高三数列综合小题

合集下载

高三数学数列试题答案及解析

高三数学数列试题答案及解析

高三数学数列试题答案及解析1.对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为________【答案】【解析】由题意,,,所以,则时,,两式相减得,,也适合此式,故.【考点】新定义与数列的通项公式.2.已知数列的通项公式an= (n∈N*),求数列前30项中的最大项和最小项.【答案】最大项为a10,最小项为a9【解析】∵an =1+,∴当n≤9时,an随着n的增大越来越小且小于1,当10≤n≤30时,a n 随着n的增大越来越小且大于1,∴前30项中最大项为a10,最小项为a9.3.(本小题满分12分)已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,求适合方程的的值.(Ⅲ)记,是否存在实数M,使得对一切恒成立,若存在,请求出M 的最小值;若不存在,请说明理由。

【答案】,2/9【解析】19. 解:(Ⅰ)当时,,由,得.当时,,,∴,即.∴.∴是以为首项,为公比的等比数列.故.………………6分(Ⅱ),,………………8分………10分解方程,得………………12分(2)解法一:,由错误!不能通过编辑域代码创建对象。

,当,又故存在实数M,使得对一切M的最小值为2/9。

4.把数列的所有项按照从大到小的原则写成如题15图所示的数表,其中的第行有个数,第行的第个数(从左数起)记为则_____________.【答案】【解析】略5.设等差数列的前项和为,若,,则()A.63B.45C.36D.27【答案】B【解析】在等差数列中,成等差数列。

因为,,所以。

故选B。

【考点】等差数列的性质点评:在等差数列中,成等差数列。

6.(本小题满分14分)已知曲线.从点向曲线引斜率为的切线,切点为。

(1)求数列的通项公式;(2)证明:。

【答案】(1);(2)证明见解析。

【解析】(1)设直线:,联立得:,则,∴(舍去),即,∴(2)证明:∵∴由于,可令函数,则,令,得,给定区间,则有,则函数在上单调递减,∴,即在恒成立,又,则有,即。

高三数学数列综合应用试题答案及解析

高三数学数列综合应用试题答案及解析

高三数学数列综合应用试题答案及解析1.已知数列{an }中,a1=2,an-an-1-2n=0(n≥2,n∈N*).(1)写出a2,a3的值(只写结果),并求出数列{an}的通项公式;(2)设bn=+++…+,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,求实数t的取值范围.【答案】(1)a2=6,a3=12. an=n(n+1).(2)实数t的取值范围为(-∞,-2)∪(2,+∞)【解析】解:(1)∵a1=2,an-an-1-2n=0(n≥2,n∈N*),∴a2=6,a3=12.当n≥3时,an -an-1=2n,a n-1-a n-2=2(n-1),又a3-a2=2×3,a2-a1=2×2,∴an -a1=2[n+(n-1)+…+3+2],∴an=2[n+(n-1)+…+3+2+1]=2×=n(n+1).当n=1时,a1=2;当n=2时,a2=6,也满足上式,∴数列{an }的通项公式为an=n(n+1).(2)bn=++…+=++…+=-+-+…+-=-==.令f(x)=2x+(x≥1),则f′(x)=2-,当x≥1时,f′(x)>0恒成立,∴函数f(x)在[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3,即当n=1时,(bn )max=.要使对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,则需t2-2mt+>(bn )max=,即t2-2mt>0对∀m∈[-1,1]恒成立,∴,解得t>2或t<-2,∴实数t的取值范围为(-∞,-2)∪(2,+∞).2.一函数y=f(x)的图象在给定的下列图象中,并且对任意an ∈(0,1),由关系式an+1=f(a n)得到的数列{an }满足an+1>a n(n∈N*),则该函数的图象是()【答案】A【解析】由an+1>a n可知数列{a n}为递增数列,又由a n+1=f(a n)>a n可知,当x∈(0,1)时,y=f(x)的图象在直线y=x的上方,故选A.3.设函数)定义为如下数表,且对任意自然数n均有xn+1=的值为( ) A.1B.2C.4D.5【答案】D【解析】,又根据,所以有,,,, .,所以可知:,,故选D.【考点】数列的周期性4.是点集A到点集B的一个映射,且对任意,有.现对点集A中的点,,均有,点为(0,2),则线段的长度 .【答案】【解析】∵,∴,,,,,,…,根据变化规律可知,∴,,∴.【考点】1.数列的性质;2.两点间距离公式.5.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:(1)b2012是数列{an}中的第项;(2)b2k-1=.(用k表示)【答案】(1)5030(2)【解析】由以上规律可知三角形数1,3,6,10,…的一个通项公式为an=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…其中能被5整除的为10,15,45,55,105,120,…故b1=a4,b2=a5,b3=a9,b4=a10,b5=a14,b6=a15,….从而由上述规律可猜想:b2k =a5k= (k为正整数),b2k-1=a5k-1==,故b2012=b2×1006=a5×1006=a5030,即b2012是数列{an}中的第5030项.6.已知数列满足,则该数列的通项公式_________.【答案】【解析】∵,∴,∴,∴,,…,,∴,∴,∴.【考点】1.累加法求通项公式;2.裂项相消法求和.7.数列满足,则 .【答案】【解析】这类问题类似于的问题处理方法,在中用代换得(),两式相减得,,又,即,故.【考点】数列的通项公式.8.已知函数,记,若是递减数列,则实数的取值范围是______________.【答案】【解析】是递减数列,从开始是用式子计算,这时只要,即即可,关键是是通过二次式计算,根据二次函数的性质,应该有且,即且,解得,综上取值范围是.【考点】数列的单调性.9.已知数列{}的前n项和为,且,则使不等式成立的n的最大值为.【答案】4【解析】当时,,得,当时,,所以,所以,又因为适合上式,所以,所以,所以数列是以为首项,以4为公比的等比数列,所以,所以,即,易知的最大值为4.【考点】1.等比数列的求和公式;2.数列的通项公式.10.甲、乙两人用农药治虫,由于计算错误,在A、B两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个容量为1千克的药瓶,他们从A、B两个喷雾器中分别取1千克的药水,将A中取得的倒入B中,B中取得的倒入A中,这样操作进行了n次后,A喷雾器中药水的浓度为,B喷雾器中药水的浓度为.(1)证明:是一个常数;(2)求与的关系式;(3)求的表达式.【答案】(1)18;(2);(3) .【解析】(1)利用n次操作后A和B的农药的和应与开始时农药的重量和相等建立等量关系,证明是一个常数;(2)借助第一问的结论和第n次后A中10千克的药水中农药的重量具有关系式,求解与的关系式;(3)根据第二问的递推关系,采用构造数列的思想进行求解.试题解析:(1)开始时,A中含有10=1.2千克的农药,B中含有10=0.6千克的农药,,A中含有千克的农药,B中含有千克的农药,它们的和应与开始时农药的重量和相等,从而(常数). 4分(2)第n次操作后,A中10千克的药水中农药的重量具有关系式:由(1)知,代入化简得① 8分(3)令,利用待定系数法可求出λ=—9,所以,可知数列是以为首项,为公比的等比数列.由①,,由等比数列的通项公式知:,所以. 12分【考点】1.数列的递推式;(2)数列的通项公式;(3)实际应用问题.11.等比数列的各项均为正数,且,则【答案】B【解析】等比数列中,所以【考点】等比数列性质及对数运算点评:等比数列中,若则,在对数运算中12.已知数列的首项为,对任意的,定义.(Ⅰ)若,(i)求的值和数列的通项公式;(ii)求数列的前项和;(Ⅱ)若,且,求数列的前项的和.【答案】(1) ,,(2) 当为偶数时,;当为奇数时,【解析】(Ⅰ) 解:(i),,………………2分由得当时,=………4分而适合上式,所以.………………5分(ii)由(i)得:……………6分……………7分…………8分(Ⅱ)解:因为对任意的有,所以数列各项的值重复出现,周期为. …………9分又数列的前6项分别为,且这六个数的和为8. ……………10分设数列的前项和为,则,当时,,……………11分当时,,…………12分当时所以,当为偶数时,;当为奇数时,. ……………13分【考点】数列的通项公式,数列的求和点评:解决的关键是对于数列的递推关系的理解和运用,并能结合裂项法求和,以及分情况讨论求和,属于中档题。

高三数列综合专题复习

高三数列综合专题复习

高三数列综合专题复习 班级 姓名 探究点3 数列与函数、不等式的综合问题1.[2011·青岛一模] 数列{a n }的前n 项和为S n ,a 1=t ,点(S n ,a n +1)在直线y =2x +1上,n ∈N *.(1)当实数t 为何值时,数列{a n }是等比数列?(2)在(1)的结论下,设b n =log 3a n +1,T n 是数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和,求T 2011的值.2.[2011·广州二模] 已知等差数列{a n }的前n 项和为S n ,且S 10=55,S 20=210.(1)求数列{a n }的通项公式;(2)设b n =a n a n +1,是否存在m 、k (k >m ≥2,k ,m ∈N *),使得b 1、b m 、b k 成等比数列?若存在,求出所有符合条件的m 、k 的值;若不存在,请说明理由.3. [2011·惠州一模] 已知f (x )=log m x (m 为常数,m >0且m ≠1),设f (a 1),f (a 2),…,f (a n )(n ∈N *)是首项为4,公差为2的等差数列.(1)求证:数列{a n }是等比数列;(2)若b n =a n f (a n ),记数列{b n }的前n 项和为S n ,当m =2时,求S n ;(3)若c n =a n lg a n ,问是否存在实数m ,使得{c n }中每一项恒小于它后面的项?若存在,求出实数m 的取值范围.[思路] (1)由已知可得数列{f (a n )}的通项公式,利用函数f (x )的解析式,可得{a n }的通项公式,再根据等比数列的定义可证明数列{a n }是等比数列;(2)由数列{b n }的通项公式,知符合错位相减法求和;(3)由条件得不等式c n -1<c n ,分类讨论,化归为不等式恒成立问题求解.4.已知数列{}n a 满足对任意的*n ∈N ,都有0n a >,且()23331212n n a a a a a a +++=+++. (1)求1a ,2a 的值;(2)求数列{}n a 的通项公式n a ;(3)设数列21n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,不等式()1log 13n a S a >-对任意的正整数n 恒成立,求实数a 的取值范围.5.已知曲线C :440xy x -+=,数列{}n a 的首项14a =,且当2n ≥时,点1(,)n n a a -恒在曲线C 上,数列{}n b 满足12n nb a =-.(1)试判断数列{}n b 是否是等差数列?并说明理由;(2)求数列{}n a 和{}n b 的通项公式;(3)设数列{}n c 满足21n n n a b c =,试比较数列{}n c 的前n 项和n S 与2的大小.6.已知函数)(x f 满足:对任意的0,≠∈x R x ,恒有x xf =)1(成立,数列}{}{n n b a 、满足1,111==b a ,且对任意+∈N n ,均有.1,2)()(11nn n n n n n a b b a f a f a a =-+=++ ( I )求函数)(x f 的解析式; ( II )求数列}{}{n n b a 、的通项公式;(III)对于]1,0[∈λ,是否存在+∈N k ,使得当k n ≥时,)()1(n n a f b λ-≥恒成立?若存在,试求k 的最小值;若不存在,请说明理由.探究点4 数列与导数、解析几何、不等式的综合问题1.对正整数n ,设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标为n a ,则数列}1{+n a n 的前n 项和的公式是 .2. [2011·陕西卷] 如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x 于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.现从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P k 点的坐标为(x k,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(2≤k ≤n );(2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |.[点评] 数列与解析几何的综合问题,往往是数列的某几项或数列的通项作为曲线上的点的坐标来建立关系,或者是含数列通项的点在曲线的切线上,这样就会把导数综合在一起.因此此类问题一般是数列的递推关系问题.3.已知二次函数)(x f y =的图像经过坐标原点,其导函数为26)('-=x x f ,数列}{n a 的前n 项和为n S ,点),(n S n (n ∈N *) 均在函数)(x f y =的图像上.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设13+=n n n a a b ,n T 是数列}{n b 的前n 项和,求使得20m T n <对所有n ∈N *都成立的最小正整数m ;4.已知函数2()4f x x =-,设曲线()y f x =在点(,())n n x f x 处的切线与x 轴的交点为1(,0)n x +(*)n N ∈,其中1x 为正实数.(Ⅰ)用n x 表示1n x +; (Ⅱ)若14x =,记2lg 2n n n x a x +=-,证明数列{}n a 成等比数列,并求数列{}n x 的通项公式;5.已知函数2()1f x x x =+-,α、β是方程以()0f x =的两个根(α>β),()f x '是()f x 的导数.设11()1,(1,2,3,)()n n n n f a a a a n f a +==-='.(1)求α、β的值; (2)已知对任意的正整数n 有n a α>,记ln (1,2,3,)n n n a b n a βα-==-求数列{n b }的前n 项和Sn .6.已知函数()x x x f -+=1ln )(,证明:()x x x ≤+≤+-1ln 1117.已知n 为正整数,曲线n n n n n L y x P nx y C 处的切线在其上一点),(:=总经过定点(1-,0)(1)求证点列:n P P P ,,,21 在同一直线上(2)若记 f(k)+f(k+1)+f(k+2)++ f(n)=∑=n k i i f )(,其中k, n 为正整数且k ≤n 求证:∑=++<<+n i i n y n 121)1ln(1)1ln( (n *N ∈)探究点3 数列与函数、不等式的综合问题1.[解答] (1)由题意得a n +1=2S n +1,a n =2S n -1+1(n ≥2), 两式相减得a n +1-a n =2a n ,即a n +1=3a n (n ≥2), 所以当n ≥2时,{a n }是等比数列.要使n ≥1时,{a n }是等比数列,则只需a 2a 1=2t +1t=3,从而t =1. (2)由(1)得知a n =3n -1,b n =log 3a n +1=n , 1b n ·b n +1=1(n +1)n =1n -1n +1, T 2011=1b 1b 2+1b 2b 3+…+1b 2011b 2012=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12011-12012=20112012.2.[解答] (1)设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d . 由已知,得⎩⎨⎧10a 1+10×92d =55,20a 1+20×192d =210, 即⎩⎪⎨⎪⎧ 2a 1+9d =11,2a 1+19d =21.解得⎩⎪⎨⎪⎧a 1=1,d =1. 所以a n =n (n ∈N *).(2)假设存在m 、k (k >m ≥2,m ,k ∈N *),使得b 1、b m 、b k 成等比数列,则b 2m =b 1b k . 因为b n =a n a n +1=n n +1,所以b 1=12,b m =m m +1,b k =k k +1. 所以⎝⎛⎭⎫m m +12=12×k k +1.整理,得k =2m 2-m 2+2m +1. 以下给出求m ,k 的三种方法:方法一:因为k >0,所以-m 2+2m +1>0. 解得1-2<m <1+ 2.因为m ≥2,m ∈N *,所以m =2,此时k =8.故存在m =2,k =8,使得b 1、b m 、b k 成等比数列.方法二:因为k >m ,所以k =2m 2-m 2+2m +1>m .即2m m 2-2m -1+1<0,即m 2-1m 2-2m -1<0. 解得-1<m <1-2或1<m <1+ 2.因为m ≥2,m ∈N *,所以m =2,此时k =8.故存在m =2,k =8,使得b 1、b m 、b k 成等比数列.方法三:因为k >m ≥2,所以k =2m 2-m 2+2m +1>2. 即m 2m 2-2m -1+1<0,即2m 2-2m -1m 2-2m -1<0. 解得1-2<m <1-32或1+32<m <1+2, 因为m ≥2,m ∈N *,所以m =2,此时k =8.故存在m =2、k =8,使得b 1、b m 、b k 成等比数列.3.[解答] (1)由题意知f (a n )=4+2(n -1)=2n +2,即log m a n =2n +2,∴a n =m 2n +2. ∴a n +1a n =m 2(n +1)+2m2n +2=m 2. ∵m >0且m ≠1,∴m 2为非零常数,∴数列{a n }是以m 4为首项,m 2为公比的等比数列.(2)由题意b n =a n f (a n )=m 2n +2log m m 2n +2=(2n +2)·m 2n +2, 当m =2时,b n =(2n +2)·2n +1=(n +1)·2n +2. ∴S n =2·23+3·24+4·25+…+(n +1)·2n +2,① ①式乘以2,得2S n =2·24+3·25+4·26+…+n ·2n +2+(n +1)·2n +3.② ②-①并整理,得S n =-2·23-24-25-26-…-2n +2+(n +1)·2n +3 =-23-[23+24+25+…+2n +2]+(n +1)·2n +3 =-23-23[1-2n ]1-2+(n +1)·2n +3 =-23+23(1-2n )+(n +1)·2n +3 =n ·2n +3. (3)由题意c n =a n lg a n =(2n +2)·m 2n +2lg m , 要使c n -1<c n 对一切n ≥2成立,即n lg m <(n +1)·m 2·lg m 对一切n ≥2成立,①当m >1时,有lg m >0,则n <(n +1)m 2对n ≥2成立; ②当0<m <1时,有lg m <0,则n >(n +1)m 2, ∴n >m 21-m 2对一切n ≥2成立,只需2>m 21-m 2,解得-63<m <63,考虑到0<m <1,∴0<m <63. 综上,当0<m <63或m >1时,数列{c n }中每一项恒小于它后面的项. 4.(1)解:当1n =时,有3211a a =,由于0n a >,所以11a =.当2n =时,有()2331212a a a a +=+,将11a =代入上式,由于0n a >,所以22a =. (2)解:由于()23331212n n a a a a a a +++=+++, ①则有()23333121121n n n n a a a a a a a a ++++++=++++. ②②-①,得()()223112112n n n n a a a a a a a a ++=++++-+++,由于0n a >,所以()211212n n n a a a a a ++=++++. ③同样有()21212n n n a a a a a -=++++()2n ≥, ④③-④,得2211n n n n a a a a ++-=+. 所以11n n a a +-=.由于211a a -=,即当n ≥1时都有11n n a a +-=,所以数列{}n a 是首项为1,公差为1的等差数列.故n a n =.(3)解:由(2)知n a n =,则()211111222n n a a n n n n +⎛⎫==- ⎪++⎝⎭.所以13243511211111n n n n n S a a a a a a a a a a -++=+++++1111111111111112322423521122n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111112212n n ⎛⎫=+-- ⎪++⎝⎭31114212n n ⎛⎫=-+ ⎪++⎝⎭.∵()()11013n n S S n n +-=>++,∴数列{}n S 单调递增.所以()1min 13n S S ==. 要使不等式()1log 13n a S a >-对任意正整数n 恒成立,只要()11log 133a a >-.∵10a ->,∴01a <<.∴1a a ->,即102a <<.所以,实数a 的取值范围是10,2⎛⎫⎪⎝⎭.5.解:(1)∵当2n ≥时,点1(,)n n a a -恒在曲线C 上∴11440n n n a a a ---+=-----------------------------------------------1分 由12n nb a =-得当2n ≥时,111122n n n n b b a a ---=---111422n n n n n n a a a a a a ----=--+11142244n n n n n a a a a a ----=--+-111222n n n n a a a a ---==--+----5分∴数列{}n b 是公差为12-的等差数列.-------------------------------------------------------6分 (2)∵1a =4,∴111122b a ==-- ∴111(1)()222n b n n =-+-⨯-=------------------------------------8分由12n n b a =-得1222n n a b n=-=+-----------------------------------------------10分 (3)∵21n n n a b c = ∴212(1)n n n c a b n n ==+=112()1n n -+----------------------12分 ∴12n n S c c c =+++111112[(1)()()]2231n n =-+-++-+12(1)21n =-<+-----14分 6.解:( I )由x x f =)1(易得)0(,1)(≠=x x x f ----------------------------------------------2分( II )由2)()(1+=+n n n n a f a f a a 得21)(2111+=+=+nn n n n a a f a a a ,所以2111=-+n n a a .所以数列}1{na 是以1为首项,2为公差的等差数列所以12)1(211-=-+=n n a n ,得+∈-=N n n a n ,121.---5分因为.1211-==-+n a b b nn n 所以 113)52()32()()()(112211+++⋅⋅⋅+-+-=+-+⋅⋅⋅+-+-=---n n b b b b b b b b n n n n n 2212)22)(1(2+-=+--=n n n n .- (III)对于]1,0[∈λ时,)()1(n n a f b λ-≥恒成立,等价于]1,0[∈λ时,⋅-≥+-)1(222λn n)12(-n 恒成立,等价于]1,0[∈λ时,034)12(2≥+-+⋅-n n n λ恒成立,设034)12()(2≥+-+-=n n n g λλ,对于]1,0[∈λ,034)12(2≥+-+⋅-n n n λ恒成立, 10分则有⎩⎨⎧≥≥,0)1(,0)0(g g 解得3≥n 或1≤n --------------------------------------13分由此可见存在+∈N k 使得当k n ≥时,)()1(n n a f b λ-≥恒成立,其最小值为3. 14分探究点4 数列与导数、解析几何、不等式的综合问题2.[解答] (1)设P k -1(x k -1,0),由y ′=e x 得Q k -1(x k -1,e x k -1)点处切线方程为y -e x k -1=e x k-1(x -x k -1),由y =0得x k =x k -1-1(2≤k ≤n ).(2)由x 1=0,x k -x k -1=-1,得x k =-(k -1), 所以|P k Q k |=e xk =e-(k -1),于是S n =|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n | =1+e -1+e -2+…+e-(n -1)=1-e -n 1-e -1=e -e 1-n e -1.3.(Ⅰ)依题设)0()(2≠+=a bx ax x f ,由b ax x f +=2)('又由26)('-=x x f 得3=a ,2-=b ,∴xx x f 23)(2-=,所以nn S n 232-=,当2≥n 时=-=-1n n n S S a56)]1(2)1(3[)23(22-=-----n n n n n ,当1=n 时,51611213211-⨯==⨯-⨯==S a 也符合,∴)(56*N n n a n ∈-=. (Ⅱ)由(Ⅰ)得)161561(21]5)1(6)[56(331+--=-+-==+n n n n a a b n n n , ∴)1611(21)]161561()13171()711[(211+-=+--++-+-==∑=n n n b T ni i n , ∴要使)(20)1611(21*N n m n ∈<+-恒成立,只要20)]1611(21[max mn <+-, 又∵21)1611(21<+-n ,∴只要2021m ≤,即10≥m ,∴m 的最小整数为10. 4.(Ⅰ)由题可得'()2f x x =.所以曲线()y f x =在点(,())n n x f x 处的切线方程是:()'()()n n n y f x f x x x -=-.即2(4)2()n n n y x x x x --=-.令0y =,得21(4)2()n n n n x x x x +--=-. 即2142n n n x x x ++=.显然0n x ≠,∴122n n nx x x +=+. (Ⅱ)由122n n n x x x +=+,知21(2)22222n n n n n x x x x x +++=++=,同理21(2)22n n nx x x +--=. 故21122()22n n n n x x x x ++++=--.从而1122lg 2lg 22n n n n x x x x ++++=--,即12n n a a +=.所以,数列{}n a 成等比数列.故111111222lg 2lg32n n n n x a a x ---+===-.即12lg 2lg32n n n x x -+=-.从而12232n n n x x -+=-所以11222(31)31n n n x --+=- 5.解:(1) 由 210x x +-=得x =α∴β= (2) ()21f x x '=+ 221112121n n n n n n n a a a a a a a ++-+=-=++(22221111n n n n n nn n n a a a a a a a a ββαα+++⎛+ ⎛⎫--=== ⎪--⎝⎭∴ 12n n b b += 又111l na b a βα-===- ∴数列{}n b 是一个首项为 公比为2的等比数列;∴)()12242112n n n S -==--7.解:(1)设切线L n 的斜率为k n ,由切线过点)0,1(-得切线方程为y=k n (x+1)则方程组⎩⎨⎧≥=+=)0()1(2y nx y x k y n 有解⎩⎨⎧==n ny y x x , ……1分由方程组用代入法消去y 化简得 0)2(2222=+-+n n n k x n k x k (*)有4044)2(2222222nk n nk k k n k n n n n n =∴=+-=⋅--=∆ ………2分 代入方程(*),得01204)42(422=+-=+-⋅+x x nx n n x n 即 n nx y x x n n n ====∴,11即有即n P P P ,,,21 在同一直线x=1上 …………………4分(2) 解:由(1)可知 iy i f n y in 11)( 2==∴=………5分 设函数 F(x)=0)0(),,1(),1ln(=+∞-∈+-F x x x 有分时有有最小值即恒成立时有即当时有当恒成立时有即当时有当上为增函数在上是减函数在时当时当.8.......... .)0()(0),0()( )1ln(010)0()(01 . )1ln(100)0()(10),0()0,1()(0)('0;0)(',011111111)('F x F x F x F x x x F x F x x x x F x F x ,x F x ,F x x F x x x x x x x F >≠+><<-=><<-+><<=><<∴+∞-∴>><<<-∴+=+-+=+-=∴分即有取.....11).1ln(]ln )1[ln()2ln 3(ln 2ln 121111)(ln )1ln(1)(,,2ln 3ln )211ln(21)2(,2ln 11)1(ln )1ln()11ln(1)(),,,3,2,1(1)11+=-+++-+>+++==∴-+>=-=+>=>=-+=+>===∑∑==n n n n i i f nn nn f f f i i ii i f n i i x i ni n i1)1ln(1ln )]1ln([ln )2ln 3(ln )1ln 2(ln 1121111)( )1ln(ln 1)(,,2ln 3ln 31)3(,1ln 2ln 21)2(,111)1()1ln(ln 1ln )1ln()11ln(1),,,3,2(1)11++<+=--++-+-+≤+++==∴--<=-<=-<===--<∴--=->-=-=∑∑==n n n n n ii f n n nn f f f f i i i i i i i n i i x ii ni n i 即有有再取综合上述有∑=++<<+nin yn 121)1ln(1)1ln( …………………14分。

数列综合题-2023届高三数学一轮复习

数列综合题-2023届高三数学一轮复习

数列综合题一.选择题(共5小题)1已知数列{a n}的前n项和为S n,且a1=1,a n+1=2S n+1(n∈N*),在等差数列{b n}中,b2=5,且公差d=2.使得a1b1+a2b2+…+a n b n>60n成立的最小正整数n为()A.2 B.3 C.4 D.52.已知定义在[1,+∞)上的函数f(x)=,则关于x的方程2n f(x)﹣1=0(n∈N*)的所有解的和为()A.3n2+3n B.3×2n+2+9 C.3n+2+6 D.9×2n+1﹣33已知正项数列{a n}的前n项和为S n,且2S n=a n+,则S2015的值是()A. B.C.2015 D.4.在△ABC中,若角A,B,C所对的三边a,b,c成等差数列,给出下列结论:①b2≥ac;②;③;④.其中正确的结论是()A.①② B.②③ C.③④ D.①④5.设函数f(x)=2x﹣cosx,{a n}是公差为的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2﹣a1a5=()A.0 B. C.D.二.填空题(共5小题)6.设{a n}是一个公差为d(d>0)的等差数列.若,且其前6项的和S6=21,则a n= .7.已知整数数列a0,a1,a2,…,a2014中,满足关系式a0=0,|a1|=|a0+1|,|a2|=|a1+1|,…,|a2014|=|a2013+1|,则|a1+a2+a3+…+a2014|的最小值为.8.已知数列{a n}满足a1=a,a n+1=1+,若对任意的自然数n≥4,恒有<a n<2,则a 的取值范围为.9.定义数列{x n}:x1=1,x n+1=3x n3+2x n2+x n;数列{y n}:y n=;数列{z n}:z n=;若{y n}的前n项的积为P,{z n}的前n项的和为Q,那么P+Q= .10.如图,n+1个上底、两腰皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P1M1N1N2的面积为S1,四边形P2M2N2N3的面积为S2,…,四边形P n M n N n N n+1的面积为S n,通过逐一计算S1,S2,…,可得S n= .三.解答题(共11小题)11.已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).12.在数列{a n}中,a1=3,a n+1a n+λa n+1+μa n2=0(n∈N+)(Ⅰ)若λ=0,μ=﹣2,求数列{a n}的通项公式;(Ⅱ)若λ=(k0∈N+,k0≥2),μ=﹣1,证明:2+<<2+.13.已知数列{a n}的各项均为正数,b n=n(1+)n a n(n∈N+),e为自然对数的底数.(1)求函数f(x)=1+x﹣e x的单调区间,并比较(1+)n与e的大小;(2)计算,,,由此推测计算的公式,并给出证明;(3)令c n=(a1a2…a n),数列{a n},{c n}的前n项和分别记为S n,T n,证明:T n<eS n.14.数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前 n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2lnn.15.已知数列{a n}(n∈N*,1≤n≤46)满足a1=a,a n+1﹣a n=其中d≠0,n∈N*.(1)当a=1时,求a46关于d的表达式,并求a46的取值范围;(2)设集合M={b|b=a i+a j+a k,i,j,k∈N*,1≤i<j<k≤16}.①若a=,d=,求证:2∈M;②是否存在实数a,d,使,1,都属于M?若存在,请求出实数a,d;若不存在,请说明理由.16.已知{a n},{b n},{c n}都是各项不为零的数列,且满足a1b1+a2b2+…+a n b n=c n S n,n∈N*,其中S n是数列{a n}的前n项和,{c n}是公差为d(d≠0)的等差数列.(1)若数列{a n}是常数列,d=2,c2=3,求数列{b n}的通项公式;(2)若a n=λn(λ是不为零的常数),求证:数列{b n}是等差数列;(3)若a1=c1=d=k(k为常数,k∈N*),b n=c n+k(n≥2,n∈N*),求证:对任意的n≥2,n∈N*,数列单调递减.17.已知数列{a n}的前n项和为S n,a1=0,a1+a2+a3+…+a n+n=a n+1,n∈N*.(Ⅰ)求证:数列{a n+1}是等比数列;(Ⅱ)设数列{b n}的前n项和为T n,b1=1,点(T n+1,T n)在直线上,若不等式对于n∈N*恒成立,求实数m的最大值.18.数列{a n}的前n项和为S n,已知若a1=,S n=n2a n﹣n(n﹣1)(n∈N*)(Ⅰ)求a2,a3;(Ⅱ)求数列{a n}的通项;(Ⅲ)设b n=,数列{b n}的前n项的和为T n,证明:T n<(n∈N*)19.在数列 {a n}中,已知 a1=a2=1,a n+a n+2=λ+2a n+1,n∈N*,λ为常数.(1)证明:a1,a4,a5成等差数列;(2)设 c n=,求数列的前n项和 S n;(3)当λ≠0时,数列 {a n﹣1}中是否存在三项 a s+1﹣1,a t+1﹣1,a p+1﹣1成等比数列,且s,t,p也成等比数列?若存在,求出s,t,p的值;若不存在,说明理由.20.已知数列{a n}是等差数列,S n为{a n}的前n项和,且a10=19,S10=100;数列{b n}对任意n∈N*,总有b1•b2•b3…b n﹣1•b n=a n+2成立.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)记c n=(﹣1)n,求数列{c n}的前n项和T n.21.在公差不为0的等差数列{a n}中,a2,a4,a8成公比为a2的等比数列.(I)求数列{a n}的通项公式;(II)设数列{b n}满足b n=.①求数列{b n}的前n项和为T n;②令c2n﹣1=(n∈N+),求使得c2n﹣1>10成立的所有n的值.。

(浙江专用)高考数学一轮复习 专题6 数列 第43练 数列小题综合练练习(含解析)-人教版高三全册数

(浙江专用)高考数学一轮复习 专题6 数列 第43练 数列小题综合练练习(含解析)-人教版高三全册数

第43练 数列小题综合练[基础保分练]1.(2019·某某十校联考)已知数列{a n }是等比数列,其公比为q ,则“q >1”是“数列{a n }为单调递增数列”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(2019·某某某某二中模拟)已知数列{a n }是各项为正数的等比数列,点M (2,log 2a 2),N (5,log 2a 5)都在直线y =x -1上,则数列{a n }的前n 项和为( ) A.2n-2B.2n +1-2 C.2n -1D.2n +1-13.已知等比数列{a n }中,a n >0,a 1,a 99为方程x 2-10x +16=0的两根,则a 20·a 50·a 80等于( ) A.32B.64C.256D.±64.设函数f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递增,若数列{a n }是等差数列,且a 3>0,则f (a 1)+f (a 2)+f (a 3)+f (a 4)+f (a 5)的值( ) A.恒为正数B.恒为负数 C.恒为0D.可正可负5.(2018·某某柯桥区调研)已知等比数列{a n }中有a 3a 11=4a 7,数列{b n }是等差数列,且a 7=b 7,则b 5+b 9等于( )A.2B.4C.8D.166.(2019·某某模拟)数列{a n }的前n 项的和满足S n =32a n -n ,n ∈N *,则下列为等比数列的是( )A.{a n +1}B.{a n -1}C.{S n +1}D.{S n -1}7.两个等差数列{a n }和{b n },其前n 项和分别为S n ,T n ,且S n T n =7n +2n +3,则a 2+a 20b 7+b 15等于( )A.94B.378C.7914D.149248.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 8=36,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为( )A.1n +1B.n n +1C.n -1n D.n -1n +19.(2018·某某高级中学模拟)已知等差数列{a n }中,a 1+a 3=7,设其前n 项和为S n ,且S 4=S 6,则其公差d =______,其前n 项和S n 取得最大值时n =________.10.(2019·某某模拟)等差数列{a n }中,a 3+a 4=12,S 7=49.若记[x ]表示不超过x 的最大整数,(如[0.9]=0,[2.6]=2).令b n =[lg a n ],则数列{b n }的前2000项和为________.[能力提升练]1.(2019·某某某某一中模拟)已知函数y =f (x )为定义域R 上的奇函数,且在R 上是单调递增函数,函数g (x )=f (x -5)+x ,数列{a n }为等差数列,且公差不为0,若g (a 1)+g (a 2)+…+g (a 9)=45,则a 1+a 2+…+a 9等于( ) A.45B.15C.10D.02.设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为( ) A.2B.3C.4D.53.已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n 满足S n S n -1-S n -1S n =2S n S n -1(n ∈N *且n ≥2),则a 81等于 ( ) A.641B.640C.639D.6384.若三个非零且互不相等的实数x 1,x 2,x 3成等差数列且满足1x 1+1x 2=2x 3,则称x 1,x 2,x 3成一个“β等差数列”.已知集合M ={x ||x |≤100,x ∈Z },则由M 中的三个元素组成的所有数列中,“β等差数列”的个数为( ) A.25B.50C.51D.1005.对于数列{a n },定义H n =a 1+2a 2+…+2n -1a nn为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n 恒成立,则实数k 的取值X 围是________.6.(2019·某某某某一中模拟)已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且S 1,S 22,S 44成等比数列,则S n =________,a n =________.答案精析基础保分练1.D2.C3.B4.A5.C6.A7.D8.B9.-1 5解析 由S 4=S 6,知a 5+a 6=0, 则有⎩⎪⎨⎪⎧a 1+a 1+2d =7,a 1+4d +a 1+5d =0,解得⎩⎪⎨⎪⎧a 1=92,d =-1,所以a n =92+(n -1)×(-1)=112-n .由112-n ≥0,得n ≤112,又n ∈N *,所以当n =5时,S n取得最大值. 10.5445解析 设等差数列{a n }的公差为d ,∵a 3+a 4=12,S 7=49,∴2a 1+5d =12,7a 1+7×62d =49,解得a 1=1,d =2.∴a n =1+2(n -1)=2n -1,b n =[lg a n ]=[lg(2n -1)],n =1,2,3,4,5时,b n =0. 6≤n ≤50时,b n =1;51≤n ≤500时,b n =2; 501≤n ≤2000时,b n =3.∴数列{b n }的前2000项和为45+450×2+1500×3=5445. 能力提升练1.A [函数y =f (x )为定义域R 上的奇函数, 则f (-x )=-f (x ),关于点(0,0)中心对称, 那么y =f (x -5)关于点(-5,0)中心对称, 由等差中项的性质和对称性可知:a 1-5+a 9-52=a 5-5,故f (a 1-5)+f (a 9-5)=0,由此f (a 2-5)+f (a 8-5)=f (a 3-5)+f (a 7-5)=f (a 4-5)+f (a 6-5)=2f (a 5-5)=0, 又g (x )=f (x -5)+x ,若g (a 1)+g (a 2)+…+g (a 9)=f (a 1-5)+f (a 2-5)+…+f (a 9-5)+a 1+a 2+…+a 9=45,则a 1+a 2+…+a 9=45,故选A.]2.C [因为S 4=2(a 2+a 3),所以a 2+a 3≥5,又S 5=5a 3,所以a 3≤3,而a 4=3a 3-(a 2+a 3),故a 4≤4,当a 2=2,a 3=3时等号成立,所以a 4的最大值为4.]3.B [因为S n S n -1-S n -1S n =2S n S n -1,所以S n -S n -1=2,即{S n }为等差数列,首项为1,公差为2, 所以S n =1+2(n -1)=2n -1,所以S n =(2n -1)2,因此a 81=S 81-S 80=1612-1592=640,故选B.]4.B [由三个非零且互不相等的实数x 1,x 2,x 3成等差数列且满足1x 1+1x 2=2x 3,知⎩⎪⎨⎪⎧2x 2=x 1+x 3,1x 1+1x 2=2x 3消去x 2,并整理得(2x 1+x 3)(x 1-x 3)=0. 所以x 1=x 3(舍去),x 3=-2x 1, 于是有x 2=-12x 1.在集合M ={x ||x |≤100,x ∈Z }中,三个元素组成的所有数列必为整数列, 所以x 1必为2的倍数,且x 1∈[-50,50],x 1≠0,故这样的数组共50组.]5.⎣⎢⎡⎦⎥⎤73,125 解析 由题意,H n =a 1+2a 2+…+2n -1a n n=2n +1,则a 1+2a 2+…+2n -1a n =n 2n +1.n ≥2时,a 1+2a 2+…+2n -2a n -1=(n -1)2n ,两式相减,则2n -1a n =n 2n +1-(n -1)2n =(n +1)2n ,则a n =2(n +1),对a 1也成立, 故a n =2(n +1),∴a n -kn =(2-k )n +2,记b n =a n -kn ,则数列{b n }为等差数列,故S n ≤S 5对任意的n 恒成立化为b 5≥0,b 6≤0,即⎩⎪⎨⎪⎧52-k +2≥0,62-k +2≤0,解得73≤k ≤125,则实数k 的取值X 围是⎣⎢⎡⎦⎥⎤73,125.6.2n 24n -2解析 由题意知S 224=S 1×S 44,设数列{a n }的公差为d ,则2a 1+d24=a 1·4a 1+6d4,又a 1=2,d ≠0,解得d =4,所以a n =a 1+(n -1)d =4n -2,S n =n a 1+a n 2=2n 2.。

高考数学二轮复习考点十二《数列综合练习》课件

高考数学二轮复习考点十二《数列综合练习》课件

数列,当 n 为偶数时,bn+2=bn+1,数列为以 1 为公差的等差数列,∴S23
1-212
11×(11-1)
=(b1+b3+…+b23)+(b2+b4+…+b22)= 1-2 +11×4+
2
×1=212-1+44+55=4194.
2.等差数列{an}中,a1+a2=152,a2+a5=4,设 bn=[an],[x]表示不超 过 x 的最大整数,[0.8]=0,[2.1]=2,则数列{bn}的前 8 项和 S8=( )
A.12<a2<1
B.{an}是递增数列
C.12<a3<34
D.34<a2022<1
答案 ABD
解析 由 an+1=an+ln (2-an),0<a1<12,设 f(x)=x+ln (2-x),则 f′(x) =1-2-1 x=12- -xx,所以当 0<x<1 时,f′(x)>0,即 f(x)在(0,1)上单调递增, 所以 f(0)<f(x)<f(1),即12=ln e<ln 2<f(x)<1+ln 1=1,所以12<f(x)<1,即12 <an<1(n≥2),故 A 正确;因为 f(x)在(0,1)上单调递增,0<an<1(n∈N*),所 以 an+1-an=ln (2-an)>ln (2-1)=0,所以{an}是递增数列,故 B项中,只有一项符合题目要求) 1.已知数列{bn}满足 b1=1,b2=4,bn+2=1+sin2n2πbn+cos2n2π,则该 数列的前 23 项和为( ) A.4194 B.4195 C.2046 D.2047
答案 A
解析 由题意,得当 n 为奇数时,bn+2=2bn,数列为以 2 为公比的等比

专题3 数列专题压轴小题(原卷版)

专题3 数列专题压轴小题(原卷版)

专题3 数列专题压轴小题一、单选题1.(2022·全国·模拟预测(理))数列{}n a 满足1a a =,2131n n n a a a +=--,则下列说法错误的是( ) A .若1a ≠且2a ≠,数列{}n a 单调递减B .若存在无数个自然数n ,使得1n n a a +=,则1a =C .当2a >或1a <时,{}n a 的最小值不存在D .当3a =时,121111,12222n a a a ⎛⎤++⋅⋅⋅⋅⋅⋅+∈ ⎥---⎝⎦2.(2022·浙江·杭州高级中学模拟预测)已知数列{}n a 中,11a =,若()*112,N n n n na a n n n a --=≥∈+,则下列结论中错误的是( ) A .41225a =B .11112n n a a +-≤ C .ln(1)1n a n ⋅+<D .21112n n a a -≤ 3.(2022·浙江·高三开学考试)已知数列{}n a 满足递推关系1e 1e nn a an a +-=,且10a >,若存在等比数列{}n b 满足1+≤≤n n n b a b ,则{}n b 公比q 为( )A .12B .1eC .13D .1π4.(2022·浙江·模拟预测)已知数列{}n a 满足()()112,1ln n n a a a b b n *+=-=+-∈N .若{}n a 有无穷多个项,则( ) A .0b ≥B .1b ≥-C .1b ≥D .2b ≥-5.(2022·全国·高三专题练习)已知等差数列{}n a (公差不为零)和等差数列{}n b 的前n 项和分别为n S ,n T ,如果关于x 的实系数方程22021202120210x S x T -+=有实数解,那么以下2021个方程()201,2,3,,2021i i x a x b i -+==⋅⋅⋅中,无实数解的方程最多有( )A .1008个B .1009个C .1010个D .1011个6.(2022·全国·高三专题练习)己知数列{}n a 满足:12a =,)()1123n n a a n *+=∈N .记数列{}n a 的前n 项和为n S ,则( ) A .101214S << B .101416S << C .101618S <<D .101820S <<7.(2022·浙江·慈溪中学模拟预测)已知数列{}n a 满足:112a =-,且()1ln 1sin +=+-n n n a a a ,则下列关于数列{}n a 的叙述正确的是( ) A .1n n a a +>B .1124-≤<-n aC .212nn n a a a +>-+D .2124n n a -≤-8.(2022·浙江省江山中学高三期中)已知数列{}n a 满足13a =,121n n na a a +=+-,记数列{}2n a -的前n项和为n S ,设集合12624535,,,5251712M ⎧⎫=⎨⎬⎩⎭,{nN M Sλλ=∈>对*n ∈N 恒成立},则集合N 的元素个数是( ) A .1B .2C .3D .49.(2022·浙江省嘉善中学高三阶段练习)已知数列{}n a 满足11a =,()*14,2n n a a n N n -⎫=+∈≥,n S 为数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和,则( ) A .20227833S << B .2022723S <<C .2022523S << D .2022513S <<10.(2022·全国·高三专题练习)已知数列{}{}{}n n n a b c 、、满足()*111112233411111112334n n n n n n n n n n n b a b c c a a c c n S n T n b b b b a a a n+++====-=⋅∈=+++≥=+++≥---N ,,,(),(),则下列有可能成立的是( )A .若{}n a 为等比数列,则220222022a b > B .若{}n c 为递增的等差数列,则20222022S T <C .若{}n a 为等比数列,则220222022a b < D .若{}n c 为递增的等差数列,则20222022S T >11.(2022·浙江·模拟预测)已知各项均为正数的数列{}n a 满足11a =,()1*111n n n n n a a n N a +++=-∈,则数列{}n a ( )A .无最小项,无最大项B .无最小项,有最大项C .有最小项,无最大项D .有最小项,有最大项12.(2022·浙江浙江·二模)已知{}n a 为非常数数列且0n a ≠,1a μ=,()()*1sin 2,,n n n a a a n λμλ+=++∈∈R N ,下列命题正确的是( )A .对任意的λ,μ,数列{}n a 为单调递增数列B .对任意的正数ε,存在λ,μ,()*00n n ∈N ,当0n n >时,1n a ε-<C .存在λ,μ,使得数列{}n a 的周期为2D .存在λ,μ,使得2122n n n a a a +++->13.(2022·浙江温州·二模)对于数列{}n x ,若存在正数M ,使得对一切正整数n ,恒有n x M ≤,则称数列{}n x 有界;若这样的正数M 不存在,则称数列{}n x 无界,已知数列{}n a 满足:11a =,()()1ln 10n n a a λλ+=+>,记数列{}n a 的前n 项和为n S ,数列{}2na 的前n 项和为nT ,则下列结论正确的是( ) A .当1λ=时,数列{}n S 有界 B .当1λ=时,数列{}n T 有界 C .当2λ=时,数列{}n S 有界D .当2λ=时,数列{}n T 有界14.(2022·北京市育英学校高三开学考试)[]x 为不超过x 的最大整数,设n a 为函数()[]f x x x ⎡⎤=⎣⎦,[)0,x n ∈的值域中所有元素的个数.若数列12n a n ⎧⎫⎨⎬+⎩⎭的前n 项和为n S ,则2022S =( )A .10121013B .12C .20214040D .1011101215.(2022·浙江浙江·高三阶段练习)已知数列{}n a 满足11a =,且12n n T a a a =,若*12,1n nn n a T T n N a ++∈=,则( ) A .5011,1211a ⎛⎫∈⎪⎝⎭B .5011,1110a ⎛⎫∈⎪⎝⎭C .1011,87a ⎛⎫∈ ⎪⎝⎭D .1011,65a ⎛⎫∈ ⎪⎝⎭16.(2022·浙江·高三专题练习)已知数列{}n a 满足()*111,1ln 2n n a a a n N +==+∈,记n T 表示数列{}n a 的前n 项乘积.则( ) A .911,3026T ⎛⎫∈⎪⎝⎭ B .911,2622T ⎛⎫∈⎪⎝⎭ C .911,2218T ⎛⎫∈⎪⎝⎭ D .911,1814T ⎛⎫∈⎪⎝⎭ 17.(2022·浙江·湖州中学高三阶段练习)已知各项均为正数的数列{}n a 满足11a =,()11e cos n a n n a a n +*+=-∈Ν,其前n 项和为n S ,则下列关于数列{}n a 的叙述错误的是( ) A .()1n n a a n *+>∈Ν B .()211n n n a a a n *++<+∈ΝC.)n a n *∈ΝD.)n S n *<∈Ν18.(2022·浙江·镇海中学高三期末)已知无穷项实数列{}n a 满足: 1a t =, 且 14111n n n a a a +=--, 则( )A .存在1t >, 使得20111a a =B .存在0t <, 使得20211a a =C .若2211a a =, 则21a a =D .至少有2021个不同的t , 使得20211a a =19.(2022·浙江杭州·高三期末)若数列{}n a 满足1n n a a +<,则下列说法错误的是( ) A .存在数列{}n a 使得对任意正整数p ,q 都满足p pq q a a a =+ B .存在数列{}n a 使得对任意正整数p ,q 都满足pq q p a pa qa =+ C .存在数列{}n a 使得对任意正整数p ,q 都满足p q q p a pa qa +=+ D .存在数列{}n a 使得对任意正整数p ,q 部满足p q p q a a a +=20.(2022·全国·高三专题练习)已知{}n a 是各项均为正整数的数列,且13a =,78a =,对*k N ∀∈,11k k a a +=+与1212k k a a ++=有且仅有一个成立,则127a a a ++⋅⋅⋅+的最小值为( ) A .18 B .20C .21D .2221.(2022·浙江·海亮高级中学模拟预测)已知数列{},n a n N *∈,212,n n n a a a m m R +=-+∈,下列说法正确的是( )A .对任意的(0,1)m ∈,存在1[1,2]a ∈,使数列{}n a 是递增数列;B .对任意的95(,)42m ∈,存在1[1,2]a ∈,使数列{}n a 不单调;C .对任意的(0,1)m ∈,存在1[1,2]a ∈,使数列{}n a 具有周期性;D .对任意的(0,1)m ∈,当1[1,2]a ∈时,存在3n a >.22.(2022·全国·高三专题练习)已知{}n a 是等差数列,()sin n n b a =,存在正整数()8t t ≤,使得n t n b b +=,*n N ∈.若集合{}*,n S x x b n N==∈中只含有4个元素,则t 的可能取值有( )个A .2B .3C .4D .523.(2022·上海民办南模中学高三阶段练习)已知数列{}n a 满足:当0n a ≠时,2112+-=n n na a a ;当0n a =时,10n a +=;对于任意实数1a ,则集合{}0,1,2,3,nn an ≤=的元素个数为( )A .0个B .有限个C .无数个D .不能确定,与1a 的取值有关24.(2022·全国·高三专题练习)已知数列{}n a 满足1221nn n a a a +=+,满足()10,1a ∈,1220212020a aa ++⋅⋅⋅+=,则下列成立的是( ) A .120211ln ln 2020a a ⋅> B .120211ln ln 2020a a ⋅=C .120211ln ln 2020a a ⋅<D .以上均有可能25.(2022·全国·高三专题练习)已知各项都为正数的数列{}n a 满足1(2)a a a =>,1*11()n a n n ne a ka n N a +-++=-+∈,给出下列三个结论:①若1k =,则数列{}n a 仅有有限项;①若2k =,则数列{}n a 单调递增;①若2k =,则对任意的0M >,陼存在*0n N ∈,使得020n n M a >成立.则上述结论中正确的为( ) A .①① B .①① C .①① D .①①①二、多选题26.(2022·全国·清华附中朝阳学校模拟预测)数列{}n a 满足1a a =,2131n n n a a a +=--,则下列说法正确的是( )A .若1a ≠且2a ≠,数列{}n a 单调递减B .若存在无数个自然数n ,使得1n n a a +=,则1a =C .当2a >或1a <时,{}n a 的最小值不存在D .当3a =时,121111,12222n a a a ⎛⎤++⋅⋅⋅⋅⋅⋅+∈ ⎥---⎝⎦27.(2022·福建省福州第一中学高三开学考试)已知数列{}n a 满足101a <<,()()11ln 2N*n n n a a a n ++=-∈,n S 为数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论正确的是( ) A .()12n n n S +>B .202212022a >C .01n a <<D .若113a =,则1132n n a -≥⋅28.(2022·江苏·高三开学考试) 已知n S 是数列{}n a 的前n 项和,21n n S S n +=-+,则( )A . 121(2)n n a a n n ++=-≥B . 22n n a a +-=C . 当10a =时,501225S =D . 当数列{}n a 单调递增时,1a 的取值范围是11,44⎛⎫- ⎪⎝⎭29.(2022·湖北武汉·高三开学考试)已知数列{}n a 满足:11a =,(()11322n n a a n -=≥,下列说法正确的是( )A .N n *∀∈,12,,n n n a a a ++成等差数列B .()1132n n n a a a n +-=-≥C .()11*23N n n n a n --≤≤∈D .*N n ∀∈,12,,n n n a a a ++一定不成等比数列30.(2022·浙江绍兴·模拟预测)已知正项数列{}n a ,对任意的正整数m 、n 都有222m n m n a a a +≤+,则下列结论可能成立的是( ) A .n mmn a a a m n+= B .m n m n na ma a ++= C .2m n mn a a a ++=D .2m n m n a a a +⋅=31.(2022·全国·模拟预测)已知数列{}n a 满足328a =,()()1122nn n a n a n --⎡⎤=+≥⎢⎥⎣⎦,*n ∈N ,数列{}n b 的前n 项和为n S ,且()()222212221log log n n n n n b a a a a +-+=⋅-⋅,则下列说法正确的是( ) A .4221a a = B .1216a a ⋅=C .数列212n n a a -⎧⎫⎨⎬⎩⎭为单调递增的等差数列D .满足不等式50n S ->的正整数n 的最小值为6332.(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A -记为20a=,()30,1A -记为31,a =-⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =-C .82n a n =D .()245312n n n n S ++=33.(2022·全国·长郡中学模拟预测)已知数列{}n a 的前n 项和为n S ,且1n n S a +=对于*n N ∀∈恒成立,若定义(1)n n S S =,()()(1)12nk k ni i S S k -==≥∑,则以下说法正确的是( )A .{}n a 是等差数列B .()232122nn n n S -+=-C .()()()121A 1!k k k n k nn S S k +++--=+D .存在n 使得()202120222022!nn S =34.(2022·全国·高三专题练习)我们常用的数是十进制数,如32101079110010710910⨯⨯+⨯⨯=++,表示十进制的数要用10个数码.0,1,2,3,4,5,6,7,8,9;而电子计算机用的数是二进制数,只需两个数码0和1,如四位二进制的数()3212110112120212⨯⨯⨯++⨯=+,等于十进制的数13.把m 位n 进制中的最大数记为(),M m n ,其中m ,*,2n n ∈≥N ,(),M m n 为十进制的数,则下列结论中正确的是( )A .()5,231M =B .()()4,22,4M M =C .()()2,11,2M n n M n n ++<++D .()()2,11,2M n n M n n ++>++35.(2022·全国·高三专题练习)已知数列{}n a 满足11a =,()12ln 11n n n a a a +=++,则下列说法正确的有( ) A .31225a a a <+B .2211n nn a a a +-≤+ C .若2n ≥,则131141ni i a =≤<+∑ D .()()1ln 121ln 2nni i a =+≤-∑36.(2022·海南·嘉积中学高三阶段练习)“0,1数列”在通信技术中有着重要应用,它是指各项的值都等于0或1的数列.设A 是一个有限“0,1数列”,()f A 表示把A 中每个0都变为1,0,每个1都变为0,1,所得到的新的“0,1数列”,例如()0,1,1,0A,则()()1,0,0,1,0,1,1,0f A =.设1A 是一个有限“0,1数列”,定义()1k k A f A +=,1k =、2、3、⋅⋅⋅.则下列说法正确的是( )A .若()31,0,0,1,1,0,0,1A =,则()10,0A =B .对任意有限“0,1数列”1A ,则()2,n A n n ≥∈N 中0和1的个数总相等C .1n A +中的0,0数对的个数总与n A 中的0,1数对的个数相等D .若()10,0A =,则2021A中0,0数对的个数为10101413-() 37.(2022·全国·高三专题练习(理))设数列{}n a 满足10a =,3128,N n na ca c n *+=+-∈其中c 为实数,数列{}2n a 的前n 项和是n S ,下列说法不正确的是( ) A .当1c >时,{}n a 一定是递减数列 B .当0c <时,不存在c 使{}n a 是周期数列 C .当10,4c ⎡⎤∈⎢⎥⎣⎦时,[]0,2n a ∈D .当17c =时,52n S n >- 三、填空题38.(2022·全国·高三专题练习)对于数列{}n a ,若1,n n a a +是关于x 的方程2103n n x c x -+=的两个根,且12a =,则数列{}n c 所有项的和为________.39.(2022·全国·高三专题练习(文))已知函数()2()log 41xf x x =+-,数列{}n a 是公差为2的等差数列,若()()()()112233440a f a a f a a f a a f a +++=,则数列{}n a 的前n 项和n S =__________.40.(2022·全国·高三专题练习)数列{}n a 满足:2110n n n a a a a c +==-++,.若数列{}n a 单调递减,则c的取值范围是________;若数列{}n a 单调递增,则c 的取值范围是__________.41.(2022·全国·高三专题练习(理))黎曼猜想由数学家波恩哈德·黎曼于1859年提出,是至今仍未解决的世界难题.黎曼猜想研究的是无穷级数1111()123s s s sn n n ξ∞-===+++⋅⋅⋅∑,我们经常从无穷级数的部分和1111123s s s s n +++⋅⋅⋅+入手.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,则122021111S S S ⎡⎤++⋅⋅⋅=⎢⎥⎣⎦______.(其中[]x 表示不超过x 的最大整数) 42.(2022·上海·华东师范大学附属东昌中学高三阶段练习)已知函数2()(2),2x f x f x x ≤<=-≥⎪⎩,若对于正数(*)n k n N ∈,直线n y k x =与函数()f x 的图像恰好有21n 个不同的交点,则22212n k k k ++⋯+=___________.43.(2022·全国·高三专题练习)设①A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3…,若11b c >,1112b c a +=,11,2n n n n n a c a a b +++==,12n n n a bc ++=,则n A ∠的最大值是________________.44.(2022·上海·高三专题练习)若数列{}n a 满足()**120,n n n n k a a a a n N k N +++++++=∈∈,则称数列{}n a 为“k 阶相消数列”.已知“2阶相消数列”{}n b 的通项公式为2cos n b n ω=,记12n n T b b b =,12021n ≤≤,*n N ∈,则当n =___________时,n T 取得最小值45.(2022·上海·高三专题练习)若数列{}n a 满足()*4411414242434141032n n n n n n n n a a a a a a a n N a a +-----=-=-===∈,,,且对任意*n N ∈都有n a m <,则m 的最小值为________.46.(2022·全国·高三开学考试(理))用()g n 表示自然数n 的所有因数中最大的那个奇数,例如:9的因数有1,3,9,(9)9g =,10的因数有1,2,5,10,(10)5g =,那么2015(1)(2)(3)(21)g g g g ++++-=__________.47.(2022·江苏苏州·模拟预测)设函数()21f x x =,()()222f x x x =-,()31sin 23f x x π=,取2019i it =,0,1,2,,2019i =,()()()()()()102120192018k k k k k k k S f t f t f t f t f t f t +-++=--,1,2,3k =,则1S ,2S ,3S 的大小关系为________.(用“<”连接)四、双空题48.(2022·浙江·模拟预测)已知数列{}n a 对任意的n *∈N ,都有n a *∈N ,且131,,2n n n n n a a a a a ++⎧⎪=⎨⎪⎩为奇数为偶数.①当18a =时,2022a =_________.①若存在m *∈N ,当n m >且n a 为奇数时,n a 恒为常数P ,则P =_________.49.(2022·全国·高三专题练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程若第1个图中的三角形的周长为1,则第n 个图形的周长为___________;若第1个图中的三角形的面积为1,则第n 个图形的面积为___________.50.(2022·全国·高三专题练习)对于正整数n ,设n x 是关于x 的方程:()222253log 1nn n nx x x ++++=的实根,记12nnax⎡⎤=⎢⎥⎣⎦,其中[]x表示不超过x的最大整数,则1a=______;若πsin2n nnb a=⋅,nS为{}n b的前n项和,则2022S=______.。

(整理)高三数学等比数列与数列求和综合题

(整理)高三数学等比数列与数列求和综合题

高三数学等比数列与数列求和综合题1.设S n是等比数列{a n}的前n项和,S4=5S2,则的值为(C)A.﹣2或﹣1 B.1或2 C.±2或﹣1 D.±1或22.已知x,y,z∈R,若﹣1,x,y,z,﹣4成等比数列,则xyz的值为(C)A.﹣4 B.±4 C.﹣8 D.±83.设等比数列{a n}的前n项积P n=a1•a2•a3•…•a n,若P12=32P7,则a10等于()A.16 B.8 C.4 D.2由题意,∵P12=32P7,∴a1•a2•a3•…•a12=32a1•a2•a3•…•a7,∴a8•a9•…•a12=32,∴(a10)5=32,∴a10=2.4.设数列{a n}的首项为m,公比为q(q≠1)的等比数列,S n是它的前n项的和,对任意的n∈N*,点(a n,)在直线(B)上.A.qx+my﹣q=0 B.qx﹣my+m=0 C.mx+qy﹣q=0 D.qx+my+m=0解:∵数列{a n}的首项为m,公比为q(q≠1)的等比数列,∴a n=mq n﹣1,S n=,∴=1+q n,∴q•=mq n﹣1﹣m(1+q n)+m=0,∴点(a n,)在直线qx﹣my+m=0上.5.各项都是正数的等比数列{a n}的公比q≠1且a3、a5、a6成等差数列,则=(D)A.B.C.D.6.已知正项等比数列{a n}满足a2014=a2013+2a20124a1,则6(1m+1n)的最小值为( )A.23B.2 C.4 D.67.已知等比数列{a n}的前n项和为S n,且a1+a3=,则=(C)A.4n﹣1 B.4n﹣1 C.2n﹣1 D.2n﹣1解:设等比数列{a n}的公比为q,∴q==,∴a 1+a 3=a 1(1+q 2)=a 1(1+)=,解得a 1=2, ∴a n =2×=,S n =,∴==2n﹣18.已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则(a 5+a 7+a 9)的值是( A ) A .﹣5 B .C .5D .解:∵log 3a n +1=log 3a n+1 ∴a n+1=3a n∴数列{a n }是以3为公比的等比数列,∴a 2+a 4+a 6=a 2(1+q 2+q 4)=9∴a 5+a 7+a 9=a 5(1+q 2+q 4)=a 2q 3(1+q 2+q 4)=9×33=359.等比数列{a n }的前n 项和为S n ,若S 2n =4(a 1+a 3+…+a 2n ﹣1),a 1a 2a 3=27,则a 6=( C ) A .27 B .81 C .243 D .729解:利用等比数列的性质可得,a 1a 2a 3=a 23=27 即a 2=3 因为S 2n =4(a 1+a 3+…+a 2n ﹣1)所以n=1时有,S 2=a 1+a 2=4a 1从而可得a 1=1,q=3所以,a 6=1×35=24310.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则等于( D )A .78B .84C .124D .12611.现有数列{}n a 满足:11a =,且对任意的m ,n ∈N *都有:m n m n a a a mn +=++,则12320141111a a a a ++++=( )A.20142015 B.20121007 C.20132014 D.4028201512.已知函数2()cos()f n n n π=,且()(1)n a f n f n =++,则123100a a a a ++++=( B )A .0 B .100- C .100 D .1020013.已知数列{}n a 的通项公式是221sin()2n n a n π+=, 1232014a a a a ++++=则( )A .201320132⨯ B .20131007⨯ C .20141007⨯ D .20151007⨯化简可得:2221sin()sin()22n n a n n n πππ+==+,当n=2k-1时,221(21)k a k -=--,当n=2k 时,222(2)4k a k k ==,∴22212(21)441k k a a k k k -+=--+=-,所以1232014123220132014()()()(411)(421)+(410071)a a a a a a a a a a ++++=+++++=⋅-+⋅-+⋅-…1+1007=41007-1007=100720152⋅⋅⋅. 14.正项等比数列{}n a 满足142=a a ,133=S ,n n a b 3log =,则数列{}n b 的前10项和是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档