大学生数学建模太阳影子定位
基于太阳影子定位的研究大学生数学建模论文

基于太阳影子定位的研究摘要本文研究的是在经纬度、日期、时刻、杆长、影长等变量之间建立起量化关系,构建出模型,能够达到在已知一些量的情况下求解出其余的量。
针对问题一:我们先将各个变量之间有数学表达式建立出关系,然后通过球面三角形的运算公式,借助高度角、赤纬角、时角等相关概念求解出实际问题。
针对问题二:由于无法确定题目给出的数据是如何建立坐标系的,所有就考虑到可以通过建立函数关系和拟合曲线的方式来解决问题。
首先,根据附件坐标,将与其一一对应的影长计算出来,并将这些数据进行拟合后可以发现影子长度与时间所构成的关系式完全满足二次函数,拟合的相关系数为1。
所以由二次函数图象的特殊性,图象的最低点就可以直接取到正午影长L。
再根据时间差与经ZW度差的关系,就可以直接计算出经度。
之后又由于构建了杆长和当地纬度的关系式,进行等量取值后再用matlab软件进行循环处理,每循环一次就可得出一个正午影长,将此时循环得到的影长与之前拟合的影长数进行取差比较,绝对值最小影长对应的纬度就为最后所求的结果。
整个思路主要是避免了由于坐标系不确定而带来的误差。
针对问题三:本题求解经度的方式还是同题二大致一样,都是通过拟合影子长度,获得函数曲线,再由时间差求解经度差。
对于纬度和日期求解采用的是间隔取值的方法,运用matlab软件进行循环,解出不同时间的影子长度,在于附件二、三中计算的影长做比较,计算方差,由最小方差来确定最合适的解。
针对问题四:本问题中只给了一段视频,所以要通过2D图的坐标转换成3D 空间坐标。
先假设相机光学中心所在的平面坐标系以及摄像机平面与直杆所在平面的法向量,通过视频间隔时间段截图,获取每幅图上影子端点、直杆与地面的交点以及直杆顶点的二维坐标,通过转换可得到影子端点在像平面的坐标与真实的影子端点的坐标之间的关系,将影子端点在像平面的坐标转换成真实坐标,然后再对数据进行处理得出要求的地点。
最后,我们对模型进行了优缺点分析,以及下一步要进行的工作.关键词数据拟合;循环计算;Matlab;数图分析;一、问题重述A题太阳影子定位如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。
数学建模2021a题

数学建模2021a题
2021年数学建模竞赛A题《太阳影子定位》答案如下:
1. 建立影子长度变化的数学模型
根据日出和日落时间,确定太阳的高度角变化范围,再根据影子的长度变化,得到太阳高度角与影子长度之间的关系。
利用这个模型,可以预测任何给定时间点的影子长度。
2. 建立基于深度学习的模型
使用深度学习技术,建立一个能够预测影子长度的模型。
该模型可以处理大量的历史数据,并使用这些数据来训练模型,使其能够准确预测未来的影子长度。
3. 建立基于时间序列分析的模型
利用时间序列分析技术,建立一个能够预测影子长度的模型。
该模型可以处理时间序列数据,并使用这些数据来训练模型,使其能够准确预测未来的影子长度。
4. 建立基于神经网络的模型
利用神经网络技术,建立一个能够预测影子长度的模型。
该模型可以处理非线性数据,并使用历史数据来训练模型,使其能够准确预测未来的影子长度。
5. 综合以上三种方法
结合深度学习、时间序列分析和神经网络技术,建立一个综合性的模型。
该模型可以处理大量的历史数据,并使用这些数据来训练模型,使其能够准确预测未来的影子长度。
以上答案仅供参考,如有疑问,建议咨询专业人士。
太阳影子定位-2015高教社杯全国大学生数学建模竞赛题

2015高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题太阳影子定位如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。
1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。
2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。
将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。
3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。
将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。
4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。
请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。
如果拍摄日期未知,你能否根据视频确定出拍摄地点与日期?太阳影子定位摘要本文通过分析物体的太阳影子变化,利用太阳影子定位技术建立确定视频拍摄的地点和日期的模型。
针对问题一,首先通过分析知影子长度的变化主要影响参数为:当地的经度λ、纬度ϕ、时刻t、直杆长度l、季节J(日期N)等,引入地理学参数:太阳赤纬δ、时角α及太阳高度角h 0,建立一个能够刻画影子长度变化和各个参数间关系的模型:⎪⎪⎩⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡⋅⋅-+-=h l h l t 000tan)cos cos sin sin sin arccos(300151δϕδϕλ;其次以实例对模型进行检验,在误差可允许的范围内,认为模型正确;进而对模型采用控制变量法分析影子长度关于各个参数的变化规律;然后求解出满足条件影子长度12时15分是最短,大约3.674米(表3)。
【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】2015年全国数学建模竞赛A题全国一等奖论文17

4.3. 对问题 3 的分析
问题 3 相比于问题 2,附件的数据中没有给出日期,并且要求根据数据求出 观测数据时的日期。而太阳赤纬角在周年运动中任何时刻的具体值都是严格已知 的,并且可以通过日期(距离 1 月 1 日的天数)计算。在太阳方位角的计算中, 将日期转化为一个参数,通过问题 2 中的拟合同时求出,得到经纬度的值以及日 期。
对于不同时刻的太阳高度角 [2] ,已知杆长,有 tanh H L
结合公式(1)(2)(3)(4)(5),即可求得杆在不同时刻的影子长度关于北京经 纬度、当地时间以及测量日期四个参数的函数关系式
L Htan(arcsin( n m )) nm
6
5.1.2. 模型的求解
北京的纬度为北纬 3954'26'' ,经度为11623'29'' 。以正午 12 点为基准,t0 时
五. 模型的建立与求解
5.1. 问题 1 模型的建立与求解——空间向量模型 5.1.1. 模型的建立
影长随时间的变化是在地球自转和公转影响下产生的地理物理现象,根据地 球的特征,将地球看做一个球体,建立一个空间直角坐标系,地心为坐标系原点, 球的方程为 x2 y2 z2 1,构造空间向量模型。地球自西向东自转,在空间直 角坐标系中,选取一个时间点作为标准,用 x、y 轴坐标的变化来描述地球的自 转(24 小时内时间变化)过程中某一点位置的变化。
针对问题 3:首先,根据附件 2 和附件 3 建立直角坐标系,用日期序数表示 赤纬角;其次,在问题 2 得到的 y 关于 x 与经纬度的函数方程的基础上,增函数 方程的未知参数个数日期序数,得到新的函数方程;然后,用 MATLAB 进行非 线性最小二乘拟合,拟合得到经纬度以及日期序数;最后,根据拟合参数计算杆 长,通过标准差选择最优解。
2015年全国大学生数学建模竞赛A题优秀论文太阳影子定位模型教程

我们依据太阳位置算法[2]( SPA)得到太阳位置的几何模型图如图 1 所示:
图 1 太阳位置的几何模型
图中 为高度角, 为方位角, 为纬度角, 为赤纬角, 为太阳时角, 和 能由下列式子计算得到(公式来源:/1GU1iS):
(1.2)
其中 为一个参数,能通过如下公式得到
2 (d 1) 365
(1.3)
式中, h 为北京时间, 为当地经度, d 为日期,即 1 月 1 日就用 d 1来表
示,假设一年为 365 天,则 d 365表示 12 月 31 日。由式(1.1)可知,相邻两天的赤
纬角 差值几乎为 0,因此当闰年时,我们设定 2 月 28 日的 d 59 ,29 日时 d 59 ,
g( ) (0.006918 - 0.399912 cos( ) 0.070257 sin( ) - 0.006758 cos(2 ) 0.000907 sin(2 ) - 0.002697 cos(3 ) 0.00148 sin(3 ))
(1.1 )
h15 300
关键词:太阳位置算法 最小二乘法 遗传算法 太阳影子定位模型
一. 问题重述
1.1. 问题背景 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位
技术就是通过分析视频中物体的太阳影子变化来确定视频拍摄的地点和日期的一种方 法。 1.2. 问题提出 1. 建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用建
5.1.2. 模型求解
首先根据问题分析和模型,我们将观测日期代入得到赤纬角 21.8985 ,负号表
示太阳直射点在南半球,然后代入求出太阳时角 和高度角 在不同时刻的值,得到表
太阳影子定位数学建模

太阳影子定位摘要本文针对太阳影子的定位进行分析,利用视频的拍摄地与拍摄日期等数据进行分析,来研究在视频中直杆的影子变化规律,问题中有要求利用坐标位置让我们得到拍摄的地理位置和拍摄日期,所以可以进行逆向思维,从中分析出要求得问题。
对于问题一,根据题设条件,首先根据所学的地理知识,了解影响物体影子发生变化的相关因素,然后通过查询相关文献、杂志等,确定各个因素之间的关系,建立物体影子长度变化数学模型,然后利用MATLAB,得到因素之间的关系,即物体影子的长度与太阳高度角、太阳赤纬角、太阳时角以及直杆所处的位置有关。
最后根据题中所给的天安门广场的具体例子,应用此数学模型,便可以得到所求的位置和时间的物体影子变化曲线。
对于问题二,首先根据问题一中所建立的数学模型,假设水平地面上物体影子的顶点坐标,然后根据关键词:太阳高度角太阳赤纬度太阳时角MATLAB一、问题重述一段视频,我们可以从中得到很多信息。
对于如何确定视频的拍摄地点和时间,我们就可以通过分析视频的相关数据得到。
太阳影子定位技术就是其中的一种方法。
问题一要求我们分析关于影子长度变化的参数有哪些,以及它们的变化规律,并建立数学模型。
应用建立的模型,得出位于天安门广场(北纬39度54分26秒,东经116度23分29秒)在2015年10月22日北京时间9:00-15:00之间,树立的一根3米高的直杆的太阳影子长度的变化曲线。
经过分析我们可以得到,杆的影子与太阳高度角有关,即可以用时差、真太阳时、太阳赤纬角以及太阳时角来表示太阳影子的长。
问题二要求我们在水平地面上,固定某直杆,建立坐标,根据它在太阳下影子的顶点坐标,然后建立数学模型,得到直杆所在的位置。
可以根据问题一的模型进行逆向思维,去求直杆的位置,再利用太阳方向角,并依靠附件1中的直杆影子顶点坐标,通过所建的数学模型,求出很多个可能的地点。
问题三和问题二的前提一样,建立数学模型之后,我们要应用它得到直杆所处的具体位置和时间。
太阳影子定位问题(数学建模 )

针对问题二,附件 1 给出了 2015 年 4 月 18 日时,某个固定直杆在水平地面上的太 阳影子的顶点坐标数据,但规定的 ������轴方向和������轴方向未知。可将顶点坐标数据转化为 影长������,从而经问题二转化为问题一的逆向求解,由于未知参量较多,先通过引入影长 比������������消除杆高ℎ未知的影响,再采用最小二乘法拟合的方法【2】求解即可。
图 2 直杆投影的几何模型
由图可知,直杆的长度ℎ与其太阳影子������的长度之间有如下关系:
������ = ℎ cot ������ 联系以上各关系式可以得到如下的有关影子长度变化的数学模型:
������ = ℎ cot ������
sin ������ = sin ������������ sin ������ + cos ������������ cos ������ cos ������
2.根据某个固定直杆在水平地面上的太阳影子的顶点坐标数据来建立数学模型,用 以确定其所处的地点。再将附件 1 的影子顶点坐标数据代入该模型,求解出所有可能的 地点。
3.根据某个固定直杆在水平地面上的太阳影子的顶点坐标数据来建立数学模型,用 以确定其所处的地点和日期。将附件 2 和附件 3 的影子顶点坐标数据带入模型,一次 性给出若干个可能的地点与日期。
高教社杯全国大学生数学建模竞赛A题太阳影子定位

高教社杯全国大学生数学建模竞赛A题太阳影子定位IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】摘要通过太阳影子定位技术可以确定视频的拍摄地点和时间,为拍摄出更好的视频,掌握太阳影子的变化规律就变得尤为重要。
本文主要综合运用了地理学、几何学、统计学、数学分析和高等代数等知识,并利用MATLAB,SPSS和mathematica等计算机软件,通过建立数学模型来研究影子长度的变化特征,进一步确定视频的拍摄地点和时间。
针对问题一,首先我们通过分析影子长度的影响因素得到与影子长度的关系(见表达式六)整理计算之后,就得到了影子长度的数学模型。
然后我们通过分析他们之间的关系,再利用MATLAB编程,得到了影子长度关于各个参数的变化规律(见图3到图7)。
其次根据我们建立的模型,利用MATLAB编程画出了给定时间天安门广场3米高的直杆的太阳影子长度的变化曲线(见图8),然后在考虑折射率的情况下又画了一条变化曲线(见图9),最后进行了误差分析(见图10)。
针对问题二,我们采用了测试分析法(数据分析法和计算机仿真相结合),通过分析各个参量之间的关系,先以影长l为目标做回归,用模型一的模型,通过SPSS进行拟合得到多组数据,再用MATLAB进行检验得到符合的两组经纬度。
然后我们又以太阳方位角K为目标做回归,得到模型(见表达式12),其计算方法与影长l做回归目标时一样。
我们分步做了两次拟合,先用MATLAB拟合出经度,再N E和杆长做回归模型(见表达式14)最后得到经纬度(18.74,109.35)=。
综上可知,肯定有一地点是在海南,还有一个地点可能在云南。
1.993L m针对问题三,我们用问题二中的多项式回归,得到回归模型(见表达式17和20)=,得到天数利用附件二得到的经纬度为(32.83N,110.25E)和杆长L 3.03m=,得到天n=。
利用附件三得到的经纬度为(39.19N,79.5E)和杆长L 1.962m 307n数=140针对问题四,首先运用MATLAB软件,根据画面灰度,运用MATLAB软件,把视频转化成二值图,求得影子端点的像素坐标,然后根据相似原理,把像素坐标转化成水平面上的坐标(消去了视角的影响),进而求得影子的长度。