电容电感元件的特性

合集下载

电感与电容的基本原理与特性

电感与电容的基本原理与特性

电感与电容的基本原理与特性电感和电容是电路中重要的两种被动元件,它们在各种电子设备中得到广泛应用。

本文将探讨电感和电容的基本原理和特性,以及它们在电路设计中的应用。

一、电感的基本原理和特性电感是一种存储电能的被动元件,其基本原理是电流在通过导体时会发生磁场变化,在磁场中形成一个电势,这个电势会抵消电流的变化。

电感的单位为亨利,表示当电流变化率为每秒1安时,电压变化率为每秒1伏时时,产生的电势差为1伏。

电感的特性有以下几个方面:1. 电感对交流电的阻抗是有限的,但对直流电的阻抗是无限的。

2. 电感会产生自感电势,阻止电流的变化;而外加电势变化时,电感会产生感应电势。

3. 电感的大小与导体的匝数、导体面积和导体长度有关。

4. 电感随频率的变化而不同,当频率越高时电感值越小。

5. 电感可以被用来滤除电路中的高频噪声。

二、电容的基本原理和特性电容是另一种存储电能的被动元件,其基本原理是在电场中移动的带电粒子会在两个互相分离的导体之间形成电势差,这个电势差可以用来存储电能。

电容的单位为法拉,表示1伏电势差下存储的电荷量为1库仑。

电容的特性有以下几个方面:1. 电容对交流电的阻抗是有限的,但对直流电的阻抗是无限的。

2. 电容会阻止电压的变化;外加电压变化时,电容会储存电荷并产生电流。

3. 电容的大小与两个导体之间的距离和面积有关。

4. 电容随频率的变化而不同,当频率越高时电容值越小。

5. 电容可以被用来滤除电路中的低频噪声。

三、电感和电容在电路设计中的应用电感和电容在电路设计中被广泛应用,它们可以用来实现许多功能,如滤波器、谐振电路和分频器。

1. 滤波器设想一个电路中存在高频和低频两种信号,如果只需要通过低频信号,那就需要使用一个低通滤波器。

一个低通滤波器的基本结构是一个串联的电阻和电容,这个结构能够让低频信号通过,而阻止高频信号通过。

2. 谐振电路当一个电路达到谐振频率时,电感和电容的特性会让电路产生共振,使特定的频率信号得到放大,这种电路称为谐振电路。

电路元件电阻电容和电感的特性

电路元件电阻电容和电感的特性

电路元件电阻电容和电感的特性电路元件电阻、电容和电感是电路中常见的三种元件。

它们各自有着不同的特性和作用。

本文将分别介绍电阻、电容和电感的特性,以及它们在电路中的应用。

一、电阻的特性电阻是电流通过时会产生阻碍的元件。

它的特性主要包括电阻值、功率耗散和温度系数。

1. 电阻值电阻值是电阻对电流的阻碍程度的度量。

单位为欧姆(Ω),标示为R。

电阻值越大,对电流的阻碍越大。

根据欧姆定律,电阻值与电流之间的关系为I=V/R,其中I为电流,V为电压。

2. 功率耗散电阻元件在电流通过时会产生热量,这就是功率耗散。

功率耗散与电流和电压有关,计算公式为P=I^2 * R,其中P为功率,I为电流,R 为电阻值。

因此,在选用电阻时需要注意功率耗散是否在其额定范围内。

3. 温度系数电阻的阻值随温度的变化而变化,这就是温度系数。

温度系数用于描述电阻值随温度变化的情况,单位为ppm/℃。

温度系数越小,电阻值随温度变化的影响越小。

二、电容的特性电容是能储存电荷的元件。

它的特性主要包括电容值、电压容量和介质常数。

1. 电容值电容值是电容储存电荷的能力的度量。

单位为法拉(F),标示为C。

电容值越大,表示电容储存电荷的能力越强。

电容值与电容的结构和材料有关。

2. 电压容量电容元件能够承受的最大电压称为电压容量。

当电压超过电容的额定电压时,电容可能会损坏。

因此,在设计电路时需要根据电容的电压容量来选用合适的元件。

3. 介质常数电容的性能与介质有关,不同介质的电容性能也有所差异。

介质常数是刻画介质性能的指标,它描述了介质相对于真空的电容储存能力。

介质常数越大,电容性能越好。

三、电感的特性电感是电流变化时产生的磁场对电流的阻碍程度的元件。

它的特性主要包括感值、频率特性和饱和电流。

1. 感值感值是电感对电流的阻碍程度的度量。

单位为亨利(H),标示为L。

感值越大,电感对电流的阻碍越大。

电感值与电感线圈的结构和材料有关。

2. 频率特性电感的阻抗与电流频率有关,频率越高,感应电流越小。

第五章 电容元件与电感元件.

第五章 电容元件与电感元件.

1 2
Li2

1 ψ2 2L
结论
(1) 元件方程是同一类型;
(2) 若把 u-i,q- ,C-L互换,可由电容元件
的方程得到电感元件的方程;
(3) C 和 L称为对偶元件, 、q等称为对偶
元素。
电容器和电感器的模型
电容器模型(按照近似程度分) 0 级模型:不考虑损耗和产生的磁场。 I 级模型:考虑损耗不考虑产生的磁场。 II级模型:考虑损耗和产生的磁场。
i
i dq
dt
+
+ dq =Cduc
uc
C


i C duc dt
uc(
t
)
1 C
t

i

t
dt


uc
(
t
0
)
1 C
t
t 0
i

t
dt

例 5-1 5-2
2. 线性电容的充、放电过程
u,i i u
o
ωt
i ii i
+ u
+u
u
u
- -++
(1) u>0,du/dt>0,则i>0,q , 正向充电(电流流向正极板);

1 2
Li 2 (t 2)
1 2
Li 2 (t1)
wL( t2 ) wL( t1 )
wL ( t 2 ) wL ( t1 )元件充电,吸收能量
wL ( t 2 ) wL ( t1 )元件放电,释放能量
五、电感电流不能跃变(连续性)
电感 L 储存的磁场能量
wL

电阻、电感、电容在交流电路中的特性

电阻、电感、电容在交流电路中的特性

第二节电阻、电感、电容在交流电路中的特性在直流稳态电路中,电感元件可视为短路,电容元件可视为开路。

但在交流电路中,由于电压、电流随时间变化,电感元件中的磁场不断变化,引起感生电动势;电容极板间的电压不断变化,引起电荷在与电容极板相连的导线中移动形成电流。

因此,电阻R、电感L、及电容C对交流电路中的电压、电流都会产生影响。

电压和电流的波形及相量图如图2-10b、c所示。

电阻R两端的电压和流经R的电流同相,且其瞬时值、幅值及有效值均符合欧姆定律。

电阻元件R的瞬时功率为:电阻功率波形如图2-10d。

任一瞬间,p≥0,说明电阻都在消耗电能。

电阻是耗能元件,将从电源取得的电能转化为热能。

电路中通常所说的功率是指一个周期内瞬时功率的平均值,称平均功率,又称有功功率,用大写字母P表示,单位为瓦(W)。

(2-13)式中,U、I 分别为正弦电压、电流的有效值。

例2 -4有一电灯,加在其上的电压u=311sin314t V,电灯电阻R=100Ω,求电流I、电流有效值I和功率P。

若电压角频率由314rad/s变为3140rad/s,对电流有效值及功率有何影响?解:由欧姆定律可知因电阻阻值与频率无关,所以当频率变化时,电流有效值及功率不变。

2.电感元件当电感线圈中通过一交变电流i时,如图2-11a,在线圈中引起自感电动势e L,设电流(2-14)电感电压(2-15)用相量表示:即(2-16)同理,有效值相量(2-17)令则式2-18为电感元件的伏安特性,其中XL称为电感抗,简称感抗,单位欧姆(Ω)。

感抗XL表示电感对交流电流的阻碍能力,与电阻元件的电阻R类似;但与电阻不同,XL 不仅与电感元件本身的自感系数L有关,还与正弦电流的角频率ω有关,ω越大,感抗越大。

对于直流电路,ω=0,XL=0,电感可视为短路。

电感元件的瞬时功率为:(2-21)其平均值为:(2-22)电感的瞬时功率波形图见图2-11d。

在第一和第三个1/4周期,电感元件处于受电状态,它从电源取得电能并转化为磁场能,功率为正,电感元件所储存的磁场能(2-23)电流的绝对值从0增加到最大值Im,磁场建立并逐渐增强,磁场能由0增加到最大值1/2LIm2;在第二和第四个1/4周期,电感元件处于供电状态,它把磁场能转化为电能返回给电路,功率为负,电流由最大值减小到0,磁场消失,磁场能变为0。

电阻、电容、电感元件及其特性

电阻、电容、电感元件及其特性
特点:
高可靠性、功 率范围大、耐 潮湿、绝缘性 好、抗浪涌能 力强、阻燃性 好。
i
i

0

u
的 分
非线性时不变电阻

i t1
t2
0
u
非线性时变电阻
0
u
线性时不变电阻
i
t1
t2
0
u
线性时变电阻
1. 线性电阻
关联参考方向: u i R 或 i u Gu R
G — 电导,单位:西门子(S)
二、电容元件
薄膜电容器系列 主要有:CL20, CL21,CL23, CL25,CBB12, CBB21, CBB81 等
瓷介电容器系列 主要有:CC1, CC81, CT1,CT81,等
独石电容器 主要有: CC4, CT4. CC42, CT42 等
多层片状陶瓷电容器 ( SMD 贴 片 电 容 全 系 列) 片式钽电解电容 主要有: CC41,CT41.CA45 等
第三节 电阻、电容、电感元件及其特性
一、电阻元件
二端元件: 有两个端钮与外部相连的元件。
二端电阻元件的 u、i 关系可由 u – i 平面的一条
曲线(伏安特性曲线)确定。
f (u, i) 0
(电阻元件的电压与电流的约束关系, 简称VCR)
分 时不变电阻 或 线性电阻(过原点的直线)
类 时变电阻
非线性电阻
u、i、e(电动势)的参考方向为关联参考方向
e d L di
dt
dt
u e L di dt
1t
i L 0 u dt i(0)
i
+

uL e

电路元件电阻电容和电感的作用和特性

电路元件电阻电容和电感的作用和特性

电路元件电阻电容和电感的作用和特性电路元件电阻、电容和电感是电路中常见的三种基本元件,它们各自具有不同的作用和特性。

在本文中,我将详细讨论这三种元件的作用和特点。

1. 电阻(Resistor)电阻是电路中最常见的元件之一。

它的作用是限制电流的流动,阻碍电流通过的能力。

电阻器的电阻值用欧姆(Ω)表示,可以根据需要选择合适的电阻值来控制电路的电流。

电阻对电流有以下影响:- 限制电流大小:电阻通过电功率将电能转化为热能,并限制了电流的流动。

当电阻值增加时,电路中的电流减小,反之亦然。

- 控制电路电压:通过欧姆定律,我们知道电压等于电流乘以电阻,因此可以通过选择适当的电阻值来控制电路的电压。

电阻的特性包括:- 热稳定性:电阻器的电阻值在一定的温度范围内是稳定的,不会因温度的变化而发生明显的变化。

- 精确性:电阻器的电阻值可以根据需要设计和制造,具有较高的精确度。

2. 电容(Capacitor)电容是一种具有存储电荷能力的元件。

它由两个导电板和介质组成,通过存储电荷来储存电能。

电容对电流有以下影响:- 存储和释放电荷:电容器可以存储电荷,并在需要时释放。

当电容器充电时,电流会流向电容器并使之充电;当电容器放电时,储存的电荷流回电路。

电容的特性包括:- 存储能力:电容器的储能能力取决于电容值和电压。

较大的电容值和电压可以存储更多的电荷和储存更多的电能。

- 频率依赖性:电容的容抗(阻抗)随频率的变化而变化。

在低频情况下,电容器的容抗较大;而在高频情况下,容抗较小。

3. 电感(Inductor)电感是一种具有储存磁场能力的元件。

它由线圈或线圈的组合构成,通过改变电流来储存和释放磁场能量。

电感对电流有以下影响:- 储存和释放磁场能量:当电流通过电感时,它会储存磁场能量,并在电流变化或断开电路时释放。

电感的特性包括:- 自感性:电感器对电流的变化具有自感应作用,即当电流变化时,会产生电势变化,阻碍电流的变化。

这是由电感器内部的自感效应引起的。

电容元件及性质

电容元件及性质

t t0
p()dC t u()dud t0 d
C uu((tt0))udu12C[u2(t)u2(t0)]
若电容的初始储能为零,即u(t0)=0,则任意时刻储存在 电容中的能量为
W(t)1Cu2(t)
C
2
W(t0,t)
t p()dC t u()dud
t0
t0
d
C
uu((tt0))udu12C[u2(t)u2(t0)]
声明:
当 u,i为非关联方向时,上述微分和积分表达式前要冠以负号 ;
形式2的进一步说明:
在已知电容电流iC(t)的条件下,其电压uC(t)为
uC(t)C1
t
iC()d
1 C
0iC()dC1
0tiC()d
uC(0)C1 0tiC()d
(713)
其中 uC(0)C 1 0iC()d 称为电容电压的初始值。
例如,当1s<t<3s时,电
容电流iC(t)=0,但是电容电压 并不等于零,电容上的2V电
压是0<t<1s时间内电流作用的
结果。 定积分也可以用 求面积的方法获
图7-9
练习: 已知流过1F电容上的电 流,求电压
读例题6-1、 6-2
按求面积法 直读
例3 已知电压,求电流i、功率P (t)和储能W (t)
有隔断直流作用;
(3)实际电路中通过电容的电流 i为有限值,则电容电压u
必定是时间的连续函数.
形式2
电容元件VCR 的积分关系
u(t)C 1t idξC 1t0idξC 1tt0idξ
u(t0)C 1tt0idξ
解读:
(1)电容元件有记忆电流的作用,故称电容为记忆元件

电路中的电阻电容和电感有哪些基本特性

电路中的电阻电容和电感有哪些基本特性

电路中的电阻电容和电感有哪些基本特性电路中的电阻、电容和电感是电路中常见的三种基本元件,它们具有各自独特的特性。

本文将就电路中的电阻、电容和电感的基本特性进行探讨。

一、电阻的基本特性电阻是指电路中抵抗电流流动的元件,常用单位是欧姆(Ω)。

以下是电阻的基本特性:1. 阻值(电阻大小):电阻的阻值表示电阻对电流的阻碍程度,阻值越大,电流通过的越困难。

2. 电压-电流关系:根据欧姆定律,电阻元件的电压和电流之间存在线性关系,即V=IR,其中V表示电压,I表示电流,R表示电阻。

3. 功率消耗:当电流通过电阻时,电阻元件会发生功率消耗,功率的大小与电压和电流的乘积成正比。

4. 发热特性:由于电阻发生功率消耗,因此在高电流通过时会发热,需要特别注意散热问题。

二、电容的基本特性电容是储存电荷的元件,常用单位是法拉(F)。

以下是电容的基本特性:1. 电容量(容值大小):电容的容值表示其储存电荷的能力,容值越大,电容器储存电荷的能力越强。

2. 充放电过程:电容器可以通过连接电源进行充电,当电容器充满电荷后,可以通过放电过程释放电荷。

3. 电压-电荷关系:电容器上的电压与其带有的电荷量之间呈线性关系,电容器的电压随电荷量的增加而增加。

4. 频率特性:电容器对不同频率的交流信号具有不同的阻抗,对低频信号直流响应较好,对高频信号表现出较高的阻抗。

三、电感的基本特性电感是储存磁能的元件,常用单位是亨利(H)。

以下是电感的基本特性:1. 电感量(感值大小):电感的感值表示其储存磁能的能力,感值越大,电感器储存磁能的能力越强。

2. 反应速度:电感器对电流的变化有一定的惯性反应,即不会立即改变电流强度,具有瞬态特性。

3. 频率特性:电感器对交流信号的阻抗与频率有关,对高频信号表现出较高的阻抗,对低频信号直流响应较好。

4. 电感耦合:电感可以通过互感耦合方式将信号传递到其他电路中,实现信号的耦合与隔离。

综上所述,电路中的电阻、电容和电感是具有不同特性的基本元件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

du i dt
0
0
t
0
t t t 1 1 1 i ( ) d ξ i ( ) d ξ u(t) i( )dξ C Ct C t 1 u(t ) t idξ C
0 0
上 页
下 页
t 1 u(t) u(t ) t idξ C
0 0
上 页 下 页
1 u2 C2
C2
u2
i(ξ )dξ
t
-
i
+
u
C1 C2
+
+ -
u1 u2
+
等效
i C
u
-
C1C2 C C1 C2
上 页
下 页

串联电容的分压 i
1 t u1 i (ξ )dξ C1 1 t u2 i (ξ )dξ C2
+
u
C1 C2
+ + -
等效
du C dt
+
C C1 C2
i C
u
上 页 下 页

并联电容的分流
i
du i1 C1 dt du i C dt C1 i1 i C
du i2 C2 dt
+
u
i1
C1
i2
C2
-
C2 i2 i C
+
u
i C
上 页 下 页
3. 电感的串联

i
等效电感
+
u
di di u u1 u2 ( L1 L2 ) L dt dt
上 页
下 页
C +q + u -q -
du i C dt
表明
①某一时刻电容电流 i 的大小取决于电容电压 u 的 变化率,而与该时刻电压 u 的大小无关。电容是 动态元件; ②当 u 为常数(直流)时,i =0。电容相当于开路 ,电容有隔断直流作用;
上 页
下 页
③实际电路中通过电容的电流 i 为有限值, 则电容电压 u 必定是时间的连续函数。 u
电容元件 VCR的积 分形式
表明
①某一时刻的电容电压值与-到该时刻的所
有电流值有关,即电容元件有记忆电流的
作用,故称电容元件为记忆元件。
②研究某一初始时刻t0 以后的电容电压,需 要知道t0时刻开始作用的电流 i 和t0时刻的 电压 u(t0)。
上 页 下 页
注意
①当电容的 u , i 为非关联方向时,上述微

功率
di p ui L i dt
u、 i 取关联 参考方向
①当电流增大,p>0, 电感吸收功率。
②当电流减小,p<0, 电感发出功率。
表明 电感能在一段时间内吸收外部供给的
能量转化为磁场能量储存起来,在另一段时间 内又把能量释放回电路,因此电感元件是无源
元件、是储能元件,它本身不消耗能量。
上 页 下 页
1. 定义
电容元件
储存电能的两端元件。任何时 刻其储存的电荷 q 与其两端 的电压 u能用q~u 平面上的一 条曲线来描述。 u q
f (u, q) 0
0
上 页
下 页
2.线性定常电容元件
任何时刻,电容元件极板上的电荷 q 与电压
u 成正比。qu 特性曲线是过原点的直线。
q Cu
上 页 下 页
注意
①当电感的 u , i 为非关联方向时,上述微 分和积分表达式前要冠以负号 ;
di u L dt
t 1 i(t ) (i(t ) t udξ ) L
0 0
②上式中 i(t0)称为电感电压的初始值,它反映电 感初始时刻的储能状况,也称为初始状态。
上 页
下 页
4.电感的功率和储能
上 页 下 页

电感的储能
t t
di 1 2 WL Li dξ Li (ξ) dξ 2
1 2 1 2 1 2 Li (t ) Li () Li (t ) 2 2 2
1 2 1 2 WL Li (t ) Li (t0 ) 2 2
从t0到 t 电感储能的变化量:

0 i
L

i
tan
上 页
下 页

电路符号
i + L u ( t) 电感 器的 自感

单位
H (亨利),常用H,mH表示。
1H=103 mH 1 mH =103 H
上 页 下 页
3.线性电感的电压、电流关系
i +
L
u、i 取关联 参考方向 -
u ( t)
根据电磁感应定律与楞次定律
上 页
下 页
0 2t p(t ) u (t )i (t ) 2 t 4 0
2
0 -2 p/W
t0 0 t 1s 1 t 2s t 2s
吸收功 率 2 t /s 发出功率
上 页 下 页
1
0 2 1 2 t WC (t ) Cu (t ) 2 2 ( t 2 ) 0
上 页 下 页
1 i2 L2
-
-

u ( ξ ) d ξ
t

并联电感的分流
+
u
i1
L1
i2
L2
等效
+
u
i L
-
-

u ( ξ ) d ξ L i
t
1 t L L2i i1 u (ξ )dξ i L1 L1 L1 L2 1 t L L1i i2 u (ξ )dξ i L2 L2 L1 L2
环形线圈
立式功率型电感
上 页 下 页
电抗器
上 页 下 页
6.3 电容、电感元件的串联与并联
1.电容的串联

i
等效电容
+
u
1 t u1 i (ξ )dξ C1
C1
+ +
u1
1 1 t u u1 u2 ( ) i (ξ )dξ C1 C2
1 t i (ξ )dξ C
d di(t ) u (t ) L dt dt
电感元件VCR 的微分关系
上 页
下 页
i +
L
u ( t)
-
di (t ) u (t ) L dt
表明
①电感电压u 的大小取决于i 的变化率, 与 i 的 大小无关,电感是动态元件;
②当i为常数(直流)时,u =0。电感相当于短路;
③实际电路中电感的电压 u为有限值,则电感 电流 i 不能跃变,必定是时间的连续函数.
i
+
u
L1 L2
+
+
-
u1 u2
+
等效
i L
u
上 页 下 页
4.电感的并联

等效电感
+
u
i1 L1
i2 L2
等效
+
u
i L
1 t i1 u (ξ )dξ L1
1 1 t t 1 i i1 i2 u ( ξ ) d ξ u (ξ )dξ L L L 1 1 1 1 L1 L2 L 1 L L L L 1 1 1 2
分和积分表达式前要冠以负号 ;
du i C dt
t 1 u(t) (u(t ) t idξ ) C
0 0
②上式中 u(t0) 称为电容电压的初始值,它反 映电容初始时刻的储能状况,也称为初始 状态。
上 页 下 页
4.电容的功率和储能

功率
du p ui u C dt
u、 i 取关 联参考方向
0 2t us (t ) 2t 4 0 解得电流
t0 0 t 1s 1 t 2s t 2s
i/A 1
-1
0
1
2 t /s
t0 0 dus 1 0 t 1s i (t ) C dt 1 1 t 2s t 2s 0
①当电容充电, p >0, 电容吸收功率。 ②当电容放电,p <0, 电容发出功率。
表明 电容能在一段时间内吸收外部供给的
能量转化为电场能量储存起来,在另一段时间 内又把能量释放回电路,因此电容元件是储能
元件,它本身不消耗能量。பைடு நூலகம்
上 页 下 页

电容的储能
t t
du 1 WC Cu dξ Cu 2 (ξ ) dξ 2 1 2 1 2 1 2 Cu (t ) Cu () Cu (t ) 2 2 2
从t0到 t 电容储能的变化量:
1 2 1 2 WC Cu (t ) Cu (t0 ) 2 2
上 页 下 页
1 2 WC ( t ) Cu (t ) 0 2
表明
① 电容的储能只与当时的电压值有关,电容电 压不能跃变,反映了储能不能跃变;
② 电容储存的能量一定大于或等于零。
上 页
下 页
上 页 下 页
t t t 1 1 1 u d ξ u d ξ i(t) udξ L Lt L t 1 电感元件VCR i(t ) t udξ L 的积分关系
0 0
0
0
表明
①某一时刻的电感电流值与-到该时刻的所 有电流值有关,即电感元件有记忆电压的 作用,电感元件也是记忆元件。 ②研究某一初始时刻t0 以后的电感电流,不需要 了解t0以前的电流,只需知道t0时刻开始作用的 电压 u 和t0时刻的电流 i(t0)。
相关文档
最新文档