<Bc Ts>>是平坦衰落的条件。
Bs>Bc Ts<是频率选择性衰落的条件。
13.Ts>Tc D S B B 是信号经历快衰落的条件Ts<<Tc Bs>>D B 是慢衰落的条件。
14.地形波动高度h 在平均意义上描述了电波传播路径中地形变化的程度。
h 定义为沿电波传播方向,距接收地点10km 范围内,10%高度线和90%高度线的高度差。
3组网技术基础1.组网需要考虑的一些问题:众多电台组网时产生的干扰,区域覆盖和信道分配等因素。
2.无线电干扰一般分为同频干扰,邻道干扰,互调干扰,阻塞干扰和近端对远端的干扰等。
3.复用距离越近,同频干扰就越大;复用距离越远,同频干扰就越小,但频率利用率就会降低。
移动通信原理-整理(第二章)

第二章 蜂窝组网技术● 说明大区制和小区制的概念,指出小区制的主要优点。
小容量的大区制一个基站覆盖整个服务区,发射功率要大利用分集接收等技术来保证上行链路的通信质量只能适用于小容量的通信网大容量的小区制将覆盖区域划分为若干小区 ,每个小区设立一个基站服务于本小区,但各小区可重复使用频率 带来同频干扰的问题● 简述越区切换的基本概念。
什么是MAHO ?当正在通话的移动台进入相邻无线小区时,业务信道自动切换到相邻小区基站,从而不中断通信过程。
移动台辅助切换(MAHO):每个移动台检测从周围基站中接收信号能量,并且将这些检测数据连续地回送给当前为它服务的基站。
● 什么是同频干扰?它是如何产生的?如何减少?所谓同频干扰,即指无用信号的载频与有用信号的载频相同,并对接收同频有用信号的接收机造成的干扰一般采用频率复用的技术以增加频谱效率。
当小区不断分裂使基站服务区不断缩小,同频复用系数增加时,大量的同频干扰将取代人为噪声和其它干扰,成为对小区制的主要约束。
这时移动无线电环境将由噪声受限环境变为干扰受限环境。
了减小同频干扰,同频小区必须在物理上隔开一个最小的距离,为传播提供充分的隔离。
● 另外,可以采用定向天线减小同频干扰采用六边形的原因用最小的小区数就能覆盖整个地理区域最接近于全向的基站天线和自由空间传播的全向辐射模式● 中心激励(center-excited):基站设在小区的中央,用全向天线形成圆形覆盖区。
顶点激励 (edge-excited) :基站设在每个小区六边形的三个顶点上,每个基站采用三副120度扇形辐射的定向天线,分别覆盖三个相邻小区的各三分之一区域。
● 绘出单位无线小区簇的小区个数N=4时,三个簇彼此邻接时的结构图形。
小区半径为R 时,相邻簇同频小区的中心距离如何确定?D=根号(3*N )*R● 用六边形表示一个小区,使相邻小区无空隙,则每一簇的小区数量N 满足什么关系式? j ij i N 22++=N=4,7,12.J=2,I=0.1.2● 说明改善蜂窝系统容量的三种方法以及各自的原理。
移动通信第2章调制与解调

调制信号的功率谱
f
7
2.1.5 数字调制分类的方法
数字式调制
不恒定包络
ASK(移幅键控) QAM(正交幅度调制) MQAM(星座调制)
FSK BFSK(二进制移频键控) (移频键控) MFSK(多进制移频键控)
BPSK(二进制移相键控)
恒定包络
PSK (移相键控)
DPSK(差分二进制移相键控)
QPSK (正交四相 移相键控)
• 当采用较高传输速率时,要求更为紧凑的功率谱才能满足 对邻道辐射功率低于-60dB~-80dB的要求
23
2.2.12 GMSK
• GMSK是GSM的优选方案
– 实现简单,在原MSK调制器增加前置滤波器,得到平滑后的某 种新的波形后再进行调频,就可以得到良好的频谱特性
– 对前置滤波器的要求 • 带宽窄且为锐截止型,以滤除基带信号中的高频成分 • 有较低的过脉冲响应,防止已调波瞬时频偏过大 • 保持输出脉冲响应的面积不变,使调制指数为1/2
11
第2章 调制与解调
2.1 概述 2.2 数字频率调制
– 二进制频移键控BFSK – 最小频移键控MSK) – 高斯最小频移键控GMSK
2.3 数字相位调制
– 二进制移相键控调制2PSK – 四相移键控调制QPSK
• 交错四相移键控调制OQPSK • /4- DQPSK调制
2.4 正交振幅调制QAM 2.5 扩频调制技术 2.6 多载波调制
S(t)
1
-1 -1
1
1
1
0
f2
f1
f1
f2
f2
f2
k
2π +1 -1
-1 +1 +1 +1
移动通信信道-2

移动通信信道-2移动通信信道-2移动通信信道是指在移动通信系统中,用于传输用户信息的路径。
在移动通信系统中,移动通信信道可以分为下行信道和上行信道。
下行信道下行信道是指从基站向用户终端传输信息的信道。
在下行信道中,信息是由基站发送给用户终端的。
下行信道可以进一步分为广播信道和共享信道。
广播信道广播信道是一种单向传输信道,即只有基站向用户终端发送信息,用户终端不能向基站发送信息。
广播信道通常用来向用户广播系统公告、短信、通知等信息。
共享信道共享信道是一种双向传输信道,即既可以由基站向用户终端发送信息,也可以由用户终端向基站发送信息。
共享信道通常用于传输用户通话、数据等信息。
上行信道上行信道是指从用户终端向基站传输信息的信道。
在上行信道中,信息是由用户终端发送给基站的。
上行信道可以进一步分为随机接入信道和分时复用信道。
随机接入信道随机接入信道是一种无线传输方式,多个用户终端可以通过该信道向基站发送信息。
随机接入信道通常用于传输短报文、测量报告等低延迟、小数据量的信息。
分时复用信道分时复用信道是一种时分多址的传输方式,用户终端按照时间片轮流使用信道。
分时复用信道通常用于传输大数据量、高带宽的信息,例如用户通话、文件传输等。
移动通信系统中的信道不仅可以根据传输方向进行分类,还可以根据传输技术进行分类。
常见的移动通信信道技术包括CDMA、TDMA、GSM等。
,移动通信信道在移动通信系统中扮演着重要的角色,用于传输用户信息。
根据传输方向和传输技术的不同,移动通信信道可以进一步分为下行信道和上行信道,以及广播信道、共享信道、随机接入信道和分时复用信道等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、平坦衰落与频率选择性衰落
平坦衰落: 形成条件:如果移动无线信道带宽远大于发送信号的带 宽,且在带宽范围内有恒定增益及线性相位,则接收信 号就会经历平坦衰落过程。
判定条件: Bs << Bc or
Ts >> σ
τ
1、平坦衰落与频率选择性衰落
频率选择性衰落:
形成条件:如果信道具有恒定增益和线性相位的带宽范围小于 发送信号带宽,则该信道特性会导致接收信号产生选择性衰落。 判定条件:
假设条件 • 发射机和接收机之间没有直射波路径 • 存在大量反射波,到达接收天线的方向角随机,相位随机 且0~2π均匀分布 • 各反射波的幅度和相位都统计独立
描述信道频率色散的参数。 起因:由移动台与基站间的相对运动或是信道中物体运动引起的。 多普勒扩展 定义:为一个频率范围 BD,在此范围内接收的多普勒谱有非0值。
含义:多普勒扩展BD 是谱展宽的测量值,这个谱展宽是移动无线信 道的时间变化率的一种量度。
2、相关时间
相干时间
定义:信道冲激响应维持不变的时间间隔的统计平均值。
有很强的幅度相关性,即所有频率分量几乎具有相同的增益及线 性相位。
如果相关带宽定义为频率相关系数大于0.9的某特定带宽,则 相干带宽近似为:
Bc f 1 6 1 2
如果将定义放宽至相关函数值大于0.5,则相干带宽近似为:
Bc f
3. 多普勒扩展和相关时间
1、多普勒扩展
或 多普勒扩展(BD)<< 信号带宽(Bs)
无线信道的分类
2.8 移动信道的统计模型
主要讨论多径接收信号的包络统计特性 接收信号的包络根据不同的无线环境服从不同的分配
瑞利 分布
具有参数m的 Nakagami-m 分布
莱斯 分布
环境条件 信号分析 • 分布特性及参数、函数
2.8 移动信道的统计模型
2.7.3 多径信道主要参数
移动信道是弥散信道。 电波通过移动信道后,信号在时域上、频域上和空间(角度)上 都产生弥散,本来分开的波形在时间上或频谱上或空间上会产生 交叠,使信号产生衰落失真。 多径效应在时域上引起信号的时延扩展,使得接收信号的时域 波形展宽,相应地在频域上规定了相关(干)带宽性能。当信 号带宽大于相关带宽时就会发生频率选择性衰落。 多普勒效应在频域上引起频谱扩展,使得接收信号的频谱产生 多普勒扩展,相应地在时域上规定了相关(干)时间性能。多 普勒效应会导致发送信号在传输过程中,信道特性发生变化, 产生所谓的时间选择性衰落。 散射效应会引起角度扩展。移动台或基站周围的本地散射以及 远端散射会使得天线的点波束产生角度扩散,在空间上规定了 相关距离性能。空域上波束的角度扩散造成了同一时间、不同 地点的信号衰落起伏不一样,即所谓的空间选择性。
k
rms时延扩展
2
E ( 2 ) ( ) 2(其中 E(
a ) a
k k
2 2 k k 2 k
P( ) ) ) P(
2 k k k k
k
最大附加时延(XdB)
多径能量从初值衰落到低于最大能量处XdB的时延,即tx-t0
2、相关带宽
起因:由时间色散引起。 定义:指某一特定频率范围内,在该范围内,任两个频率分量 定量表达式:
2
相关带宽
1
2、快衰落与慢衰落
快衰落 形成条件:信道的冲激响应在符号周期内变化很快,即信道 的相干时间比发送信号的符号周期短。 定量判据: 符号周期(Ts)>相干时间(Tc) 或 多普勒扩展(BD)> 信号带宽(Bs)
慢衰落 形成条件:信道的冲激响应变化率比发送的基带信号变化率 低。即信道的相干时间比发送信号的符号周期长。 定量判据: 符号周期(Ts) << 相干时间(Tc)
5
0.01 0 0.1 1 0.1 2 1 5 4.38 s 0.01 0.1 0.1 1 rms均方根时延扩展
E 2 2 E 2 P k k k
21.07 (4.38) 2 1.37 s Bc 2 P 21.07 s k 116 KHz k GSM系统带宽200KHZ AMPS 系统信号带宽是30KHZ 需均衡 不需均衡
含义:在相干时间间隔内,两个到达信号有很强的幅度相关 性。
与多普勒扩展的关系:是多普勒扩展在时域的表示,具体为
Tc 1 fm
(a)
其中,fm 是最大的多普勒频移(v/λ )。
若时间相关函数定义为大于0.5时,相干时间近似为:
Tc 9 16f m
(b)2、相关时间相关时间与多普勒扩展的关系
在现代数字通信中,一种普遍的定义方法是将相干时间定 义为式(a)与式(b)的几何平均,即:
9 0.423 Tc 2 16f m fm
2.7.4 移动通信信道的分类
移动信道中的时间色散和频率色散可能产 生4种衰落效应,这是由信号与信道及发送 速率的特性引起的。 多径时延扩展引起时间色散和频率选择性 衰落,多普勒扩展会引起频率色散和时间 选择性衰落,这两种传播机制彼此独立, 根据多径时延可以将信道分为平坦衰落信 道和频率选择性衰落信道,根据多普勒扩 展可以将信道分为快衰落信道和慢衰落信 道。
Bs > Bc or Ts < σ
τ
克服方法:均衡等
例 计算图所给出的多径分布的平均附加时延、rms时延扩展。设信道相 关带宽取50%,则该系统在不使用均衡器的条件下对AMPS或GSM业务 是否合适? 解 所给信号的平均附加时延为
P
k 0 k
5
k
P
k 0 k
时间色散(Time Dispersion Parameters)
定义:因多径传播造成信号时间扩散的现象。 成因:发射信号经过不同路径到达接收点的时间各不相同。
描述时间色散的重要参数 平均附加时延
a a
k k
2 k k 2 k
P( ) P( )
k k k k