江苏省江阴一中圆周运动单元测试题(Word版 含解析)

合集下载

高一下册物理 圆周运动单元测试题(Word版 含解析)

高一下册物理 圆周运动单元测试题(Word版 含解析)

一、第六章 圆周运动易错题培优(难)1.如图所示,小球A 可视为质点,装置静止时轻质细线AB 水平,轻质细线AC 与竖直方向的夹角37θ︒=,已知小球的质量为m ,细线AC 长L ,B 点距C 点的水平和竖直距离相等。

装置BO 'O 能以任意角速度绕竖直轴O 'O 转动,且小球始终在BO 'O 平面内,那么在ω从零缓慢增大的过程中( )(g 取10m/s 2,sin370.6︒=,cos370.8︒=)A .两细线张力均增大B .细线AB 中张力先变小,后为零,再增大C .细线AC 中张力先不变,后增大D .当AB 中张力为零时,角速度可能为54g L【答案】BCD 【解析】 【分析】 【详解】AB .当静止时,受力分析如图所示由平衡条件得T AB =mg tan37°=0.75mg T AC =cos37mg=1.25mg若AB 中的拉力为0,当ω最小时绳AC 与竖直方向夹角θ1=37°,受力分析如图mg tan θ1=m (l sinθ1)ωmin 2得ωmin 54g l当ω最大时,由几何关系可知,绳AC 与竖直方向夹角θ2=53°mg tan θ2=mωmax 2l sin θ2得ωmax =53g l所以ω取值范围为54g l ≤ω≤53g l绳子AB 的拉力都是0。

由以上的分析可知,开始时AB 是拉力不为0,当转速在54g l ≤ω≤53gl时,AB 的拉力为0,角速度再增大时,AB 的拉力又会增大,故A 错误;B 正确;C .当绳子AC 与竖直方向之间的夹角不变时,AC 绳子的拉力在竖直方向的分力始终等于重力,所以绳子的拉力绳子等于1.25mg ;当转速大于54gl后,绳子与竖直方向之间的夹角增大,拉力开始增大;当转速大于53gl后,绳子与竖直方向之间的夹角不变,AC 上竖直方向的拉力不变,水平方向的拉力增大,则AC 的拉力继续增大;故C 正确; D .由开始时的分析可知,当ω取值范围为54g l ≤ω≤53g l时,绳子AB 的拉力都是0,故D 正确。

高一下册物理 圆周运动单元测试与练习(word解析版)

高一下册物理 圆周运动单元测试与练习(word解析版)

一、第六章 圆周运动易错题培优(难)1.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘的中心轴OO '转动.三个物体与圆盘的动摩擦因数均为0.1μ=,最大静摩擦力认为等于滑动摩擦力.三个物体与轴O 共线且OA =OB =BC =r =0.2 m ,现将三个物体用轻质细线相连,保持细线伸直且恰无张力.若圆盘从静止开始转动,角速度极其缓慢地增大,已知重力加速度为g =10 m/s 2,则对于这个过程,下列说法正确的是( )A .A 、B 两个物体同时达到最大静摩擦力 B .B 、C 两个物体的静摩擦力先增大后不变 C .当5/rad s ω>时整体会发生滑动D 2/5/rad s rad s ω<<时,在ω增大的过程中B 、C 间的拉力不断增大 【答案】BC 【解析】ABC 、当圆盘转速增大时,由静摩擦力提供向心力.三个物体的角速度相等,由2F m r ω=可知,因为C 的半径最大,质量最大,故C 所需要的向心力增加最快,最先达到最大静摩擦力,此时2122C mg m r μω= ,计算得出:112.5/20.4grad s rμω=== ,当C 的摩擦力达到最大静摩擦力之后,BC 开始提供拉力,B 的摩擦力增大,达最大静摩擦力后,AB 之间绳开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 与B 的摩擦力也达到最大时,且BC 的拉力大于AB 整体的摩擦力时物体将会出现相对滑动,此时A 与B 还受到绳的拉力,对C可得:22222T mg m r μω+= ,对AB 整体可得:2T mg μ= ,计算得出:2grμω=当15/0.2grad s rμω>== 时整体会发生滑动,故A 错误,BC 正确; D 、 2.5rad/s 5rad/s?ω<<时,在ω增大的过程中B 、C 间的拉力逐渐增大,故D 错误; 故选BC2.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等B .b 比a 先达到最大静摩擦力C .当2kgLω=a 刚要开始滑动 D .当23kgLω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即kmg +F =mω2•2L ①而a 受力为f′-F =2mω2L ②联立①②得f′=4mω2L -kmg综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有2kmg+kmg =2mω2L +mω2•2L解得34kgLω=选项C 错误;D. 当b 恰好达到最大静摩擦时202kmg m r ω=⋅解得02kgLω=因为32432kg kg kgL L L >>,则23kgLω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。

物理高一下册 圆周运动单元测试与练习(word解析版)

物理高一下册 圆周运动单元测试与练习(word解析版)

一、第六章 圆周运动易错题培优(难)1.如图所示,用一根长为l =1m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T ,取g=10m/s 2。

则下列说法正确的是( )A .当ω=2rad/s 时,T 3+1)NB .当ω=2rad/s 时,T =4NC .当ω=4rad/s 时,T =16ND .当ω=4rad/s 时,细绳与竖直方向间夹角大于45° 【答案】ACD 【解析】 【分析】 【详解】当小球对圆锥面恰好没有压力时,设角速度为0ω,则有cos T mg θ=20sin sin T m l θωθ=解得0532rad/s 3ω= AB .当02rad/s<ωω=,小球紧贴圆锥面,则cos sin T N mg θθ+=2sin cos sin T N m l θθωθ-=代入数据整理得(531)N T =A 正确,B 错误;CD .当04rad/s>ωω=,小球离开锥面,设绳子与竖直方向夹角为α,则cos T mg α= 2sin sin T m l αωα=解得16N T =,o 5arccos 458α=>CD 正确。

故选ACD 。

2.如图所示,小球A 可视为质点,装置静止时轻质细线AB 水平,轻质细线AC 与竖直方向的夹角37θ︒=,已知小球的质量为m ,细线AC 长L ,B 点距C 点的水平和竖直距离相等。

装置BO 'O 能以任意角速度绕竖直轴O 'O 转动,且小球始终在BO 'O 平面内,那么在ω从零缓慢增大的过程中( )(g 取10m/s 2,sin370.6︒=,cos370.8︒=)A .两细线张力均增大B .细线AB 中张力先变小,后为零,再增大C .细线AC 中张力先不变,后增大D .当AB 中张力为零时,角速度可能为54g L【答案】BCD 【解析】 【分析】 【详解】AB .当静止时,受力分析如图所示由平衡条件得T AB =mg tan37°=0.75mg T AC =cos37mg=1.25mg若AB 中的拉力为0,当ω最小时绳AC 与竖直方向夹角θ1=37°,受力分析如图mg tan θ1=m (l sinθ1)ωmin 2得ωmin =54g l当ω最大时,由几何关系可知,绳AC 与竖直方向夹角θ2=53°mg tan θ2=mωmax 2l sin θ2得ωmax =53g l所以ω取值范围为54g l ≤ω≤53g l绳子AB 的拉力都是0。

高一物理圆周运动单元测试与练习(word解析版)

高一物理圆周运动单元测试与练习(word解析版)

一、第六章 圆周运动易错题培优(难)1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等B .b 比a 先达到最大静摩擦力C .当2kgLω=a 刚要开始滑动 D .当23kgLω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即kmg +F =mω2•2L ①而a 受力为f′-F =2mω2L ②联立①②得f′=4mω2L -kmg综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有2kmg+kmg =2mω2L +mω2•2L解得34kgLω=选项C 错误;D. 当b 恰好达到最大静摩擦时202kmg m r ω=⋅解得02kgLω=因为32432kg kg kgL L L >>,则23kgLω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。

故选BD 。

2.如图所示,有一可绕竖直中心轴转动的水平足够大圆盘,上面放置劲度系数为k 的弹簧,弹簧的一端固定于轴O 上,另一端连接质量为m 的小物块A (可视为质点),物块与圆盘间的动摩擦因数为μ,开始时弹簧未发生形变,长度为L ,若最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,物块A 始终与圆盘一起转动。

高一下册圆周运动单元测试与练习(word解析版)

高一下册圆周运动单元测试与练习(word解析版)

一、第六章 圆周运动易错题培优(难)1.如图所示,小球A 可视为质点,装置静止时轻质细线AB 水平,轻质细线AC 与竖直方向的夹角37θ︒=,已知小球的质量为m ,细线AC 长L ,B 点距C 点的水平和竖直距离相等。

装置BO 'O 能以任意角速度绕竖直轴O 'O 转动,且小球始终在BO 'O 平面内,那么在ω从零缓慢增大的过程中( )(g 取10m/s 2,sin370.6︒=,cos370.8︒=)A .两细线张力均增大B .细线AB 中张力先变小,后为零,再增大C .细线AC 中张力先不变,后增大D .当AB 中张力为零时,角速度可能为54g L【答案】BCD 【解析】 【分析】 【详解】AB .当静止时,受力分析如图所示由平衡条件得T AB =mg tan37°=0.75mg T AC =cos37mg=1.25mg若AB 中的拉力为0,当ω最小时绳AC 与竖直方向夹角θ1=37°,受力分析如图mg tan θ1=m (l sinθ1)ωmin 2得ωmin 54g l当ω最大时,由几何关系可知,绳AC 与竖直方向夹角θ2=53°mg tan θ2=mωmax 2l sin θ2得ωmax =53g l所以ω取值范围为54g l ≤ω≤53g l绳子AB 的拉力都是0。

由以上的分析可知,开始时AB 是拉力不为0,当转速在54g l ≤ω≤53gl时,AB 的拉力为0,角速度再增大时,AB 的拉力又会增大,故A 错误;B 正确;C .当绳子AC 与竖直方向之间的夹角不变时,AC 绳子的拉力在竖直方向的分力始终等于重力,所以绳子的拉力绳子等于1.25mg ;当转速大于54gl后,绳子与竖直方向之间的夹角增大,拉力开始增大;当转速大于53gl后,绳子与竖直方向之间的夹角不变,AC 上竖直方向的拉力不变,水平方向的拉力增大,则AC 的拉力继续增大;故C 正确; D .由开始时的分析可知,当ω取值范围为54g l ≤ω≤53g l时,绳子AB 的拉力都是0,故D 正确。

高一下册物理 圆周运动单元练习(Word版 含答案)

高一下册物理 圆周运动单元练习(Word版 含答案)

一、第六章 圆周运动易错题培优(难)1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等B .b 比a 先达到最大静摩擦力C .当2kgLω=a 刚要开始滑动 D .当23kgLω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即kmg +F =mω2•2L ①而a 受力为f′-F =2mω2L ②联立①②得f′=4mω2L -kmg综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有2kmg+kmg =2mω2L +mω2•2L解得34kgLω=选项C 错误;D. 当b 恰好达到最大静摩擦时202kmg m r ω=⋅解得02kgLω=因为32432kg kg kgL L L >>,则23kgLω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。

故选BD 。

2.如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的物体A 和B ,A 和B 质量都为m .它们分居在圆心两侧,与圆心距离分别为R A =r ,R B =2r ,A 、B 与盘间的动摩擦因数μ相同.若最大静摩擦力等于滑动摩擦力,当圆盘转速加快到两物体刚好还未发生滑动时,下列说法正确的是( )A .此时绳子张力为T =3mg μB .此时圆盘的角速度为ω2grμC .此时A 所受摩擦力方向沿半径指向圆外 D .此时烧断绳子物体A 、B 仍将随盘一块转动 【答案】ABC 【解析】 【分析】 【详解】C .A 、B 两物体相比,B 物体所需要的向心力较大,当转速增大时,B 先有滑动的趋势,此时B 所受的静摩擦力沿半径指向圆心,A 所受的静摩擦力沿半径背离圆心,故C 正确; AB .当刚要发生相对滑动时,以B 为研究对象,有22T mg mr μω+=以A 为研究对象,有2T mg mr μω-=联立可得3T mg μ=2grμω=故AB 正确;D .若烧断绳子,则A 、B 的向心力都不足,都将做离心运动,故D 错误. 故选ABC.3.如图所示,两个啮合的齿轮,其中小齿轮半径为10cm ,大齿轮半径为20cm ,大齿轮中C 点离圆心O 2的距离为10cm ,A 、B 两点分别为两个齿轮边缘上的点,则A 、B 、C 三点的( )A .线速度之比是1:1:2B .角速度之比是1:2:2C .向心加速度之比是4:2:1D .转动周期之比是1:2:2 【答案】CD 【解析】 【分析】 【详解】A .同缘传动时,边缘点的线速度相等v A =v B ①同轴转动时,各点的角速度相等ωB =ωC ②根据v =ωr ③由②③联立代入数据,可得B C 2v v =④由①④联立可得v A :v B :v C =2:2:1A 错误;B .由①③联立代入数据,可得A B :2:1ωω=⑤再由②⑤联立可得A B C ::2:1:1ωωω=⑥B 错误; D .由于2T πω=⑦由⑥⑦联立可得A B C ::1:2:2T T T =D 正确; C .根据2a r ω= ⑧由⑥⑧联立代入数据得A B C ::4:2:1a a a =C 正确。

物理高一下册 圆周运动单元测试与练习(word解析版)

物理高一下册 圆周运动单元测试与练习(word解析版)

一、第六章 圆周运动易错题培优(难)1.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘的中心轴OO '转动.三个物体与圆盘的动摩擦因数均为0.1μ=,最大静摩擦力认为等于滑动摩擦力.三个物体与轴O 共线且OA =OB =BC =r =0.2 m ,现将三个物体用轻质细线相连,保持细线伸直且恰无张力.若圆盘从静止开始转动,角速度极其缓慢地增大,已知重力加速度为g =10 m/s 2,则对于这个过程,下列说法正确的是( )A .A 、B 两个物体同时达到最大静摩擦力 B .B 、C 两个物体的静摩擦力先增大后不变 C .当5/rad s ω>时整体会发生滑动D 2/5/rad s rad s ω<<时,在ω增大的过程中B 、C 间的拉力不断增大 【答案】BC 【解析】ABC 、当圆盘转速增大时,由静摩擦力提供向心力.三个物体的角速度相等,由2F m r ω=可知,因为C 的半径最大,质量最大,故C 所需要的向心力增加最快,最先达到最大静摩擦力,此时2122C mg m r μω= ,计算得出:112.5/20.4grad s rμω=== ,当C 的摩擦力达到最大静摩擦力之后,BC 开始提供拉力,B 的摩擦力增大,达最大静摩擦力后,AB 之间绳开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 与B 的摩擦力也达到最大时,且BC 的拉力大于AB 整体的摩擦力时物体将会出现相对滑动,此时A 与B 还受到绳的拉力,对C可得:22222T mg m r μω+= ,对AB 整体可得:2T mg μ= ,计算得出:2grμω=当15/0.2grad s rμω>== 时整体会发生滑动,故A 错误,BC 正确; D 、 2.5rad/s 5rad/s?ω<<时,在ω增大的过程中B 、C 间的拉力逐渐增大,故D 错误; 故选BC2.如图所示,用一根长为l =1m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T ,取g=10m/s 2。

高一物理圆周运动单元测试卷 (word版,含解析)

高一物理圆周运动单元测试卷 (word版,含解析)

一、第六章 圆周运动易错题培优(难)1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等B .b 比a 先达到最大静摩擦力C .当2kgLω=a 刚要开始滑动 D .当23kgLω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即kmg +F =mω2•2L ①而a 受力为f′-F =2mω2L ②联立①②得f′=4mω2L -kmg综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有2kmg+kmg =2mω2L +mω2•2L解得34kgLω=选项C 错误;D. 当b 恰好达到最大静摩擦时202kmg m r ω=⋅解得02kgLω=因为32432kg kg kgL L L >>,则23kgLω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。

故选BD 。

2.如图所示,两个啮合的齿轮,其中小齿轮半径为10cm ,大齿轮半径为20cm ,大齿轮中C 点离圆心O 2的距离为10cm ,A 、B 两点分别为两个齿轮边缘上的点,则A 、B 、C 三点的( )A .线速度之比是1:1:2B .角速度之比是1:2:2C .向心加速度之比是4:2:1D .转动周期之比是1:2:2 【答案】CD 【解析】 【分析】 【详解】A .同缘传动时,边缘点的线速度相等v A =v B ①同轴转动时,各点的角速度相等ωB =ωC ②根据v =ωr ③由②③联立代入数据,可得B C 2v v =④由①④联立可得v A :v B :v C =2:2:1A 错误;B .由①③联立代入数据,可得A B :2:1ωω=⑤再由②⑤联立可得A B C ::2:1:1ωωω=⑥B 错误; D .由于2T πω=⑦由⑥⑦联立可得A B C ::1:2:2T T T =D 正确; C .根据2a r ω= ⑧由⑥⑧联立代入数据得A B C ::4:2:1a a a =C 正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、第六章 圆周运动易错题培优(难)1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等B .b 比a 先达到最大静摩擦力C .当2kgLω=a 刚要开始滑动 D .当23kgLω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即kmg +F =mω2•2L ①而a 受力为f′-F =2mω2L ②联立①②得f′=4mω2L -kmg综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有2kmg+kmg =2mω2L +mω2•2L解得34kgLω=选项C 错误;D. 当b 恰好达到最大静摩擦时202kmg m r ω=⋅解得02kgLω=因为32432kg kg kgL L L >>,则23kgLω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。

故选BD 。

2.如图所示,一个边长满足3:4:5的斜面体沿半径方向固定在一水平转盘上,一木块静止在斜面上,斜面和木块之间的动摩擦系数μ=0.5。

若木块能保持在离转盘中心的水平距离为40cm 处相对转盘不动,g =10m/s 2,则转盘转动角速度ω的可能值为(设最大静摩擦力等于滑动摩擦力)( )A .1rad/sB .3rad/sC .4rad/sD .9rad/s【答案】BC 【解析】 【分析】 【详解】根据题意可知,斜面体的倾角满足3tan 0.54θμ=>= 即重力沿斜面的分力大于滑动摩擦力,所以角速度为零时,木块不能静止在斜面上;当转动的角速度较小时,木块所受的摩擦力沿斜面向上,当木块恰要向下滑动时11cos sin N f mg θθ+= 2111sin cos N f m r θθω-=又因为滑动摩擦力满足11f N μ=联立解得1522rad/s 11ω=当转动角速度变大,木块恰要向上滑动时22cos sin N f mg θθ=+2222sin cos N f m r θθω+=又因为滑动摩擦力满足22f N μ=联立解得252rad/s ω=综上所述,圆盘转动的角速度满足522rad/s 2rad/s 52rad/s 7rad/s 11ω≈≤≤≈ 故AD 错误,BC 正确。

故选BC 。

3.水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动,如图所示,小球进入圆形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的d 点,则( )A .小球到达c gRB .小球在c 点将向下做自由落体运动C .小球在直轨道上的落点d 与b 点距离为2RD .小球从c 点落到d 点需要时间为2R g【答案】ACD 【解析】 【分析】 【详解】小球恰好通过最高点C,根据重力提供向心力,有: 2v mg m R= 解得:v gR =A 正确;小球离开C 点后做平抛运动,即水平方向做匀速运动,0bd s v t = 竖直方向做自由落体运动,2122R gt =解得:2R t g=;2bd s R = 故B 错误;CD 正确;故选ACD4.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,管道内侧壁半径为R , 小球半径为r ,则下列说法中正确的是( )A .小球通过最高点时的最小速度min v Rg =B .小球通过最高点时的最小速度min 0v =C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力 【答案】BC 【解析】 【详解】AB.因是在圆形管道内做圆周运动,所以在最高点时,内壁可以给小球沿半径向外的支持力,所以小球通过最高点时的最小速度可以为零.所以选项A 错误,B 正确;C.小球在水平线ab 以下的管道中运动时,竖直向下的重力沿半径方向的分力沿半径方向向外,小球的向心力是沿半径向圆心的,小球与外壁一定会相互挤压,所以小球一定会受到外壁的作用力,内壁管壁对小球一定无作用力,所以选项C 正确;D.小球在水平线ab 以上的管道中运动时,当速度较小时,重力沿半径方向上的分力大于或等于小球做圆周运动需要的向心力,此时小球与外壁不存在相互挤压,外侧管壁对小球没有作用力,选项D 错误.5.如图所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、1.5r 。

设本题中的最大静摩擦力等于滑动摩擦力。

以下说法正确的是( )A .B 对A 的摩擦力一定为3μmg B .B 对A 的摩擦力一定为3mω2rC 3grμD .转台的角速度可能等于grμ 【答案】BC 【解析】 【分析】 【详解】AB .对A 受力分析,受重力、支持力以及B 对A 的静摩擦力,静摩擦力提供向心力,有2(3)(3)f m r m g ωμ=故A 错误,B 正确;CD .由于A 、AB 整体、C 受到的静摩擦力均提供向心力,故对A 有2(3)(3)m r m g ωμ对AB 整体有()()23232m m r m m g ωμ+≤+对物体C 有()21.5m r mg ωμ≤解得23grμω≤故C 正确,D 错误。

故选BC 。

6.如图所示,足够大的水平圆台中央固定一光滑竖直细杆,原长为L 的轻质弹簧套在竖直杆上,质量均为m 的光滑小球A 、B 用长为L 的轻杆及光滑铰链相连,小球A 穿过竖直杆置于弹簧上。

让小球B 以不同的角速度ω绕竖直杆匀速转动,当转动的角速度为ω0时,小球B 刚好离开台面。

弹簧始终在弹性限度内,劲度系数为k ,重力加速度为g ,则A .小球均静止时,弹簧的长度为L -mgkB .角速度ω=ω0时,小球A 对弹簧的压力为mgC .角速度ω02kgkL mg-D .角速度从ω0继续增大的过程中,小球A 对弹簧的压力不变【答案】ACD 【解析】 【详解】A .若两球静止时,均受力平衡,对B 球分析可知杆的弹力为零,B N mg =;设弹簧的压缩量为x ,再对A 球分析可得:1mg kx =,故弹簧的长度为:11mgL L x L k=-=-, 故A 项正确;BC .当转动的角速度为ω0时,小球B 刚好离开台面,即0BN '=,设杆与转盘的夹角为θ,由牛顿第二定律可知:20cos tan mg m L ωθθ=⋅⋅ sin F mg θ⋅=杆而对A 球依然处于平衡,有:2sin k F mg F kx θ+==杆而由几何关系:1sin L x Lθ-=联立四式解得:2k F mg =,0ω=则弹簧对A 球的弹力为2mg ,由牛顿第三定律可知A 球队弹簧的压力为2mg ,故B 错误,C 正确;D .当角速度从ω0继续增大,B 球将飘起来,杆与水平方向的夹角θ变小,对A 与B 的系统,在竖直方向始终处于平衡,有:2k F mg mg mg =+=则弹簧对A 球的弹力是2mg ,由牛顿第三定律可知A 球队弹簧的压力依然为2mg ,故D 正确; 故选ACD 。

7.如图,在竖直平面内固定半径为r 的光滑半圆轨道,小球以水平速度v 0从轨道外侧面的A 点出发沿圆轨道运动,至B 点时脱离轨道,最终落在水平面上的C 点,不计空气阻力、下列说法正确的是( )A .从A 到B 过程,小球沿圆切线方向加速度逐渐增大 B .从A 到B 过程,小球的向心力逐渐增大C .从B 到C 过程,小球做变加速曲线运动D .若从A 点静止下滑,小球能沿圆轨道滑到地面 【答案】AB 【解析】 【分析】 【详解】设重力mg 与半径的夹角为θ,对圆弧上的小球受力分析,如图所示A .建立沿径向和切向的直角坐标系,沿切向由牛顿第二定律有sin t mg ma θ=因夹角θ逐渐增大,sin θ增大,则小球沿圆切线方向加速度逐渐增大,故A 正确;B .从A 到B 过程小球加速运动,线速度逐渐增大,由向心力2n v F m r=可知,小球的向心力逐渐增大,故B 正确;C .从B 到C 过程已离开圆弧,在空中只受重力,则加速度恒为g ,做匀变速曲线运动(斜下抛运动),故C 错误;D .若从A 点静止下滑,当下滑到某一位置时斜面的支持力等于零,此时小球会离开圆弧做斜下抛运动而不会沿圆轨道滑到地面,故D 错误。

故选AB 。

8.如图所示,b 球在水平面内做半径为R 的匀速圆周运动,BC 为圆周运动的直径,竖直平台与b 球运动轨迹相切于B 点且高度为R 。

当b 球运动到切点B 时,将a 球从切点正上方的A 点水平抛出,重力加速度大小为g ,从a 球水平抛出开始计时,为使b 球在运动一周的时间内与a 球相遇(a 球与水平面接触后不反弹),则下列说法正确的是( )A.a球在C点与b球相遇时,a球的运动时间最短B.a球在C点与b球相遇时,a球的初始速度最小C.若a球在C点与b球相遇,则a2gRD.若a球在C点与b球相遇,则b 2R g【答案】C 【解析】【分析】【详解】A.平抛时间只取决于竖直高度,高度R不变,时间均为2Rtg=A错误。

BC.平抛的初速度为xvt=时间相等,在C点相遇时,水平位移最大max 2x R=则初始速度最大为:max 22 Rv gRt==故B错误,C正确。

D.在C点相遇时,b球运动半个周期,故b球做匀速圆周运动的周期为222b RT tg==故D错误。

故选C。

9.如图所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动。

现给小球一初速度,使它做圆周运动,图中a、b分别表示小球轨道的最低点和最高点。

则杆对球的作用力是()①a处为拉力,b处为拉力②a处为拉力,b处为推力③a处为推力,b处为拉力④a处为推力,b处为推力A .①③B .②③C .①②D .②④【答案】C 【解析】 【分析】 【详解】a 处圆心在上方,合力提供向心力向上,故需有向上的拉力大于向下的重力;b 处合力向下,重力也向下,受力如图:根据牛顿第二定律有21v F mg m R=当F 1<0,杆对球有推力,向上; 当F 1>0,杆对球有拉力,向下; 当F 1=0,杆对球无作用力。

相关文档
最新文档