链板机选型计算

链板机选型计算
链板机选型计算

链板输送机

设备参数

功率:7.5kw

链板宽度:800mm

链板机长度:16m

倾斜角度:60°

速度:v=0.5m/s

链条节距:200mm

挡板高度:150mm

产量计算

Q=900B×v×ρ×(B×c×tan(ψ1)+4×h×ψ)×μ

式中:

v——链板机运行速度;v=0.3m/s

ρ——物料堆比重;ρ=0.5t/m3

B——链板有效宽度;B=800mm

c——倾角系数;设备倾斜角度60°,倾角系数c=0.9

ψ1——物料的动堆积角;(根据设计经验,ψ1=23°)

h——挡板高度:h=0.15m

ψ——挡边高度系数:ψ=0.65

μ——物料填充率(根据设计经验、μ=0.4)

Q=900B×v×ρ×(B×c×tan(ψ1)+4×h×ψ)×μ

=900×0.8×0.5×0.5×(0.8×0.9×tan23°+4×0.15×0.65)×0.4 =

板式换热器选型计算书

目录 1、目录 1 2、选型公式 2 3、选型实例一(水-水) 3 4、选型实例二(汽-水) 4 5、选型实例三(油-水) 5 6、选型实例四(麦芽汁-水) 6 7、附表一(空调采暖,水-水)7 8、附表二(空调采暖,汽-水)8 9、附表三(卫生热水,水-水)9 10、附表四(卫生热水,汽-水)10 11、附表五(散热片采暖,水-水)11 12、附表六(散热片采暖,汽-水)12

板式换热器选型计算 1、选型公式 a 、热负荷计算公式:Q=cm Δt 其中:Q=热负荷(kcal/h )、c —介质比热(Kcal/ Kg.℃)、m —介质质量流量(Kg/h )、Δt —介质进出口温差(℃)(注:m 、Δt 、c 为同侧参数) ※水的比热为1.0 Kcal/ Kg.℃ b 、换热面积计算公式:A=Q/K.Δt m 其中:A —换热面积(m 2)、K —传热系数(Kcal/ m 2.℃) Δt m —对数平均温差 注:K值按经验取值(流速越大,K值越大。水侧板间流速一般在0.2~0.8m/s 时可按上表取值,汽侧 板间流速一般在15m/s 以时可按上表取值) Δt max - Δt min T1 Δt max Δt min Δt max 为(T1-T2’)和(T1’-T2)之较大值 Δt min 为(T1-T2’)和(T1’-T2)之较小值 T T1’ c 、板间流速计算公式: T2 其中V —板间流速(m/s )、q----体积流量(注意单位转换,m 3/h – m 3/s )、 A S —单通道截面积(具体见下表)、n —流道数 2、板式换热器整机技术参数表: 计压力1.0Mpa 、垫片材质EPDM 、总换热面积为9 m 2 板式换热器。 注:以上选型计算方法适用于本公司生产的板式换热器。 选型实例一(卫生热水用:水-水) Ln Δt m =

电机选型计算-个人总结版(新、选)

电机选型-总结版 电机选型需要计算工作扭矩、启动扭矩、负载转动惯量,其中工作扭矩和启动扭矩最为重要。 1工作扭矩T b计算: 首先核算负载重量W,对于一般线形导轨摩擦系数μ=0.01,计算得到工作力F b。 水平行走:F b=μW 垂直升降:F b=W 1.1齿轮齿条机构 一般齿轮齿条机构整体构造为电机+减速机+齿轮齿条,电机工作扭矩T b的计算公式为: 其中D为齿轮直径。 1.2丝杠螺母机构 一般丝杠螺母机构整体构造为电机+丝杠螺母,电机工作扭矩T b 的计算公式为: 其中BP为丝杠导程;η为丝杠机械效率(一般取0.9~0.95,参考下式计算)。

其中α为丝杠导程角;μ’为丝杠摩擦系数(一般取0.003~0.01,参考下式计算)。 其中β丝杠摩擦角(一般取0.17°~0.57°)。 2启动扭矩T计算: 启动扭矩T为惯性扭矩T a和工作扭矩T b之和。其中工作扭矩T b 通过上一部分求得,惯性扭矩T a由惯性力F a大小决定: 其中a为启动加速度(一般取0.1g~g,依设备要求而定,参考下式计算)。 其中v为负载工作速度;t为启动加速时间。 T a计算方法与T b计算方法相同。 3 负载转动惯量J计算: 系统转动惯量J总等于电机转动惯量J M、齿轮转动惯量J G、丝杠转动惯量J S和负载转动惯量J之和。其中电机转动惯量J M、齿轮转动惯量J G和丝杠转动惯量J S数值较小,可根据具体情况忽略不计,如需计算请参考HIWIN丝杠选型样本。下面详述负载转动惯量J的计算过程。 将负载重量换算到电机输出轴上转动惯量,常见传动机构与公式如下:

J:电机输出轴转动惯量(kg·m2) W:可动部分总重量(kg) BP:丝杠螺距(mm) GL:减速比(≥1,无单位) J:电机输出轴转动惯量(kg·m2) W:可动部分总重量(kg) D:小齿轮直径(mm) 链轮直径(mm) GL:减速比(≥1,无单位) J:电机输出轴转动惯量(kg·m2) J1:转盘的转动惯量(kg·m2) W:转盘上物体的重量(kg) L:物体与旋转轴的距离(mm) GL:减速比(≥1,无单位) 4 电机选型总结 电机选型中需引入安全系数,一般应用场合选取安全系数S=2。则电机额定扭矩应≥S·T b;电机最大扭矩应≥S·T。同时满足负载惯量与电机惯量之间的比值≤推荐值。 最新文件仅供参考已改成word文本。方便更改

倍速链线上如何确认合适的倍速链条

一般而言,在搭建倍速链生产线时,有一个环节至关重要,那就是倍速链线链条的选型。能否正确选择合适的链条,会非常直接的影响到后期整个系统的运行效率。 在倍速链线选型时,可以依据以下几个步骤: 1、使用条件的确认 请确认所选型号是否符合以下条件。 温度: -10℃~+80℃ 链条速度: 5~15m/min 机械长度: 15m以下 环境: 无磨损性粉尘、腐蚀性气体、高湿度等不良影响 2、链条的确定 计算传送物的每米重量,选择能满足下表 容许负载重量的链条。 WA(kg/m)=(W1+W2)/PL WA: 传送物的每米重量(kgf) W1: 工件重量(kgf) W2: 托盘重量(kgf)

PL: 托盘的移动距离(m) 3、容许张力的确认 T=G/1000M(Hw+Cw)L1·fc+Aw·L2·fa+(Aw+Cw)L2·fr+1.1Cw(L1+L2)·fc T: 作用于链条上的最大张力(KN) L1: 传送部的长度(m) L2: 滞留部的长度(m) Hw: 含传送部托盘的传送物重量(kg/m) Aw: 含滞留部托盘的传送物重量(kg/m) Cw: 链条重量(kg/m) fa: 有滞留时传送物与链条间的摩擦系数 fc: 链条与滑轨的摩擦系数 fr: 有滞留时链条与滑轨间的摩擦系数 G: 重力加速度=9.80665(m/s2) 选择的注意事项: 1、自流式输送机一般并列使用2条链条, 2、计算每条链条的张力。

3、链条的容许张力≥(TMK1MK2)/2 4、如果超过了链条的容许张力,请将链条变更为大一号规格,或将机械长度进行分割后重新计算链条摩擦系数。 杭州傲州链传动有限公司创建于2004年,公司具有优异的制造技术与较强制造力,精密的检测仪器,主要生产产品有板式链条和A,B系列传动用短节距精密滚子链,双节距传动链和输送链,短节距输送滚子链附件,双节距输送滚子附件,立体车库链,空心销轴滚子链和套筒链条,大滚子输送链及附件,ZGS38联合收割机链及附件输送链,质量稳定。也可来样来图非标定做。

板式换热器选型计算

板式换热器选型计算 板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、拆装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算对每个工程设计人员都是非常重要的。目前板式换热器的选型计算一般分为手工简易算法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明。 一、手工简易算法 计算公式:F=Wq/(K*△T) 式中F —换热面积m2 Wq—换热量W K —传热系数W/m2·℃ △T—平均对数温差℃ 根据选定换热系统的有关参数,计算换热量、平均对数温差,设定传热系数,求出换热面积。选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及压降。若实际传热系数小于设定传热系数,则应降低设定传热系数,重新计算。若实际传热系数大于设定传热系数,而实际压降大于设定压降,则应进一步降低设定传热系数,增大换热面积,重新计算。经过反复校核,直到计算结果满足换热系统的要求,最终确定换热器型号及换热面积大小。这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确,应用范围窄。造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。此外样本所提供的传热特性曲线及流阻特性曲线仅为水―水换热系统,在使用中有很大的局限性。

热介质 进出口温度℃Th1 Th2 流量m3/h Qh 压力损失(允许值)MPa △Ph 冷介质 进出口温度℃Tc1 Tc2 流量m3/h Qc 压力损失(允许值)MPa △Pc (二)物性参数 物性温度℃Th=(Th1+Th2)/2 Tc=(Tc1+Tc2)/2 介质重度Kg/m3γh γc 介质比热KJ/kg·℃Cph Cpc 导热系数W/m·℃λh λc 运动粘度m2/s νh νc 普朗特数Prh Prc (三)平均对数温差(逆流) △T=((Th1-Tc2)-(Th2-Tc1))/ln((Th1-Tc2)/(Th2-Tc1)) 或△T=((Th1-Tc2)+(Th2-Tc1))/2 (分子等于零) (四)计算换热量 Wq=Qh*γh*Cph*(Th1-Th2)=Qc*γc*Cpc*(Tc2-Tc1) W (五)设备选型 根据样本提供的型号结合流量定型号,主要依据于角孔流速。即:

电机、减速器的选型计算实例

电机减速机的选型计算 1参数要求 配重300kg ,副屏重量为500kg ,初选链轮的分度圆直径为164.09mm ,链轮齿数为27,(详见misimi 手册P1145。副屏移动的最大速度为0.5m/s,加速时间为1s 。根据移动屏实际的受力状况,将模型简化为: 物体在竖直方向上受到的合力为: 惯惯2121F F G G F h ++-= 其中: 115009.84900G m g N ==?= 223009.82940G m g N ==?= 110.55002501F m a N ==? =惯 120.53001501 F m a N ==?=惯 所以: 49002940250150 2360h F =-++=

合力产生的力矩: 0.16409 23602 193.6262h M F r Nm =?=? = 其中:r 为链轮的半径 链轮的转速为: 0.5 6.1/0.082 v w rad s r === 6.1 (1/60)58.3/min 22w n r ππ === 2减速机的选型 速比的确定: 初选电机的额定转速为3000r/min 300051.558.3 d n i n === 初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm 3电机的选型 传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为: 44193.62 5.9500.9 d M T Nm i η===? 初选电机为松下,3000r/min ,额定扭矩为:9.55Nm ,功率3kw 转子转动惯量为7.85X10-4kgm 2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM 4惯量匹配 负载的转动惯量为:

板式换热器选型与计算方法

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

电机减速器的选型计算实例

电机减速器的选型计算 实例 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电机减速机的选型计算1参数要求 配重300kg,副屏重量为500kg,初选链轮的分度圆直径为164.09mm,链轮齿数为27,(详见misimi手册P1145。副屏移动的最大速度为0.5m/s,加速时间为1s。根据移动屏实际的受力状况,将模型简化为: 物体在竖直方向上受到的合力为: 其中: 所以: 合力产生的力矩: 其中:r为链轮的半径 链轮的转速为: 2减速机的选型 速比的确定: 初选电机的额定转速为3000r/min 初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm 3电机的选型 传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为: 初选电机为松下,3000r/min,额定扭矩为:9.55Nm,功率3kw转子转动惯量为 7.85X10-4kgm2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM 4惯量匹配 负载的转动惯量为:

转换到电机轴的转动惯量为: 惯量比为: 电机选型手册要求惯量比小于15,故所选电机减速器满足要求 减速机扭矩计算方法: 速比=电机输出转数÷减速机输出 ("速比"也称"传动比")知道电机功率和速比及,求减速机扭矩如下公式: 减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数 知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式:电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数

倍速链计算实例

已知条件:工件产品重3KG,托盘2KG。托盘速度200mm/s。在链条上的布局如下图所示 1.算出作用链条上的最大拉力F(单位:KN) F=9.8xWTxfxkv/1000 =9.8x22x(0.1+0.1)x1/1000 =0.04312KN 如选择钢制滚子则,查表得出RF2030VR的最大允许拉力单根为0.98KN. 由于0.98*0.6>0.04312所以,选择RF2030VR 2.计算主轴的转速n 由已知托盘的速度200mm/s,使用2.5倍倍速链 得链条速度v=200/2.5=80mm/s 由v=πd*n/60 单位;v--mm/s,d--mm, n--r/min 得n=60v/(πd)=60*80/(3.14*61.65)≈25r/min 3.计算主轴的转矩T 3.1先算链条的有效拉力F F=G/1000*{(W1+M)L1*f1+W2*L2*f2+(W2+M)*L2*f3+1.1M(L1+L2)f1} =9.8/1000*{(W1*L1+M*L1)*f1+W2*L2*f2+(W2*L2+M*L2)*f3+1.1M(L1+L2)f1} =9.8/1000*{(7+1.4*0.985)*0.05+15*0.1+(15+1.4*0.75)*0.1+1.1*1.4(0.985+0.75)*0.05} =0.0098*(0.41895+1.5+1.605+0.133595) ≈0.0359(kn)=35.9n 3.2计算转矩T=F*r=35.9*61.65/2=1106.62n.mm=1.11n.m,为了安全乘以安全系数2,

所以T=2*1.11=2.22n.m 4.结论: 选择减速机的时候满足减速机的输出转速n2略大于25r/min;减速机的输出转矩T2>2.22n.m 查嘉诚减速机样本得出减速机型号为:RV25-50-0.06-F-B3

伺服电机计算选择应用实例全解

伺服电机计算选择应用实例 1. 选择电机时的计算条件 本节叙述水平运动伺服轴(见下图)的电机选择步骤。 例:工作台和工件的 W :运动部件(工作台及工件)的重量(kgf )=1000 kgf 机械规格 μ :滑动表面的摩擦系数=0.05 π :驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf )=50 kgf Fc :由切削力引起的反推力(kgf )=100 kgf Fcf :由切削力矩引起的滑动表面上工作台受到的力(kgf ) =30kgf Z1/Z2: 变速比=1/1 例:进给丝杠的(滚珠 Db :轴径=32 mm 丝杠)的规格 Lb :轴长=1000 mm P :节距=8 mm 例:电机轴的运行规格 Ta :加速力矩(kgf.cm ) Vm :快速移动时的电机速度(mm -1)=3000 mm -1 ta :加速时间(s)=0.10 s Jm :电机的惯量(kgf.cm.sec 2) Jl :负载惯量(kgf.cm.sec 2) ks :伺服的位置回路增益(sec -1)=30 sec -1 1.1 负载力矩和惯量的计算 计算负载力矩 加到电机轴上的负载力矩通常由下式算出: Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P ×(Z1/Z2)=8 mm Tf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2Nm F ×L 2πη

无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F值还与平衡锤有关。对于水平工 作台,F值可按下列公式计算: 不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm) 切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm) 为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时 应大于0.9(Nm),最高转速应高于3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为2.0 Nm)。 ·注计算力矩时,要注意以下几点: 。考虑由镶条锁紧力(fg)引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当小。镶条 锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷,丝杠的预应力及其它一些因 素有可能使得滚动接触的Fc相当大。小型和轻型机床其摩擦力矩 会大大影响电机的承受的力矩。 。考虑由切削力引起的滑动表面摩擦力(Fcf)的增加。切削力和驱 动力通常并不作用在一个公共点上如下图所示。当切削力很大时, 造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。 。进给速度会使摩擦力矩变化很大。欲得到精确的摩擦力矩值,应 仔细研究速度变化,工作台支撑结构(滑动接触,滚动接触和静压 力等),滑动表面材料,润滑情况和其它因素对摩擦力的影响。 。机床的装配情况,环境温度,润滑状况对一台机床的摩擦力矩影 响也很大。大量搜集同一型号机床的数据可以较为精确的计算其负

链条标准与设计选型

链条标准与设计选型 中国链条标准 GB/T 1243-1997:短节距传动用精密滚子链和链轮 GB/T 3579-1983:自行车链条 GB/T 4140-1993:输送用平顶链和链轮 GB/T 5269-1999:传动及输送用双节距精密滚子链和链轮GB/T 5858-1997:重载传动用弯板滚子链和链轮 GB/T 6076-1985:传动用短节距精密套筒链 GB/T 8350-1987:输送链、附件和链轮 GB/T 10855-1989:传动用齿形链及链轮 GB/T 10857-1989:S型、C型钢制滚子链、附件和链轮GB/T 14212-1993:摩托车链条 GB/T 15390-1994:工程用钢制焊接弯板链和链轮 JB/T 17482-1998:输送用模缎易拆链 JB/T 3876-1999:加重系列传动用短节距精密滚子链 JB/T 5398-1991:工程用钢制套筒链、附件及链轮 JB/T 6074-1995:板式链、端接头及槽轮 JB/T 6367-1992:保护拖链形式尺寸 JB/T 7054-1993:瓶装啤酒灌装线滚子输送链 JB/T 7350-1993:小规格链条包装 JB/T 7364-1994:倍速输送链 JB/T 7427-1994:滚子链和套筒链链轮滚刀

JB/T 8545-1997:自动扶梯梯级链、附件和链轮 JB/T 8546-1997:双铰接输送链 JB/T 8820-1998:摩托车传动链条磨损性能试验规范 JB/T 8883-1999:农业机械用夹持输送链 JB/T 8920-1999:工程塑料内链节轻型输送链 JB/T 9152-1999:滑片式无级变速链 JB/T 9153-1999:双链冷拔机用直板滚子链和链轮 JB/T 9154-1999:埋刮板输送机用叉型链、附件和链轮 SY/T 5595-1997:油田链条和链轮 国际标准学会(ISO))链条标准 ISO 487-1998:S型和C型钢制滚子链、附件和链轮 Type S and C Steel Roller Chains, Attachments and Chain Wheels ISO 606-1994:短节距精密传动滚子链和链轮 Short Pitch Transmission Precision Roller Chains and Chain Wheels ISO 1275-1995:传动和输送用双节距精密滚子链和链轮 Extended Pitch Precision Roller Chains and Chain Wheels for Transmission and Conveyors ISO 1395-1977:短节距传动精密套筒链和链轮(1997年修订) Short Pitch Transmission Precision Bush Chains and Chain Wheels (and Amendment) ISO 1977-2000:输送链、附件和链轮 (公制和英制) Conveyor Chains, Attachments and Chain Wheels (Metric and Inch Series) ISO 3512-1992:传动用重载弯板滚子链 Heavy Duty Cranked Link Transmission Chains

基于PLC的饮料灌装生产流水线控制系统的设计论文

基于PLC的饮料灌装生产流水线控制系统的 设计 摘要 PLC 随着计算机和网络通讯技术的发展,企业对生产过程的自动控制和信息通讯提出了更高的要求。饮料生产线比较复杂,生产环节也很多。其中饮料的灌装就是饮料生产线上重要的生产环节。 控制系统主要由一台PLC、交流异步电机、液罐、多个灌装状态检测传感器、故障报警蜂鸣器、产量统计显示器等组成。其中电机用来控制运送饮料瓶的传送带部分。 本控制系统有两个特点:一是输入、输出设备比较多;二是所需实现的控制是顺序逻辑控制、模块控制以及计算统计功能。 西门子S7-300系列PLC在模块控制、高速计数和计算方面的功能较强,实现比较方便。因此本系统选用了S7-300型号的PLC进行控制,既满足了控制系统所需的I/O点数,又满足了被控对象的控制要求。 采用PLC控制饮料灌装生产线,实现了饮料生产线的自动化、智能化。对劳动生产率的提高,饮料质量和产量的提高具有深远的意义。 关键词S7-300可编程序控制器(PLC)/自动化/智能化

基于PLC的饮料灌装生产流水线控制系统的 设计 第1章课题背景研究 1.1 饮料灌装生产流水线的概述 近年来,饮料工业发展迅猛,碳酸饮料、果汁饮料、蔬菜汁饮料、含乳饮料、瓶装饮用水、茶饮料等品种不断丰富,产量上的飘红,使得对设备市场的需求也呈牛市。 国外灌装与封口设备向高速发展世界灌装机向高速、多用、高精度方向发展,目前部分灌装生产线已可以在玻璃瓶与塑料容器(聚酯瓶)、碳酸饮料与非碳酸饮料、热灌装与冷灌装等不同要求和环境下作用。目前碳酸饮料灌装机灌装速度最高已达2000罐/分,德国H&K公司灌装机的灌装阀多达165头,SEN公司144头,Krones公司178头,灌装机直径大至5米,灌装精度0.5ml以下。 非碳酸饮料灌装机灌装阀50~100头,灌装速度最高达1500罐/分,灌装机料槽转速20~25转/分,速度提高1倍。可以进行茶饮料、咖啡饮料、豆乳和果汁饮料等多种饮料的热灌装,国外热灌装饮料封口后不再进行二次杀菌。 碳酸饮料常温灌装已酝酿20多年,常温碳酸化可以降低饮料成本,有利环保。非碳酸饮料充氮系统采用加压方式或液氮滴入方式向铝罐或PET瓶内灌注液氮惰性气体,可以保护内容物,减少营养素的损失。 目前PET瓶装茶饮料通常采用热灌装方法,为了降低灌装温度,提高茶饮料风味,确保产品卫生安全,已开发PET树脂成型使用130℃蒸汽杀菌和特殊灌装头灌装的简便式无菌包装机,同时正在开发冰咖啡等低酸性饮料两片薄壁罐的无菌包装技术,以实现薄壁罐的无菌包装。 国内灌装生产线全方位发展我国饮料灌装设备基本是在引进设备和技术的基础上发展起来的,八十年代,引进各种饮料灌装生产线300多条,包括啤酒灌

链板线选型设计计算表.doc

链板线选型计算 1 确定输送线速 . 比: 输送线线速度 V= 0.5 m/min = 0.008333333 m/s 输送链轮齿数 n= 6 节距P = 200 mm 输送链轮节径Φ=0.4 m = 400 mm 输送线驱动轴转速 0.00663482 rpm/s = 0.398089172 rpm/min n= 950 rpm/min 电机转速= 减速机速比= 1: 1500 输出轴转速= 0.633333333 rpm/min 驱动链轮齿数= 17 链轮速比1: 1.590933333 从动链轮齿数= 27.04586667 ( 取整) 2 输送机牵引力 . 计算: 输送机头尾中心距 23 m 链条重量= 50 kg/m A= 台面线载荷 W= 857.1428571 kg/m 链板重量= 115 kg/m 链板装置每米重量 175 kg/m 其他附件重量= 10 kg/m q= 详见运输机械 运行阻力系数ω=0.15 设计手册 (13- 驱动力 F= 40855.14643 N 3 电机功率计 . 算: ①第一种算 法:( 运输机械) 功率储备系数 K= 1.5 一般 K=(1.2~1.5) 系统总效率η=0.76 一般η =(0.76~0.81) P=(KSv)/(6000 电机功率 P= 0.671959645 kW 0η) 详见运输机械设计手册(13-50) ②第 2种算法 :( 通 用机械) 驱动系数f1= 1.75 ( 查询减速电机供应商选型手册) 原动机系数f2= 1

安全系数 n= 2 驱动力 F= 40855.14643 N 扭矩 T= 16342.05857 N.m 功率 P= 0.6812143 kW P=Tn/9550 最终功率P1= 1.568585559 kW P1=P2*f1*f2/ η校核 P≥0.908285733 kWf b 0.75 ( 电机使 用系数)

板式换热器的计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU 法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线 估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、 方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准 则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 * A3 F7 y& G7 S+ Q T2 = 热侧出口温度 3 s' _% s5 s. T" D0 q4 b t1 = 冷侧进口温度 & L8 ~: |; B: t2 M2 w$ z t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:0 B N/ I" A+ m0 z' H9 ~ (热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W;# Q/ p3 p: I4 ~0 N' I) W mh,mc-----热、冷流体的质量流量,kg/s;+ Z: I9 b- h9 h" r3 P) {/ ^ Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K);6 L8 t6 b3 o& m/ n T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡 算式为:& w3 v) j4 I4 R 一侧有相变化1 Y# e$ B6 c& z% C3 W- W* J 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中

链条规格及型号

兴化市特种链条厂 链条按不同的用途和功能区分为传动链、输送链、滚子链和特种链四种。 1.1 传动链主要用于传递动力的链条。 1.2 输送链主要用于输送物料的链条。 1.3 曳引链主要用于拉曳和起重的链条。 1.4 专用特种链主要用于专用机械装置上的、具有特殊功能和结构的链条。 在同类产品中,按组成链条的基本结构,即根据元件形状、同链条啮合的零件和部位,零件间尺寸比例等方面划分所属链条产品系列。 同一品种的链条按节距、排数、链条宽度以及极限拉伸载荷的不同划分规格。 1、带有前缀的链号 (1)RS系列 直板滚子链R—Roller S—Straight 例如:RS40即08A滚子链 (2)RO系列 弯板滚子链R—Roller O—Offset 例如:R O60即12A弯板链 (3)RF系列 直边滚子链R—Roller F—Fair 例如:RF80即16A直边滚子链 (4)SC系列 齿形链(无声链)S—Silent C—Chain来自ANSI B29.2M齿形链和链轮标准。 例如:SC3即CL06齿形链,节距为9.525

(5)C系列 输送链C—Conveyor 例如:C2040即08A双节距输送链 C2040 SL SL—Small roller 小滚子 C2060L L—Large roller 大滚子 CA650 C—Conveyor A—Agriculture,农机输送链小滚子型 Sm ali roller type 大滚子型 Large roller type (6)L系列 板式链L—Leaf chain 例如AL422即A型板式链,节距12.7,组合2×2 美国链号1975年取消BL546即B型板式链,节距15.875,组合4×6 美国链号

倍速链的选型

倍速链选型计算 倍速链的结构及工作原理 1.倍速链的定义 用于物料输送的链条与链传动采用的链条类似,工程上最常用的输送链条为滚子链。 所谓倍速输送链就是这样一种滚子输送链条,在输送线上,链条的移动速度保持不变,但链条上方被输送的工装板及工件可以按照使用者的要求控制移动节拍,在所需要停留的位置停止运动,由操作者进行各种装配操作,完成上述操作后再使工件继续向前移动输送。 2,倍速链结构组成 倍速链由内链板、套筒、滚子、滚轮、外链板、销轴等六种零件组成。 (1)零件材料 通常情况下,滚子、滚轮是由工程塑料材料注塑而成的,只有在重载情况下才使用钢制材料除此以外,其余零件都为钢制材料 4.倍速链的性能特点 (1)链条以低速运行,而工装板与被输送工件则可以获得成倍于链条速度的移动速度,通常工装板运行速度是链条运行速度的2.5或3倍,提高丁输送效率 (2)链条质量轻,使整个输送装置轻便,系统启动快捷。 3)因滚轮材质为工程塑料,因而链条运行平稳、噪声低、耐磨损、使用寿命长。 倍速链输送线的结构及工程应用 结构 在倍速链链条的基础上,加上电机驱动系统及其他附件就可以组成倍速链输送线在工程上,倍速链输送线的实际长度通常可达数十米。 典型的倍速链输送线主要由以下部分组成:

工装板 止动机构 倍速链链条 链条支承导轨 电机驱动系统 回转导向座 链条张紧调节机构 工装板 工装板是自动化生产线必不可少的输送工装(工程上也广泛称为冶具),它是直接放置在链条滚轮上方的承载物,被输送的物料或工件直接放置在工装板上,因此工装板是根据被输送工件的形状与尺寸专门设计十的。 工装板材料 工装板一般采用胶合板、增强PVC板、一次成型塑料板、胶合板与PVC合成板等材料制造 ②表面材料 由于工装板不仅是工件的自动输送载体,而且产品的装配和检测也是在工装板上进行的,因此工装板的表面材料应根据工艺需要具有相应的特殊要求,例如防静电、耐磨性,通常在工装板的表面采用防静电胶皮、金字塔形耐磨防滑胶皮、PP塑料耐磨板、防静电毛毯、防静电高密度海绵等材料 结构 在手工装配流水线或自动化生产线上,由于某些工序需要在工装板上对工件进行各种装配、检测、调试、老化等工序,所以工装板上除设置有工件定位夹具外,经常还需要设置电源

电机选型案例

小白进阶篇—电机选型案例集 主讲:小丸子教育—泽雨老师 目的:掌握不同电机在不同工况下的选型问题 课程内容: 1,皮带输送线电机选型 设计要求: 20Kg 物料X 2 传送速度1m/s 加速时间0.15s 已知条件: 摩擦系数=0.2 机械效率=90% 滚子直径=200mm 1. 计算功率 s rad mm s mm mm s m D V T P M N R F T N F F N N N s s m Kg s m K a m f F /102002/10002002/14.282843 1 12131338015.0/120/102.0g 402 =??=??=?=?=?=?==?+==+=?+??=?+=π ππππ)(辊筒辊筒 辊筒 负载负载辊筒皮带拉力负载负载皮带拉力负载ωω

W W W P K P KW r T P M N M N T mm s mm r n n i i T T W s rad M N T P 3823829 .02862.1286.09550 min /14409.115 4.2815200/1000min /1440284/104.28==?=?==?=?=?==?=== =??=?=ηω电机 实际电机电机电机负载电机 传动比 负载电机辊筒负载负载校验:π

设计要求; M=50Kg 运行速度1m/s 加速时间0.25s 直线导轨摩擦系数0.1 带轮直径100mm [] N s m Kg s s m Kg s m Kg a m g m F 250/)25 .01 5010501.0(25.0/150/10501.02 2 =??+??=? +??=?+??=μ负载

怎么做好倍速链的选择

倍速链是工业自动化设备生产中比较常见的一种输送设备。倍速链的选型方法,对于整个设备的运作效率起到至关重要的作用,搭建一个生产线必定少不了它。 以下是我们在选购倍速链中的常用方法的总结,其中有很多步骤可以帮助大家准确的算出链条的参数,可以配合运输线的参数进行计算,选择适合的,匹配于输送线的倍速链: 【步骤1】计算有效张力(Fe) Fe=g·(m·Lc·OR + (m+M)·(Lc-A)·OR + MA·A·(Oc+OR)+m·A·OR) Fe: 有效张力(N) Lc: 机械长度(m) A: 滞留长度(m) ※无滞留时,A=0。 M: 传送物重量(Kg/m) MA: 滞留部的传送物重量(Kg/m) m: 链条重量(Kg/m) Oc: 链条与传送物的动摩擦系数 OR: 链条与滑轨间的动摩擦系数 g: 重力加速度=9.80665(m/s2)

【步骤2】根据使用条件进行调整后,计算张力Fs=Fe·Cs Fs: 调整后的张力(N) Cs: 负载修正系数频繁起动、停止时=1.2 磨损严重的用途=1.2 多列用途=1.25 上述以外的用途=1.0 【步骤3】链条容许张力的计算 Fadm=FN·Va·Ta Fadm: 容许张力(N) FN: 最大容许张力(N) Va: 速度系数 Ta: 温度系数 【步骤4】容许张力与调整后张力的比较 Fs≤Fadm 时能适用。 【步骤5】计算所需动力 P=Fs·V/(60·η) P: 所需动力(W) V: 链条速度(m/min)

η : 驱动装置的传送效率 杭州傲州链传动有限公司创建于2004年,公司具有优异的制造技术与较强制造力,精密的检测仪器,主要生产产品有板式链条和A,B系列传动用短节距精密滚子链,双节距传动链和输送链,短节距输送滚子链附件,双节距输送滚子附件,立体车库链,空心销轴滚子链和套筒链条,大滚子输送链及附件,ZGS38联合收割机链及附件输送链,质量稳定。也可来样来图非标定做。

输送链电机选型计算

链式输送机的电机如何选择电机功率怎么计算? 链式使用寿命长,用合金钢材经先进的热处理加工而成的输送链,其正常寿命>3年,输送长度长,水平输送距离可达60米以上,根据不同型号和输送长度来选择电机计算功率,电机功率计算方法如下: 已知输送速度0.1m/s 输送重量16kg 链板重量也已知水平输送输送链拉力怎么计算传递功率怎么算是用摩擦力算吗? P=F*V,在水平中F就是摩擦力f,而不是重力,要是数值向上的话就用重力。还有功率一定要选大于使用功率。 减速器的减速比是根据什么条件计算的?电机功率除了根据传递功率还要什么条件才能计算呢? 减速比的计算方法 1、定义计算方法:减速比=输入转速÷输出转速。 2、通用计算方法:减速比=使用扭矩÷9550÷电机功率×电机功率输入转数÷使用系数。 3、齿轮系计算方法:减速比=从动齿轮齿数÷主动齿轮齿数(如果是多级齿轮减速,那么将所有相啮合的一对齿轮组的从动轮齿数÷主动轮齿数,然后将得到的结果相乘即可。 4、皮带、链条及摩擦轮减速比计算方法:减速比=从动轮直径÷主动轮直径。 电机功率计算公式可以参考下式: P= F×v÷60÷η 公式中P 功率(kW) ,F 牵引力(kN),v 速度(m/min) ,η传动机械的效率,一般0.8左右。 在匀速运行时牵引力F 等于小车在轨道上运动时的摩擦力,F=μG , μ是摩擦系数,与轮子和导轨的状态有关;G = 400kN (40 吨)。 启动过程中小车从静止加速到最高速,还需要另一个加速的力, F = ma, m是小车和负载的总质量,a 是加速度,要求加速时间越短,a 越大,F 也越大。 所以牵引力还要加上这一部分。可以把上面考虑摩擦力计算出的功率乘一个系数k (可取1.2~2倍)作为总功率。k 越大,加速能力越强。 例如本例中如果取η=0.8, μ=0.1, k=1.25,则

倍速链电机选型计算

本帖最后由蜗牛13 于2015-11-11 23:54 编辑 最近在做倍速链的电机选型计算,刚算好了,不知道对不对现在把我的计算过程贴出来。最好大家是能够提出里面的问题,因为我这边要下单了,如果能帮我发现问题最好不过了。 简单的按照两个来算一下我的倍速链分为上下两层。节距38.1的钢制倍速链、9齿的链轮分度圆110mm,周长345.4mm。搬运速度要求10-15m/min按照倍速链的放大效应,我的内部滚子的线速度应该在3.3—5m/min 折合成转速为驱动链轮转速范围9.5-14.5r/min 分为好几段,A段上层张力0.47KN 下层倍速链的张力为0.2KN 上层需要提供的扭矩为 0.47*110/2=25.8N.m 下层需要提供扭矩为11N.m A段准备选用调速电机,因调速电机的最佳调节范围在40%-100%以内。为了让使用者不得将速度调到40%以下。故选择转速为17转的调速电机,选用安川的调速电机6IK250RGU/6GU75KB 减速比为75、额定扭矩为47.5N.m (这里有个疑惑啊,按照倍速链张力计算公式计算得来的张力到底是两条倍速链上的还是一条倍速链上的?然后这个张力计算的扭矩是不是需要乘以2才能够选择用来选择电机的扭矩?这个真有点困惑)下层电机选用6IK250RGU/6GU25KB 额定扭

矩28N.m转速可以达到52转,搬运速度 52*345*3/60=896mm/s。选择这个电机的意思是下层的工装板速度可以更快从而跟上节拍(因工艺要求3min工位动作一次) B段上层张力为4.7KN 下层张力为 2KN 上层需要提供扭矩为258N.m 下层需要提供扭矩为110N.m 电机本身按照1400r/min计算 选用变频电机,型号为 GH-40-2200-60-S 额定转速可以达到23.3转额定扭矩为650N.m(肯定有人会问你可以选1.5KW GH-32-1500-40-S额定扭矩350N.m 甚至750w GH -32-75-S额定扭矩274N.m 转速为18转我觉得1.5KW的可以选 750w的数值刚刚够有点悬,电机的价格相差不大,所以我想选择高一级的,另外我不清楚这个扭矩是不是要乘以2所以我只能选择扭矩更大的电机了,请原谅我的无知吧)电机用变频器调速,厂家说变频器调速即便速度调到10%扭矩也不变化,这个我没仔细研究过,厂家还说速度也可以调到更高的1700扭矩不变。因为考虑预留提速的空间所以电机选用60的减速比。 下层选用GH-32-1500-25-s 减速比25 额定扭矩189N.m 额定转速60转 60*345.4*3/60=967mm/s 这个减速比的选择考虑也是为了节拍需求。

链轮计算公式汇总

链轮计算公式汇总

————————————————————————————————作者:————————————————————————————————日期: ?

第6章链传动 本章提示:?链传动由两个链轮和绕在两轮上的中间挠性件-----链条所组成。靠链条与链轮之间的啮合来传递两平行轴之间的运动和动力,属于具有啮合性质的强迫传动。其中,应用最广泛的是滚子链传动。 本章介绍了链传动的工作原理、特点及应用范围;重点分析了链传动的运动不均匀性(即多边形效应)产生的原因和链传动的失效形式;阐明了功率曲线图的来历及使用方法;着重讨论了滚子链传动的设计计算方法及主要参数选择;简要介绍了齿形链的结构特点以及链传动的润滑和张紧的方法。 基本要求 1).了解链传动的工作原理、特点及应用?2).了解滚子链的标准、规格及链轮结构特点。 3).掌握滚子链传动的设计计算方法。 4).对齿形链的结构特点以及链传动的布置、张紧和润滑等方面有一定的了解。 6.1概述 链传动是由装在平行轴上的主、从动链轮和绕在链轮上的环形链条所组成,见图6.1,以链作中间挠性件,靠链与链轮轮齿的啮合来传递运动和动力。

在链传动中,按链条结构的不同主要有滚子链传动和齿形链传动两种类型: 1.滚子链传动 滚子链的结构如图6.2。它由内链板1、外链板2、销轴3、套筒4和滚子5组成。链传动工作时,套筒上的滚子沿链轮齿廓滚动,可以减轻链和链轮轮齿的磨损。 把一根以上的单列链并列、用长销轴联接起来的链称为多排链,图6.3为双排链。链的排数愈多,承载能力愈高,但链的制造与安装精度要求也愈高,且愈难使各排链受力均匀,将大大降低多排链的使用寿命,故排数不宜超过4排。当传动功率较大时,可采用两根或两根以上的双排链或三排链。

相关文档
最新文档