5坐标系中的位似变换(2016年)

合集下载

专项练习图形的位似变换与坐标

专项练习图形的位似变换与坐标
专项练习图形的位似变换与坐标
目 录
• 位似变换基本概念与性质 • 平面直角坐标系中位似变换 • 三角形和四边形位似变换探讨 • 函数图像在位似变换下性质研究 • 实际应用问题中位似变换思想运用 • 总结回顾与拓展延伸
01 位似变换基本概念与性质
位似变换定义及特点
位似变换定义
如果两个图形不仅是相似图形,而且每组对应点的连线交于 一点,对应边互相平行(或在一条直线上),那么这两个图 形叫做位似图形。这个点叫做位似中心,这时的相似比又称 为位似比。
02 平面直角坐标系中位似变 换
平面直角坐标系简介
平面直角坐标系定义
点的坐标
在平面内画两条互相垂直、原点重合 的数轴,组成平面直角坐标系。
平面内一点P的坐标由一对有序实数 (x,y)确定,其中x是点P到y轴的距离, y是点P到x轴的距离。
坐标轴及象限
水平数轴称为x轴或横轴,垂直数轴称 为y轴或纵轴。坐标轴将平面分为四个 象限。
然保持。
渐近线变换规律
反比例函数的渐近线在位似变换 下也会进行相应的平移和缩放,
但渐近线的斜率不会改变。
05 实际应用问题中位似变换 思想运用
几何证明题中位似变换思想运用
利用位似变换证明线段比例关系
01
通过构造位似图形,证明两条线段之间的比例关系,进而解决
几何证明问题。
利用位似变换证明角度相等关系
位似图形特点
两个位似图形中每组对应顶点所在的直线都交于一点,这个 交点叫做位似中心,图形上任意一对对应点到位似中心的距 离之比等于相似比。
相似比与位似中心关系
相似比
在位似变换中,如果两个相似图形的对应边长之比相等,那么这个比值就叫做 相似比。
位似中心与相似比关系

位似图形变换中各点坐标的求法

位似图形变换中各点坐标的求法
的坐标 求 法 大多 数 同学 存在 困惑 , 下




0 _ I j … 1 I …
坐标分别 为A (,)B (24 , 20 . 42 , - ,)C( ,)
警 i 毒 4
( 女 图1 室 n 中的△A >
, 与( 的解
…卜 叶 一 f斗 ’ ~ 髀 } I 抒 j }
EF


/D _ A丑 又 因 为 DC D A. 以 A= B 所 D = 丑 所 以 D - AD.即
在 圆内接 四边形A C 中 .D / C B D C 为 BA 外 角 的平 分线 , 弧A 上一 点 .C 助 D B= A . 延长D 曰 的延长线交 于点E F 4 () 1求证 : B 为等腰 三角 形. AA D
形 AB F是 圆 的 内接 四 边 形 . 所 以 D
F=/ _BDF. /A F : / DB = E A
△A ADB .所 以 问 题 转 化 为 了 E F
证 三角 形相似.

() 1因为C 为 / C D M A的
DF l辑 以 AE 一 D F B F B .妖 以

A ’
周 角 相 等 可得 / B /D B D A= F .因 为
B - . vBC AE 赣 rBC AB AF C- F 所 X - A X ' + - +

() 1 直接应用圆内 接四边


,只 需证
B. 即AC B 。 以AC B 因为 四边 = F所 =E
r ; : :
一 …

一 书一 0 {4 { 一—

÷} 0 扛 0 … …I 一 一一 ; 4 : 3. 一 一

平面直角坐标系中的位似变换

平面直角坐标系中的位似变换

2
标是( D )
y
A
A' A''
B''
A.(3,2) C.(12,8)
O
x
B'
B
B.(12,8)或(-12,8) D.(3,2)或(-3,-2)
(2)、在平面直角坐标系中,四边形OBCD与四边形OEFG位似,位似
中心是原点O,已知C与F是对应点,且C、F的坐标分别是C(3,7)F
(9,21),那么四边形OBCD与四边形OEFG的相似比是 1:3 ,
复习提问:
从下列图形中找出位似图形 : (1)(2)(4)
(1)
(2)
(3)
1、什么是位似图形? 2、如何判断两个图形位似? 3、怎样求两个图形的位似比?
(4)
学习目标
重点:能熟练在坐标系中根据坐标的变化规律做出位似图形 难点:理解位似图形的坐标变换规律.
问题探究
探究一:
如图,在平面直角坐标系中,△OAB三个顶点的坐标分别为
坐标 都
C
乘以
-
1 2
,画出所得到的图形,你发
现了什么?
x
探究点拨:当图中各点的 横、纵坐标缩小一定的倍 数k,依次连接各点所得到 新图形与原图形 位似 , 位似中心是 坐标原点,位似 比是 |k| 。
定理 在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘 同一个数k(k≠0),所对应的图形与原图形 位似 ,位似中心是 坐标原点 , 它们的位似比为 |k| .
D、 (m , n ) 22
课堂小结
定理
平面直角坐标系 中的位似变化
在平面直角坐标系中,将一个多边形每个顶点的横 坐标、纵坐标都乘同一个数k(k≠0),所对应的图形 与原图形位似,位似中心是坐标原点,它们的相似 比位|k|.

平面直角坐标系中的位似变换

平面直角坐标系中的位似变换
图 (2)中,把△AOC放大后,A,O,C的对应点为A′(8,
8),O(0, 0),C′ (10, 0); A"(-8,-8),O(0,0), C″ (-10, 0).
归纳
知1-导
在平面直角坐标系中,如果位似变换是以原点 为位似中心,相似比为k,那么位似图形对应点的坐 标的比等于k或-k.即若原图形的某一顶点坐标为(x0, y0),则其位 似 图 形 对 应 顶 点 的 坐 标 为 ( k x 0, k y 0) 或 (-kx0,-ky0).
知1-练
3 如图,线段CD的两个端点的坐标分别为C(1,2), D(2,0),以原点为位似中心,将线段CD放大得 到线段AB,若点B的坐标为(5,0),则点A的坐标 为( B ) A.(2,5) B.(2.5,5) C.(3,5) D.(3,6)
知1-练
4 (中考•东营)如图,在平面直角坐标系中,已知点 A(-3,6),B(-9,-3),以原点O为位似中心, 相似比为 1 , 把△ABO缩小,则点A的对应点A′的
事实上,幻灯机工作的实质是将图片中的图形放大. 本节知识将对上述问题作系统的讲解.
知1-导
知识点 1 平面直角坐标系中的位似变换
问题
如图(1),在直角坐标系中,有两点A(6,3),B(6,
0).以原点O为位似中心,相似 比为 1 ,把线段AB缩小.观察
3 对应点之间坐标的变化,你有
什么发现?
如图(2),△AOC三个顶点的
3
坐标是( D ) A.(-1,2) B.(-9,18) C.(-9,18)或(9,-18) D.(-1,2)或(1,-2)
知1-练
5 【中考·烟台】如图,在平面直角坐标系中,正方 形ABCD与正方形BEFG是以原点O为位似中心的 位似图形,且相似比为 1 , 点A,B,E在x轴上,

4.8.2平面直角坐标系中的位似(教案)

4.8.2平面直角坐标系中的位似(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“位似变换在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
1.理论介绍:首先,我们要了解位似变换的基本概念。位似变换是指将一个图形按照一定的比例进行放大或缩小,并保持其形状不变的变换。它是平面几何中非常重要的变换之一,广泛应用于图形设计、地图制作等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了位似变换在实际中的应用,以及它如何帮助我们解决问题。
此外,小组讨论环节中,学生们的参与度很高,他们能够积极思考并分享自己的观点。但我也注意到,有些学生在讨论过程中较为被动,可能是因为他们对位似变换的理解还不够深入。针对这一问题,我打算在接下来的课程中,多关注这些学生,鼓励他们积极参与,提高他们的自信心。
在实践活动方面,我发现学生们对位似变换的实验操作非常感兴趣,他们能够通过动手实践,更好地理解位似变换的性质。但同时,我也发现部分学生在操作过程中,对于位似比的计算和应用还不够熟练。因此,我计划在下一节课的复习环节,加强对这部分内容的讲解和练习。
3.位似变换的应用:运用位似变换解决实际问题,如地图放大与缩小、图形的相似变换等。

二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.空间观念:通过学习位似变换,培养学生对平面直角坐标系中图形的空间想象能力,提高对位似变换中图形大小和位置关系的认识。
2.抽象能力:使学生掌握位似变换的概念和性质,培养从具体实例中抽象出数学规律的能力,提升逻辑思维和推理能力。

九年级数学上册知识点---- 平面直角坐标系中的位似变换

九年级数学上册知识点---- 平面直角坐标系中的位似变换

归纳:
1. 在平面直角坐标系中,以原点为位似中心作一个 图形的位似图形可以作两个.
2. 当位似图形在原点同侧时,其对应顶点的坐标的 比为 k;当位似图形在原点两侧时,其对应顶点的 坐标的比为-k.
3. 当 k>1 时,图形扩大为原来的 k 倍;当 0<k<1 时,图形缩小为原来的 k 倍.
练一练
可以确定其他顶点的 坐标.
自己试一试.
解:利用位似中对应点的坐标的变化规律,分别取 点 A′ (-3,6),B′ (-3,0),O (0,0). 顺次连接 点 A′ ,B′ ,O,所得的 △A′ B′ O 就是要画的一个 图形.
练一练 在平面直角坐标系中,四边形 OABC 的顶点坐标
分别为 O (0,0),A (6,0),B (3,6),C (-3,3). 以 原点 O 为位似中心,画出四边形 OABC 的位似图形, 使它与四边形 OABC 的相似是 2 : 3.
标都乘 2 ;在平面 3
4 C
2
直角坐标系中描点
A″
A
O (0,0),A″ (-4, -4 0),B″ (-2,-4), C″ (2,-2),用线 段顺次连接O,A″,
O -2
B″ -4
6x 4 C″
B″,C″.
平面直角坐标系中的图形变换
至此,我们已经学 习了四种变换:平移、 轴对称、旋转和位似, 你能说出它们之间的异 同吗?在右图所示的图 案中,你能找到这些变 换吗?
B" (-2 ,0 ).

2. △ABC 三个顶点坐标分别为 A (2,3),B (2,1),
C (5,2),以点 O 为位似中心,相似比为 2,将
△ABC 放大,观察对应顶点坐标的变化.
y 6

位似课件

位似课件
放大后对应点的坐标分别是多少? A′( -4 ,-6 ), B′( -4 ,-2 ), C′( -12 ,-4 ) y
A
C
B
x
o B”
A”
例题.在平面直角坐标系中, 四边形ABCD的四个顶点的坐标
分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个 以原点O为位似中心,相似比为1/2的位似图形. y
D
B E
0 F C
2.如图P,E,F分别是AC,AB,AD的 中点,四边形AEPF与四边形ABCD是位似 图形吗?如果是位似图形,说出位似中 心和位似比.
3.以下说法对吗?
1.位似图形必是全等图形。
2.不是位似图形必定不相似。 3.相似图形一定位似。 4.位似图形不一定相似。
A B
C/ O A/
即将△ABC的三边缩小为原来的1/2:
如图,任取一点O,连接AO,BO,CO,并取它们的中 点D,E,F; △DEF就是所求
O
B
E

F


C D A
做一做: 任意画一个三角形,用上面的方法 亲自试一试.
OA:OA’ =OB:OB’ =OC:OC’= 1:2
A
A' .
O. B B’ C C’
1.如图,已知△ABC和点O.以O为位似中心,求作 △ABC的位似图形,并把△ABC的边长扩大到原来的两倍.
y A′(2,1),B′(2,0)
A
A〞(-2,-1),B(-2,0)
A'
B〞
x o
B'
B
A〞
观察对应点之间的坐标的变化,你有什么发现?
在平面直角坐标系中,如果位似变换是以原 点为位似中心,相似比为k,那么位似图形对 应点的坐标的比等于k或-k.

北师大版数学九年级上册《平面直角坐标系中的位似》说课稿1

北师大版数学九年级上册《平面直角坐标系中的位似》说课稿1

北师大版数学九年级上册《平面直角坐标系中的位似》说课稿1一. 教材分析《平面直角坐标系中的位似》是北师大版数学九年级上册第五章《几何变换》中的一个知识点。

本节课主要让学生了解位似的概念,掌握位似变换的性质及位似变换在实际问题中的应用。

教材通过生活中的实例引入位似的概念,让学生在具体的情境中感受数学与生活的紧密联系。

二. 学情分析九年级的学生已经学习了平面直角坐标系、函数等基础知识,对图形的变换有一定的了解。

但在实际应用中,学生可能对位似变换的理解和运用还存在一定的困难。

因此,在教学过程中,要注重引导学生从实际问题中抽象出位似变换的概念,培养学生运用数学知识解决实际问题的能力。

三. 说教学目标1.知识与技能:理解位似的概念,掌握位似变换的性质,能运用位似变换解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的抽象思维能力和空间想象能力。

3.情感态度与价值观:感受数学与生活的紧密联系,培养学生运用数学知识解决实际问题的意识。

四. 说教学重难点1.重点:位似的概念,位似变换的性质。

2.难点:位似变换在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。

2.教学手段:多媒体课件、几何画板、实物模型等。

六. 说教学过程1.导入新课:通过展示生活中的实例,引导学生关注位似现象,激发学生的学习兴趣。

2.自主学习:让学生通过阅读教材,了解位似的概念,总结位似变换的性质。

3.合作交流:学生分组讨论,分享学习心得,互相解答疑问。

4.教师讲解:针对学生讨论中的共性问题,进行讲解和解答。

5.练习巩固:让学生通过练习题,巩固所学知识。

6.拓展应用:结合实际问题,让学生运用位似变换解决问题。

7.总结反思:让学生总结本节课的学习收获,反思自己的学习过程。

七. 说板书设计板书设计要清晰、简洁、有条理,突出位似的概念和位似变换的性质。

可以采用列表、图示等方式,帮助学生理解和记忆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. (2016 四川省广安市) 】.在数学活动课上,老师要求学生在5×5的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行.画四种图形,并直接写出其周长(所画图象相似的只算一种).
答案:】.考点作图—相似变换.
分析在图1中画等腰直角三角形;在图2、3、4中画有一条直角边为,另一条直角边分别为3,4,2的直角三角形,然后计算出四个直角三角形的周长.
解答解:如图1,三角形的周长=2+;
如图2,三角形的周长=4+2;
如图3,三角形的周长=5+;
如图4,三角形的周长=3+.
20160925134830312205 5 坐标系中的位似变换解决问题2016/9/25。

相关文档
最新文档